Radiomics-Guided Deep Learning Networks Classify Differential Diagnosis of Parkinsonism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. PET Acquisition and Preprocessing
2.3. Baseline Radiomics Analysis
2.4. Radiomics-Guided DL Model
2.5. Statistics Analysis
3. Results
3.1. Demographics
3.2. Baseline Radiomics Model
3.3. Radiomics-Guided DL Model
3.4. Interpretation of the DL Features with Radiomics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vidailhet, M. Movement disorders in 2010: Parkinson disease-symptoms and treatments. Nat. Rev. Neurol. 2011, 7, 70–72. [Google Scholar] [CrossRef] [PubMed]
- Koros, C.; Stefanis, L.; Scarmeas, N. Parkinsonism and dementia. J. Neurol. Sci. 2022, 433, 120015. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wu, P.; Wu, J.; Brendel, M.; Lu, J.; Ge, J.; Tang, C.; Hong, J.; Xu, Q.; Liu, F.; et al. Decoding the dopamine transporter imaging for the differential diagnosis of parkinsonism using deep learning. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2798–2811. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xue, L.; Jiang, J.; Liu, F.; Wu, P.; Lu, J.; Zhang, H.; Bao, W.; Xu, Q.; Ju, Z.; et al. Diagnostic performance of artificial intelligence-assisted PET imaging for Parkinson’s disease: A systematic review and meta-analysis. NPJ Digit. Med. 2024, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Cubo, E.; Martínez-Martín, P.; González-Bernal, J.; Casas, E.; Arnaiz, S.; Miranda, J.; Gámez, P.; Santos-García, D. Effects of Motor Symptom Laterality on Clinical Manifestations and Quality of Life in Parkinson’s Disease. J. Park. Dis. 2020, 10, 1611–1620. [Google Scholar] [CrossRef] [PubMed]
- Jabbari, E.; Holland, N.; Chelban, V.; Jones, P.S.; Lamb, R.; Rawlinson, C.; Guo, T.; Costantini, A.A.; Tan, M.M.X.; Heslegrave, A.J.; et al. Diagnosis Across the Spectrum of Progressive Supranuclear Palsy and Corticobasal Syndrome. JAMA Neurol. 2020, 77, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Nojszewska, M.; Potulska-Chromik, A.; Jamrozik, Z.; Janik, P.; Zakrzewska-Pniewska, B. Electrophysiological and clinical assessment of dysautonomia in multiple system atrophy (MSA) and progressive supranuclear palsy (PSP): A comparative study. Neurol. Neurochir. Pol. 2019, 53, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Pagano, G.; Niccolini, F.; Politis, M. Imaging in Parkinson’s disease. Clin. Med. 2016, 16, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Cong, C.; Li, X.; Zhou, W.; Xia, R.; Liu, H.; Wang, Y.; Xu, Z.; Chen, X. Identification of Parkinson’s disease and multiple system atrophy using multimodal PET/MRI radiomics. Eur. Radiol. 2024, 34, 662–672. [Google Scholar] [CrossRef]
- Hu, X.; Sun, X.; Hu, F.; Liu, F.; Ruan, W.; Wu, T.; An, R.; Lan, X. Multivariate radiomics models based on (18)F-FDG hybrid PET/MRI for distinguishing between Parkinson’s disease and multiple system atrophy. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3469–3481. [Google Scholar] [CrossRef]
- Wu, P.; Wang, J.; Peng, S.; Ma, Y.; Zhang, H.; Guan, Y.; Zuo, C. Metabolic brain network in the Chinese patients with Parkinson’s disease based on 18F-FDG PET imaging. Park. Relat. Disord. 2013, 19, 622–627. [Google Scholar] [CrossRef]
- Ge, J.; Wang, M.; Lin, W.; Wu, P.; Guan, Y.; Zhang, H.; Huang, Z.; Yang, L.; Zuo, C.; Jiang, J.; et al. Metabolic network as an objective biomarker in monitoring deep brain stimulation for Parkinson’s disease: A longitudinal study. EJNMMI Res. 2020, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Meyer, P.T.; Frings, L.; Rücker, G.; Hellwig, S. (18)F-FDG PET in Parkinsonism: Differential Diagnosis and Evaluation of Cognitive Impairment. J. Nucl. Med. 2017, 58, 1888–1898. [Google Scholar] [CrossRef]
- Rus, T.; Tomše, P.; Jensterle, L.; Grmek, M.; Pirtošek, Z.; Eidelberg, D.; Tang, C.; Trošt, M. Differential diagnosis of parkinsonian syndromes: A comparison of clinical and automated—Metabolic brain patterns’ based approach. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2901–2910. [Google Scholar] [CrossRef] [PubMed]
- Arnone, A.; Allocca, M.; Di Dato, R.; Puccini, G.; Laghai, I.; Rubino, F.; Nerattini, M.; Ramat, S.; Lombardi, G.; Ferrari, C.; et al. FDG PET in the differential diagnosis of degenerative parkinsonian disorders: Usefulness of voxel-based analysis in clinical practice. Neurol. Sci. 2022, 43, 5333–5341. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Wang, M.; Alberts, I.; Sun, X.; Li, T.; Rominger, A.; Zuo, C.; Han, Y.; Shi, K.; Initiative, F. Using radiomics-based modelling to predict individual progression from mild cognitive impairment to Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2163–2173. [Google Scholar] [CrossRef]
- Sun, X.; Ge, J.; Li, L.; Zhang, Q.; Lin, W.; Chen, Y.; Wu, P.; Yang, L.; Zuo, C.; Jiang, J. Use of deep learning-based radiomics to differentiate Parkinson’s disease patients from normal controls: A study based on [(18)F]FDG PET imaging. Eur. Radiol. 2022, 32, 8008–8018. [Google Scholar] [CrossRef] [PubMed]
- Bian, J.; Wang, X.; Hao, W.; Zhang, G.; Wang, Y. The differential diagnosis value of radiomics-based machine learning in Parkinson’s disease: A systematic review and meta-analysis. Front. Aging Neurosci. 2023, 15, 1199826. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, X.; Zhang, K.; Fung, K.M.; Thai, T.C.; Moore, K.; Mannel, R.S.; Liu, H.; Zheng, B.; Qiu, Y. Recent advances and clinical applications of deep learning in medical image analysis. Med. Image Anal. 2022, 79, 102444. [Google Scholar] [CrossRef]
- Chlap, P.; Min, H.; Vandenberg, N.; Dowling, J.; Holloway, L.; Haworth, A. A review of medical image data augmentation techniques for deep learning applications. J. Med. Imaging Radiat. Oncol. 2021, 65, 545–563. [Google Scholar] [CrossRef]
- Li, M.; Jiang, Y.; Zhang, Y.; Zhu, H. Medical image analysis using deep learning algorithms. Front. Public Health 2023, 11, 1273253. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Zhao, Y.; Wu, J.; Brendel, M.; Lu, J.; Ge, J.; Bernhardt, A.; Li, L.; Alberts, I.; Katzdobler, S.; et al. Differential Diagnosis of Parkinsonism Based on Deep Metabolic Imaging Indices. J. Nucl. Med. 2022, 63, 1741–1747. [Google Scholar] [CrossRef] [PubMed]
- Daveau, R.S.; Law, I.; Henriksen, O.M.; Hasselbalch, S.G.; Andersen, U.B.; Anderberg, L.; Højgaard, L.; Andersen, F.L.; Ladefoged, C.N. Deep learning based low-activity PET reconstruction of [(11)C]PiB and [(18)F]FE-PE2I in neurodegenerative disorders. Neuroimage 2022, 259, 119412. [Google Scholar] [CrossRef] [PubMed]
- Ho, E.S.; Ding, Z. Electrocardiogram analysis of post-stroke elderly people using one-dimensional convolutional neural network model with gradient-weighted class activation mapping. Artif. Intell. Med. 2022, 130, 102342. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Yoshida, S. Explainability of three-dimensional convolutional neural networks for functional magnetic resonance imaging of Alzheimer’s disease classification based on gradient-weighted class activation mapping. PLoS ONE 2024, 19, e0303278. [Google Scholar] [CrossRef] [PubMed]
- Höglinger, G.U.; Respondek, G.; Stamelou, M.; Kurz, C.; Josephs, K.A.; Lang, A.E.; Mollenhauer, B.; Müller, U.; Nilsson, C.; Whitwell, J.L.; et al. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Mov. Disord. Off. J. Mov. Disord. Soc. 2017, 32, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Gilman, S.; Wenning, G.K.; Low, P.A.; Brooks, D.J.; Mathias, C.J.; Trojanowski, J.Q.; Wood, N.W.; Colosimo, C.; Dürr, A.; Fowler, C.J.; et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 2008, 71, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2015, 30, 1591–1601. [Google Scholar] [CrossRef]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef]
- Rolls, E.T.; Huang, C.C.; Lin, C.P.; Feng, J.; Joliot, M. Automated anatomical labelling atlas 3. Neuroimage 2020, 206, 116189. [Google Scholar] [CrossRef]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Fonov, V.; Bériault, S.; Al Subaie, F.; Chakravarty, M.M.; Sadikot, A.F.; Pike, G.B.; Collins, D.L. Multi-contrast unbiased MRI atlas of a Parkinson’s disease population. Int. J. Comput. Assist. Radiol. Surg. 2015, 10, 329–341. [Google Scholar] [CrossRef]
- Xu, W.; Fu, Y.L.; Zhu, D. ResNet and its application to medical image processing: Research progress and challenges. Comput. Methods Programs Biomed. 2023, 240, 107660. [Google Scholar] [CrossRef]
- Joshi, A.; Hong, Y. R2Net: Efficient and flexible diffeomorphic image registration using Lipschitz continuous residual networks. Med. Image Anal. 2023, 89, 102917. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Tang, F.; Jin, J.; Li, M.; Zhang, H.; Liu, F. Dense channel splitting network for MR image super-resolution. Magn. Reson. Imaging 2022, 88, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.H.; Lee, H.Y.; Kim, E.; Lee, G.; Kim, J.; Kwon, J.; Park, H. Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans. Commun. Biol. 2021, 4, 1286. [Google Scholar] [CrossRef]
- Hughes, A.J.; Daniel, S.E.; Ben-Shlomo, Y.; Lees, A.J. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 2002, 125, 861–870. [Google Scholar] [CrossRef]
- Tarsy, D.; Apetauerova, D.; Ryan, P.; Norregaard, T. Adverse effects of subthalamic nucleus DBS in a patient with multiple system atrophy. Neurology 2003, 61, 247–249. [Google Scholar] [CrossRef]
- Juh, R.; Kim, J.; Moon, D.; Choe, B.; Suh, T. Different metabolic patterns analysis of Parkinsonism on the 18F-FDG PET. Eur. J. Radiol. 2004, 51, 223–233. [Google Scholar] [CrossRef]
- Shen, C.; Chen, L.; Ge, J.J.; Lu, J.Y.; Chen, Q.S.; He, S.J.; Li, X.Y.; Zhao, J.; Sun, Y.M.; Wu, P.; et al. Cerebral Metabolism Related to Cognitive Impairments in Multiple System Atrophy. Front. Neurol. 2021, 12, 652059. [Google Scholar] [CrossRef]
- Kim, S.W.; Chung, S.J.; Lee, S.; Oh, K.; Yoo, S.K.; Lee, P.H.; Kim, S.M.; Shin, H.Y.; Yun, M. Postganglionic Sudomotor Dysfunction and Brain Glucose Hypometabolism in Patients with Multiple System Atrophy. J. Park. Dis. 2021, 11, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Black, J.A.; Pham, N.T.T.; Ali, F.; Machulda, M.M.; Lowe, V.J.; Josephs, K.A.; Whitwell, J.L. Frontal hypometabolism in the diagnosis of progressive supranuclear palsy clinical variants. J. Neurol. 2024. [Google Scholar] [CrossRef]
- Martí-Andrés, G.; van Bommel, L.; Meles, S.K.; Riverol, M.; Valentí, R.; Kogan, R.V.; Renken, R.J.; Gurvits, V.; van Laar, T.; Pagani, M.; et al. Multicenter Validation of Metabolic Abnormalities Related to PSP According to the MDS-PSP Criteria. Mov. Disord. 2020, 35, 2009–2018. [Google Scholar] [CrossRef]
- Tomše, P.; Rebec, E.; Studen, A.; Perovnik, M.; Rus, T.; Ležaić, L.; Tang, C.C.; Eidelberg, D.; Trošt, M. Abnormal metabolic covariance patterns associated with multiple system atrophy and progressive supranuclear palsy. Phys. Med. 2022, 98, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Seckin, Z.I.; Duffy, J.R.; Strand, E.A.; Clark, H.M.; Utianski, R.L.; Machulda, M.M.; Botha, H.; Ali, F.; Thu Pham, N.T.; Lowe, V.J.; et al. The evolution of parkinsonism in primary progressive apraxia of speech: A 6-year longitudinal study. Park. Relat. Disord. 2020, 81, 34–40. [Google Scholar] [CrossRef] [PubMed]
IPD | MSA | PSP | p Value | ||
---|---|---|---|---|---|
Pretraining cohort | n | 241 | 79 | 78 | / |
Gender (M/F) | 154/87 | 42/37 | 45/33 | 0.202 | |
Age | 50.0 ± 15.2 | 57.5 ± 10.6 | 64.6 ± 8.6 | <0.001 | |
Symptom duration (months) | / | / | / | / | |
Hoehn and Yahr stage | / | / | / | / | |
UPDRS | / | / | / | ||
Training cohort | n | 299 | 150 | 98 | / |
Gender (M/F) | 166/133 | 78/72 | 60/38 | 0.359 | |
Age | 60.2 ± 8.5 | 57.8 ± 8.0 | 67.2 ± 8.0 | <0.001 | |
Symptom duration (months) | 45.3 ± 46.0 | 24.3 ± 17.1 | 35.0 ± 20.7 | <0.001 | |
Hoehn and Yahr stage | 2.2 ± 1.0 | 3.1 ± 0.8 | 3.2 ± 0.8 | <0.001 | |
UPDRS | 27.0 ± 14.3 | 30.6 ± 14.5 | 30.1 ± 13.5 | 0.02 | |
Test cohort | n | 211 | 61 | 58 | / |
Gender (M/F) | 130/81 | 32/29 | 39/19 | 0.241 | |
Age (years) | 60.0 ± 7.6 | 58.5 ± 6.3 | 65.1 ± 6.6 | <0.001 | |
Symptom duration (months) | 39.0 ± 41.3 | 27.0 ± 20.1 | 34.1 ± 22.7 | 0.062 | |
Hoehn and Yahr stage | 1.9 ± 0.9 | 2.9 ± 0.8 | 3.0 ± 0.8 | <0.001 | |
UPDRS | 22.8 ± 12.1 | 29.3 ± 14.4 | 26.8 ± 11.0 | <0.001 |
Group | Sensitivity | Specificity | PPV | NPV | ||
---|---|---|---|---|---|---|
ResNet | Training cohort | IPD | 0.959 | 0.931 | 0.944 | 0.950 |
MSA | 0.920 | 0.982 | 0.951 | 0.970 | ||
PSP | 0.979 | 0.997 | 0.989 | 0.995 | ||
Test cohort | IPD | 0.896 | 0.855 | 0.917 | 0.821 | |
MSA | 0.819 | 0.973 | 0.877 | 0.959 | ||
PSP | 0.877 | 0.956 | 0.806 | 0.973 | ||
DenseNet | Training cohort | IPD | 0.973 | 0.959 | 0.966 | 0.967 |
MSA | 0.966 | 0.992 | 0.979 | 0.987 | ||
PSP | 0.969 | 0.997 | 0.989 | 0.993 | ||
Test cohort | IPD | 0.957 | 0.932 | 0.962 | 0.924 | |
MSA | 0.901 | 0.973 | 0.887 | 0.977 | ||
PSP | 0.912 | 0.974 | 0.881 | 0.981 |
Feature | Group | Standardized Coefficients (β) | Odds Ratio (OR, 95% CI) | p-Value |
---|---|---|---|---|
DenseNet_Latent_13280 | IPD | −2.161 | 0.11 (0.06–0.20) | <0.001 |
MSA | 2.748 | 15.6 (6.84–35.7) | <0.001 | |
PSP | −0.218 | 0.81 (0.38–1.67) | 0.561 | |
DenseNet_Latent_2239 | IPD | 0.657 | 1.93 (0.94–3.94) | 0.071 |
MSA | −1.885 | 0.15 (0.05–0.44) | <0.001 | |
PSP | 1.498 | 4.47 (1.63–12.3) | <0.001 | |
DenseNet_Latent_15017 | IPD | −2.095 | 0.12 (0.05–0.26) | <0.001 |
MSA | 0.746 | 2.11 (0.58–7.63) | 0.255 | |
PSP | 0.728 | 2.07 (0.95–4.52) | 0.066 | |
DenseNet_Latent_28203 | IPD | −0.740 | 0.47 (0.25–0.88) | 0.018 |
MSA | −0.513 | 0.59 (0.18–1.95) | 0.395 | |
PSP | 1.108 | 3.03 (1.61–5.71) | <0.001 |
DL Feature | Category | Radiomics Features | Brain Region Location | r-Value |
---|---|---|---|---|
Dense_Latent_13280 | ||||
GLRLM | Long run emphasis | Frontal lobe | 0.525 | |
GLSZM | Large area emphasis | Frontal lobe | 0.519 | |
GLCM | Difference variance | Caudate | −0.513 | |
GLCM | Correlation | Ventral tegmental | 0.607 | |
GLCM | Difference variance | Ventral tegmental | −0.586 | |
GLCM | Difference average | Red Nucleus | −0.536 | |
GLRLM | High gray-level run emphasis | Raphe nucleus | −0.507 | |
GLRLM | Long run high gray-level emphasis | Raphe nucleus | −0.502 | |
GLCM | Sum average | Nucleus accumbens | 0.542 | |
First-order | Variance | Midbrain | −0.505 | |
Dense_Latent_2239 | ||||
GLRLM | Gray-Level Variance | Cingulate | 0.527 | |
GLCM | Difference variance | Ventral tegmental | −0.551 | |
GLCM | Correlation | Red Nucleus | 0.519 | |
GLCM | Autocorrelation | Raphe nucleus | −0.555 | |
GLCM | Sum average | Nucleus accumbens | 0.534 | |
Dense_Latent_15017 | ||||
GLRLM | Gray-Level Variance | Cingulate | 0.537 | |
GLRLM | High gray-level run emphasis | Subthalamic nucleus | 0.582 | |
GLCM | Difference variance | Red Nucleus | −0.566 | |
GLCM | Autocorrelation | Raphe nucleus | −0.572 | |
GLRLM | High gray-level run emphasis | Raphe nucleus | −0.527 | |
GLCM | Correlation | Nucleus accumbens | 0.516 | |
First-order | Variance | Midbrain | −0.503 | |
Dense_Latent_28203 | ||||
GLSZM | Large-area high gray-level emphasis | Cingulate | 0.529 | |
GLCM | Difference entropy | Red nucleus | 0.542 | |
GLCM | Cluster prominence | Raphe nucleus | −0.527 | |
GLSZM | High gray-level zone emphasis | Subthalamic nucleus | 0.513 | |
GLRLM | Gray-Level Variance | Subthalamic nucleus | 0.540 | |
First-order | Variance | Midbrain | −0.524 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, R.; Wang, M.; Lu, J.; Wu, S.; Wu, P.; Ge, J.; Wang, L.; Liu, Y.; Jiang, J.; Shi, K.; et al. Radiomics-Guided Deep Learning Networks Classify Differential Diagnosis of Parkinsonism. Brain Sci. 2024, 14, 680. https://doi.org/10.3390/brainsci14070680
Ling R, Wang M, Lu J, Wu S, Wu P, Ge J, Wang L, Liu Y, Jiang J, Shi K, et al. Radiomics-Guided Deep Learning Networks Classify Differential Diagnosis of Parkinsonism. Brain Sciences. 2024; 14(7):680. https://doi.org/10.3390/brainsci14070680
Chicago/Turabian StyleLing, Ronghua, Min Wang, Jiaying Lu, Shaoyou Wu, Ping Wu, Jingjie Ge, Luyao Wang, Yingqian Liu, Juanjuan Jiang, Kuangyu Shi, and et al. 2024. "Radiomics-Guided Deep Learning Networks Classify Differential Diagnosis of Parkinsonism" Brain Sciences 14, no. 7: 680. https://doi.org/10.3390/brainsci14070680
APA StyleLing, R., Wang, M., Lu, J., Wu, S., Wu, P., Ge, J., Wang, L., Liu, Y., Jiang, J., Shi, K., Yan, Z., Zuo, C., & Jiang, J. (2024). Radiomics-Guided Deep Learning Networks Classify Differential Diagnosis of Parkinsonism. Brain Sciences, 14(7), 680. https://doi.org/10.3390/brainsci14070680