Investigating the Effects of Transcranial Alternating Current Stimulation on Cortical Oscillations and Network Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dynamics of Neuron Model
2.2. Synaptic Connections and Network
2.3. Current-Based Neuromodulation
3. Results
3.1. Dynamics of Synchronized Oscillatory Events in a Computational Cortical Model
3.2. Performance of t-ACS and t-DCS Stimulation on Network Activity
3.3. Recovery of Synaptic Depression in the Network
3.4. Resonance-Driven Entrainment
3.5. Synchronize the t-ACS with Intrinsic Phase, Amplitude, and Frequency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buzsáki, G.; Draguhn, A. Neuronal oscillations in cortical networks. Science 2004, 304, 1926–1929. [Google Scholar] [CrossRef]
- Uhlhaas, P.J.; Singer, W. Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 2010, 11, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Durstewitz, D. Implications of synaptic biophysics for recurrent network dynamics and active memory. Neural Netw. 2009, 22, 1189–1200. [Google Scholar] [CrossRef]
- Uhlhaas, P.J.; Singer, W. Neuronal dynamics and neuropsychiatric disorders: Toward a translational paradigm for dysfunctional large-scale networks. Neuron 2012, 75, 963–980. [Google Scholar] [CrossRef]
- Doherty, J.L.; Cunningham, A.C.; Chawner, S.J.R.A.; Moss, H.M.; Dima, D.C.; Linden, D.E.J.; Owen, M.J.; van den Bree, M.B.M.; Singh, K.D. Atypical cortical networks in children at high-genetic risk of psychiatric and neurodevelopmental disorders. Neuropsychopharmacology 2023, 49, 368–376. [Google Scholar] [CrossRef]
- Sheremet, A.; Kennedy, J.P.; Qin, Y.; Zhou, Y.; Lovett, S.D.; Burke, S.N.; Maurer, A.P. Theta-gamma cascades and running speed. J. Neurophysiol. 2019, 121, 444–458. [Google Scholar] [CrossRef]
- Canolty, R.T.; Ganguly, K.; Kennerley, S.W.; Cadieu, C.F.; Koepsell, K.; Wallis, J.D.; Carmena, J.M. Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies. Proc. Natl. Acad. Sci. USA 2010, 107, 17356–17361. [Google Scholar] [CrossRef]
- Wang, X.J. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 2010, 90, 1195–1268. [Google Scholar] [CrossRef]
- Marín, O. Developmental Timing and Critical Windows for the Treatment of Psychiatric Disorders. Nat. Med. 2016, 22, 1229–1238. [Google Scholar] [CrossRef]
- Veenstra-VanderWeele, J.; Warren, Z. Intervention in the context of development: Pathways toward new treatments. Neuropsychopharmacology 2015, 40, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Dehorter, N.; Del Pino, I. Shifting developmental trajectories during critical periods of brain formation. Front. Cell Neurosci. 2020, 14, 283. [Google Scholar] [CrossRef]
- Fitzgerald, P.J.; Watson, B.O. In vivo electrophysiological recordings of the effects of antidepressant drugs. Exp. Brain Res. 2019, 237, 1593–1614. [Google Scholar] [CrossRef]
- Haslacher, D.; Narang, A.; Sokoliuk, R.; Cavallo, A.; Reber, P.; Nasr, K.; Santarnecchi, E.; Soekadar, S.R. In vivo phase-dependent enhancement and suppression of human brain oscillations by transcranial alternating current stimulation (tACS). Neuroimage 2023, 275, 120187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Herrmann, U.; Weyer, S.W.; Both, M.; Müller, U.C.; Korte, M.; Draguhn, A. Hippocampal network oscillations in APP/APLP2-deficient mice. PLoS ONE 2013, 8, e61198. [Google Scholar] [CrossRef] [PubMed]
- Thut, G.; Bergmann, T.O.; Fröhlich, F.; Soekadar, S.R.; Brittain, J.S.; Valero-Cabré, A.; Sack, A.T.; Miniussi, C.; Antal, A.; Siebner, H.R.; et al. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper. Clin. Neurophysiol. 2017, 128, 843–857. [Google Scholar] [CrossRef] [PubMed]
- Violante, I.R.; Li, L.M.; Carmichael, D.W.; Lorenz, R.; Leech, R.; Hampshire, A.; Rothwell, J.C.; Sharp, D.J. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. eLife 2017, 6, e22001. [Google Scholar] [CrossRef]
- Ketz, N.; Jones, A.P.; Bryant, N.B.; Clark, V.P.; Pilly, P.K. Closed loop slow wave tACS improves sleep dependent long term memory generalization by modulating endogenous oscillations. J. Neurosci. 2018, 38, 7314–7326. [Google Scholar] [CrossRef]
- Ladenbauer, J.; Ladenbauer, J.; Külzow, N.; de Boor, R.; Avramova, E.; Grittner, U.; Flöel, A. Promoting sleep oscillations and their functional coupling by transcranial stimulation enhances memory consolidation in mild cognitive impairment. J. Neurosci. 2017, 37, 7111–7124. [Google Scholar] [CrossRef] [PubMed]
- Ayanampudi, V.; Kumar, V.; Krishnan, A.; Walker, M.P.; Ivry, R.B.; Knight, R.T.; Gurumoorthy, R. Personalized transcranial alternating current stimulation improves sleep quality: Initial findings. Front. Hum. Neurosci. 2023, 16, 1066453. [Google Scholar] [CrossRef]
- Riemann, D.; Krone, L.B.; Wulff, K.; Nissen, C. Sleep, insomnia, and depression. Neuropsychopharmacology 2020, 45, 74–89. [Google Scholar] [CrossRef]
- Wang, H.X.; Wang, L.; Zhang, W.R.; Xue, Q.; Peng, M.; Sun, Z.C.; Li, L.P.; Wang, K.; Yang, X.T.; Jia, Y.; et al. Effect of transcranial alternating current stimulation for the treatment of chronic insomnia: A randomized, double-blind, parallel group, placebo controlled clinical trial. Psychother. Psychosom. 2020, 89, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.X. Where does EEG come from and what does it mean? Trends Neurosci. 2017, 40, 208–218. [Google Scholar] [CrossRef]
- Donoghue, T.; Haller, M.; Peterson, E.J.; Varma, P.; Sebastian, P.; Gao, R.; Noto, T.; Lara, A.H.; Wallis, J.D.; Knight, R.T.; et al. Parameterizing neural power spectra into periodic and aperiodic components. Nat. Neurosci. 2020, 23, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- Helfrich, R.F.; Schneider, T.R.; Rach, S.; Trautmann-Lengsfeld, S.A.; Engel, A.K.; Herrmann, C.S. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr. Biol. 2014, 24, 333–339. [Google Scholar] [CrossRef]
- Antal, A.; Paulus, W. Transcranial alternating current stimulation (tACS). Front. Hum. Neurosci. 2013, 7, 317. [Google Scholar] [CrossRef] [PubMed]
- Izhikevich, E.M. Simple model of spiking neurons. IEEE Trans. Neural Netw. 2003, 14, 1569–1572. [Google Scholar] [CrossRef] [PubMed]
- Izhikevich, E.M.; Edelman, G.M. Large-scale model of mammalian thalamocortical systems. Proc. Natl. Acad. Sci. USA 2008, 105, 3593–3598. [Google Scholar] [CrossRef]
- Izhikevich, E.M. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting; MIT: Cambridge, MA, USA, 2007. [Google Scholar]
- Fröhlich, F.; Bazhenov, M.; Sejnowski, T.J. Pathological effect of homeostatic synaptic scaling on network dynamics in diseases of the cortex. J. Neurosci. 2008, 28, 1709–1720. [Google Scholar] [CrossRef] [PubMed]
- Brunel, N.; Hakim, V.; Richardson, M.J. Single neuron dynamics and computation. Curr. Opin. Neurobiol. 2014, 25, 149–155. [Google Scholar] [CrossRef]
- Wu, Y.K.; Miehl, C.; Gjorgjieva, J. Regulation of circuit organization and function through inhibitory synaptic plasticity. Trends Neurosci. 2022, 45, 884–898. [Google Scholar] [CrossRef]
- Gerstner, W.; Kistler, W.M.; Naud, R.; Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Wu, L.; Liu, T.; Wang, J. Improving the effect of transcranial alternating current stimulation (tACS): A systematic review. Front. Hum. Neurosci. 2021, 15, 652393. [Google Scholar] [CrossRef]
- Pikovsky, A.; Rosenblum, M.; Kurths, J. Synchronization. A Universal Concept in Nonlinear Sciences; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar] [CrossRef]
- Kehler, L.; Francisco, C.O.; Uehara, M.A.; Moussavi, Z. The effect of transcranial alternating current stimulation (tACS) on cognitive function in older adults with dementia. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2020, 2020, 3649–3653. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.P.; Choe, J.; Bryant, N.B.; Robinson, C.S.H.; Ketz, N.A.; Skorheim, S.W.; Combs, A.; Lamphere, M.L.; Robert, B.; Gill, H.A.; et al. Dose dependent effects of closed-loop tACS delivered during slow-wave oscillations on memory consolidation. Front. Neurosci. 2018, 12, 867. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Cai, S.; Gui, H.; Chen, R. Transcranial magnetic stimulation cortical oscillations and improve cognition in obstructive sleep apnea patients. Brain Behav. 2023, 13, e2958. [Google Scholar] [CrossRef] [PubMed]
- Benussi, A.; Cantoni, V.; Grassi, M.; Brechet, L.; Michel, C.M.; Datta, A.; Thomas, C.; Gazzina, S.; Cotelli, M.S.; Bianchi, M.; et al. Increasing brain gamma activity improves episodic memory and restores cholinergic dysfunction in Alzheimer’s disease. Ann. Neurol. 2022, 92, 322–334. [Google Scholar] [CrossRef] [PubMed]
- Del Felice, A.; Castiglia, L.; Formaggio, E.; Cattelan, M.; Scarpa, B.; Manganotti, P.; Tenconi, E.; Masiero, S. Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson’s disease: A randomized cross-over trial. Neuroimage Clin. 2019, 22, 101768. [Google Scholar] [CrossRef] [PubMed]
- Verret, L.; Mann, E.O.; Hang, G.B.; Barth, A.M.I.; Cobos, I.; Ho, K.; Devidze, N.; Masliah, E.; Kreitzer, A.C.; Mody, I.; et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 2012, 149, 708–721. [Google Scholar] [CrossRef]
- Traikapi, A.; Konstantinou, N. Gamma Oscillations in Alzheimer’s Disease and Their Potential Therapeutic Role. Front. Syst. Neurosci. 2021, 15, 782399. [Google Scholar] [CrossRef] [PubMed]
- Metai, A. Analyzing and Comparing the Brain Activity of Alzheimer’s Patients with Healthy Subjects. TechRxiv 2023. [Google Scholar] [CrossRef]
- Houmani, N.; Vialatte, F.; Gallego-Jutglà, E.; Dreyfus, G.; Nguyen-Michel, V.H.; Mariani, J.; Kinugawa, K. Diagnosis of Alzheimer’s disease with Electroencephalography in a differential framework. PLoS ONE 2018, 13, e0193607. [Google Scholar] [CrossRef]
- Iaccarino, H.F.; Singer, A.C.; Martorell, A.J.; Rudenko, A.; Gao, F.; Gillingham, T.Z.; Mathys, H.; Seo, J.; Kritskiy, O.; Abdurrob, F.; et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 2016, 540, 230–235. [Google Scholar] [CrossRef]
- Polanía, R.; Nitsche, M.A.; Korman, C.; Batsikadze, G.; Paulus, W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr. Biol. 2012, 22, 1314–1318. [Google Scholar] [CrossRef]
- Dalla Porta, L.; Barbero-Castillo, A.; Sanchez-Sanchez, J.M.; Sanchez-Vives, M.V. M-current modulation of cortical slow oscillations: Network dynamics and computational modeling. PLoS Comput. Biol. 2023, 19, e1011246. [Google Scholar] [CrossRef]
- Neske, G.T. The slow oscillation in cortical and thalamic networks: Mechanisms and Functions. Front. Neural Circuits 2016, 9, 88. [Google Scholar] [CrossRef]
- Compte, A.; Sanchez-Vives, M.V.; McCormick, D.A.; Wang, X.J. Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. J. Neurophysiol. 2003, 89, 2707–2725. [Google Scholar] [CrossRef]
- Zhao, Z.; Shirinpour, S.; Tran, H.; Wischnewski, M.; Opitz, A. intensity- and frequency-specific effects of transcranial alternating current stimulation are explained by network dynamics. J. Neural Eng. 2024, 21, 2. [Google Scholar] [CrossRef]
- Khatoun, A.; Asamoah, B.; Mc Laughlin, M. Simultaneously Excitatory and Inhibitory Effects of Transcranial Alternating Current Stimulation Revealed Using Selective Pulse-Train Stimulation in the Rat Motor Cortex. J. Neurosci. 2017, 37, 9389–9402. [Google Scholar] [CrossRef]
- Huang, W.A.; Stitt, I.M.; Negahbani, E.; Passey, D.J.; Ahn, S.; Davey, M.; Dannhauer, M.; Doan, T.T.; Hoover, A.C.; Peterchev, A.V.; et al. Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform. Nat. Commun. 2021, 12, 3151. [Google Scholar] [CrossRef]
- Vosskuhl, J.; Strüber, D.; Herrmann, C.S. Non-invasive brain stimulation: A paradigm shift in understanding brain oscillations. Front. Hum. Neurosci. 2018, 12, 211. [Google Scholar] [CrossRef]
- Alagapan, S.; Schmidt, S.L.; Lefebvre, J.; Hadar, E.; Shin, H.W.; Frӧhlich, F. Modulation of cortical oscillations by low-frequency direct cortical stimulation is state-dependent. PLoS Biol. 2016, 14, e1002424. [Google Scholar] [CrossRef]
- Brede, M.; Stella, M.; Kalloniatis, A.C. Competitive influence maximization and enhancement of synchronization in populations of non-identical Kuramoto oscillators. Sci. Rep. 2018, 8, 702. [Google Scholar] [CrossRef]
- Rebscher, L.; Obermayer, K.; Metzner, C. Synchronization through uncorrelated noise in excitatory-inhibitory networks. Front. Comput. Neurosci. 2022, 16, 825865. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.; Park, S.; Lee, C.; Kim, S.; Im, C.H. Transcranial alternating current stimulation over multiple brain areas with non-zero phase delays other than 180 degrees modulates visuospatial working memory performance. Sci. Rep. 2023, 13, 12710. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, Z.; Yao, Z.; Ming, D.; Zhou, P. Modulation of sustained attention by theta-tACS over the lateral and medial frontal cortices. Neural Plast. 2021, 2021, 5573471. [Google Scholar] [CrossRef]
- Yuan, K.; Chen, C.; Lou, W.T.; Khan, A.; Ti, E.C.; Lau, C.C.; Wang, X.; Chu, W.C.; Tong, R.K. Differential effects of 10 and 20 Hz brain stimulation in chronic stroke: A tACS-fMRI study. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 455–464. [Google Scholar] [CrossRef]
- Altomare, D.; Benussi, A.; Cantoni, V.; Premi, E.; Rivolta, J.; Cupidi, C.; Martorana, A.; Santarnecchi, E.; Padovani, A.; Koch, G.; et al. Home-based transcranial alternating current stimulation (tACS) in Alzheimer’s disease: Rationale and study design. Alzheimer Res. Therapy 2023, 15, 155. [Google Scholar] [CrossRef]
- Meng, J.H.; Riecke, H. Synchronization by uncorrelated noise: Interacting rhythms in interconnected oscillator networks. Sci. Rep. 2018, 8, 6949. [Google Scholar] [CrossRef]
- Erchova, I.; McGonigle, D.J. Rhythms of the brain: An examination of mixed mode oscillation approaches to the analysis of neurophysiological data. Chaos 2008, 18, 015115. [Google Scholar] [CrossRef]
- Ghosh, S.; Mondal, A.; Ji, P.; Mishra, A.; Dana, S.K.; Antonopoulos, C.G.; Hens, C. Emergence of mixed mode oscillations in random networks of diverse excitable neurons: The role of neighbors and electrical coupling. Front. Comput. Neurosci. 2020, 14, 49. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agnihotri, S.K.; Cai, J. Investigating the Effects of Transcranial Alternating Current Stimulation on Cortical Oscillations and Network Dynamics. Brain Sci. 2024, 14, 767. https://doi.org/10.3390/brainsci14080767
Agnihotri SK, Cai J. Investigating the Effects of Transcranial Alternating Current Stimulation on Cortical Oscillations and Network Dynamics. Brain Sciences. 2024; 14(8):767. https://doi.org/10.3390/brainsci14080767
Chicago/Turabian StyleAgnihotri, Sandeep Kumar, and Jiang Cai. 2024. "Investigating the Effects of Transcranial Alternating Current Stimulation on Cortical Oscillations and Network Dynamics" Brain Sciences 14, no. 8: 767. https://doi.org/10.3390/brainsci14080767
APA StyleAgnihotri, S. K., & Cai, J. (2024). Investigating the Effects of Transcranial Alternating Current Stimulation on Cortical Oscillations and Network Dynamics. Brain Sciences, 14(8), 767. https://doi.org/10.3390/brainsci14080767