Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,860)

Search Parameters:
Keywords = tACS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2821 KB  
Article
In Vitro Antibacterial Efficacy of Recombinant Phage-Derived Endolysin LysTAC1 Against Carbapenem-Resistant Acinetobacter baumannii
by Inam Ullah, Song Cui, Qiulong Yan, Hayan Ullah, Shanshan Sha and Yufang Ma
Antibiotics 2025, 14(10), 975; https://doi.org/10.3390/antibiotics14100975 (registering DOI) - 26 Sep 2025
Abstract
Background: The rapid emergence of antibiotic resistance in Acinetobacter baumannii has led the World Health Organization (WHO) to designate it as a “high priority” pathogen. The emergence of multidrug-resistant (MDR) and pandrug-resistant (PDR) strains poses considerable treatment challenges. As antimicrobial resistance (AMR) escalates [...] Read more.
Background: The rapid emergence of antibiotic resistance in Acinetobacter baumannii has led the World Health Organization (WHO) to designate it as a “high priority” pathogen. The emergence of multidrug-resistant (MDR) and pandrug-resistant (PDR) strains poses considerable treatment challenges. As antimicrobial resistance (AMR) escalates toward a post-antibiotic era, innovative therapeutic solutions are urgently needed. Objectives: To clone, over-express, and characterize a novel endolysin, LysTAC1, from Acinetobacter phage TAC1 for its antibacterial efficacy against multidrug-resistant bacteria. Methods: A 24 kDa endolysin featuring a glycoside hydrolase Family 19 chitinase domain was tested against carbapenem-resistant Acinetobacter baumannii clinical isolates and various Escherichia coli strains following outer membrane permeabilization with Ethylenediaminetetraacetic acid (EDTA). Stability assays and molecular docking studies were performed. Results: LysTAC1 demonstrated potent lytic activity against Gram-negative bacteria but showed no activity against Gram-positive bacteria (Staphylococcus aureus ATCC 29213 and Enterococcus gallinarum HCD 28-1). LysTAC1 maintained activity across pH 6–9 and temperatures 4–65 °C, with differential sensitivity to metal ions where K+ showed no inhibitory effect at any concentration (0.1–100 mM), and Fe2+ was non-inhibitory at lower concentrations (0.1–1 mM), while Mg2+ and Ca2+ demonstrated concentration-dependent inhibition across the tested range (0.1–100 mM). Molecular docking revealed LysTAC1 interactions with chitinase substrates 4-nitrophenyl N-acetyl-β-D-glucosaminide and 4-nitrophenyl N, N-Diacetyl-β-D-chitobioside, with binding energies of −5.82 and −6.85 kcal/mol, respectively. Conclusions: LysTAC1 shows significant potential as a targeted therapeutic agent against A. baumannii with robust stability under physiological conditions. Full article
12 pages, 2104 KB  
Article
Sensitivity Improvement via Differential Detection for Frequency-Locking Diamond Magnetometers
by Doudou Zheng, Jian Gao, Yang Li, Hui Wang, Yingjie Yang, Hao Guo, Huanfei Wen, Zhonghao Li, Jun Tang, Zongmin Ma and Jun Liu
Micromachines 2025, 16(10), 1095; https://doi.org/10.3390/mi16101095 - 26 Sep 2025
Abstract
The magnetic resonance frequency-locking technique is recognized as an effective approach for simultaneously improving the dynamic range, performance stability, and measurement precision of diamond nitrogen vacancy (NV)-center magnetometers. Nevertheless, insufficient research on sensitivity limits the overall performance of frequency-locking diamond magnetometers. In this [...] Read more.
The magnetic resonance frequency-locking technique is recognized as an effective approach for simultaneously improving the dynamic range, performance stability, and measurement precision of diamond nitrogen vacancy (NV)-center magnetometers. Nevertheless, insufficient research on sensitivity limits the overall performance of frequency-locking diamond magnetometers. In this paper, we propose a dual-magnetic-resonance-frequency-locking (MRFL) differential detection method. Theoretical and experimental results demonstrate that the scaling factor between the sensor output and the magnetic field is doubled compared with that under the single-MRFL method, and the proposed method also enables alternating current (AC) magnetic field detection. The proposed system exhibits a measurement range from −0.29 mT to 0.30 mT. Furthermore, a sensitivity of 0.56 nT/√Hz is achieved, representing a 58.2% improvement relative to that of the single-MRFL method. Our work provides a viable solution for accelerating the transition of frequency-locking diamond magnetometers from laboratory research to practical applications. Full article
(This article belongs to the Section A:Physics)
13 pages, 1825 KB  
Article
Liraglutide Enhances Cell Viability and Reduces Oxidative Stress in Hyperglycemic H9c2 Cardiomyocytes
by Sinem Durmus, Zeki Dogan, Dilek Duzgun Ergun, Mahmut Ozdemir, Hakan Sahin, Gozde Erkanli Senturk, Remise Gelisgen and Hafize Uzun
Medicina 2025, 61(10), 1754; https://doi.org/10.3390/medicina61101754 - 26 Sep 2025
Abstract
Background and Objectives: Cardiovascular disease remains a leading cause of mortality in Diabetes mellitus (DM), where chronic hyperglycemia induces oxidative stress, mitochondrial dysfunction, and hypoxia in cardiomyocytes. Liraglutide (Lir), a glucagon-like peptide-1 receptor agonist, is widely used for type 2 DM management [...] Read more.
Background and Objectives: Cardiovascular disease remains a leading cause of mortality in Diabetes mellitus (DM), where chronic hyperglycemia induces oxidative stress, mitochondrial dysfunction, and hypoxia in cardiomyocytes. Liraglutide (Lir), a glucagon-like peptide-1 receptor agonist, is widely used for type 2 DM management and has been shown to exert cardioprotective and antioxidant effects. This study aimed to evaluate whether Lir mitigates hyperglycemia-induced oxidative and hypoxic stress in H9c2 cardiomyoblasts while preserving cellular ultrastructure. Materials and Methods: H9c2 cells were cultured under normoglycemic (5.5 mM) or hyperglycemic (30 mM) conditions, with or without Lir. Cell viability was assessed using MTT assay. Ultrastructural changes were examined by transmission electron microscopy (TEM). Hypoxia-inducible factor-1α (HIF-1α), lipid peroxidation markers (LOOH, MDA), advanced oxidation protein products (AOPP), and total antioxidant capacity (TAC) were quantified by spectrophotometric assays. Results: MTT assays revealed that Lir significantly improved cell viability under hyperglycemic conditions and the EC50 was 1.05 ± 0.06 μM after 48 h of treatment. Under HG, HIF-1α, lipid hydroperoxides (LOOH), malondialdehyde (MDA) and advanced oxidation protein products (AOPP) increased and total antioxidant capacity (TAC) decreased (p < 0.001, for all); Lir significantly reversed these changes, restoring values to near-NG levels. Ultrastructural analysis of HG + Lir-treated cells revealed reduced granules, increased vacuolization, and slight rough endoplasmic reticulum dilatation, though mitochondria appeared normal. Conclusions: Lir significantly attenuated oxidative stress and cellular injury in cardiomyocytes under hyperglycemic conditions, improving viability, modulating HIF-1α expression, and restoring antioxidant balance. These findings support a dual role for Lir in diabetic cardiomyopathy: glucose-independent cytoprotection and regulation of mitochondrial and hypoxia pathways, highlighting its therapeutic potential beyond glycemic control. Full article
(This article belongs to the Special Issue Advances in the Diagnosis and Treatment of Type 2 Diabetes Mellitus)
Show Figures

Figure 1

22 pages, 864 KB  
Article
Modelling Magnetisation and Transport AC Loss of HTS Tapes near Ferromagnetic Materials Using an Integral Equation Method
by Calvin C. T. Chow, K. T. Chau and Francesco Grilli
Appl. Sci. 2025, 15(19), 10411; https://doi.org/10.3390/app151910411 - 25 Sep 2025
Abstract
The integral equation formulation of Maxwell’s equations proposed by Brandt provides an alternative to the H and T-A formulations for modelling high-temperature superconducting (HTS) tapes. A modified version of Brandt’s method in the literature models ferromagnetic domains near the tapes by [...] Read more.
The integral equation formulation of Maxwell’s equations proposed by Brandt provides an alternative to the H and T-A formulations for modelling high-temperature superconducting (HTS) tapes. A modified version of Brandt’s method in the literature models ferromagnetic domains near the tapes by considering the ferromagnetic domains as equivalent surface current. This paper extends this method by including the effect of external magnetic field acting on the ferromagnetic and HTS domains. The proposed method is used on a benchmark problem, which considers an HTS tape with a ferromagnetic substrate under an external time-varying magnetic field. The results agree closely (error in average ac loss less than 3%) with the widely-used T-A formulation implemented in COMSOL down to 2 mT. In addition, the proposed method is also applied to HTS tapes carrying transport ac current in a slot of a machine’s stator iron core, and HTS tapes in a stator iron slot in a machine under working conditions. It is found that ac loss calculated by the proposed method increases as the discretization size of the ferromagnetic material’s boundary decreases, and overshoots the value calculated by the T-A formulation in COMSOL when using very fine discretization. Full article
(This article belongs to the Special Issue Applied Superconductivity: Material, Design, and Application)
Show Figures

Figure 1

15 pages, 923 KB  
Article
Development and Clinical Evaluation of Spring-Assisted Standing Training for Individuals with Spinal Cord Injury: A Safety and Feasibility Study
by Yukiyo Shimizu, Hideki Kadone, Kai Sasaki, Masashi Yamazaki, Yasushi Hada and Kenji Suzuki
J. Clin. Med. 2025, 14(19), 6767; https://doi.org/10.3390/jcm14196767 - 25 Sep 2025
Abstract
Background/Objectives: Standing training is essential for individuals with spinal cord injury (SCI), yet maintaining regular practice after acute rehabilitation remains challenging. To address the need for more practical and accessible standing equipment, we developed a novel spring-assisted standing training device designed to overcome [...] Read more.
Background/Objectives: Standing training is essential for individuals with spinal cord injury (SCI), yet maintaining regular practice after acute rehabilitation remains challenging. To address the need for more practical and accessible standing equipment, we developed a novel spring-assisted standing training device designed to overcome barriers to regular standing practice. This study aimed to assess the safety and feasibility of our newly developed device in individuals with SCI. Methods: Six participants with chronic SCI (neurological level of injury T4-L3, American Spinal Injury Association Impairment Scale A-C; 2 females, mean age 41.7 ± 13.4 years) underwent a single session using our chair-based device incorporating passive gas spring mechanisms. We designed this device to enable independent sit-to-stand transitions without electrical power or complex controls. Primary outcomes included safety (adverse events) and feasibility (number of repetitions, Modified Borg Scale). Changes in Modified Ashworth Scale (MAS) scores were assessed as exploratory measures. Results: All participants successfully completed training without adverse events. Repetitions ranged from 5 to 60 (median 37), with Modified Borg Scale ratings of 0–4. Notably, the participant with T4 complete injury performed the training without requiring trunk orthosis, demonstrating the device’s inherent stability. MAS sum scores showed a reduction from median 8.75 to 4.25, though this did not reach statistical significance (p = 0.13). Conclusions: Our newly developed spring-assisted standing training device proved safe and feasible for individuals with SCI, including those with complete thoracic injuries. The device successfully enabled independent sit-to-stand transitions with low perceived exertion, potentially addressing key barriers to regular standing practice and offering a practical rehabilitation solution. Full article
(This article belongs to the Section Clinical Rehabilitation)
Show Figures

Figure 1

20 pages, 690 KB  
Article
Curcumin Attenuates Liver Steatosis via Antioxidant and Anti-Inflammatory Pathways in Obese Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Trial
by Metha Yaikwawong, Khanittha Kamdee and Somlak Chuengsamarn
Int. J. Mol. Sci. 2025, 26(19), 9286; https://doi.org/10.3390/ijms26199286 - 23 Sep 2025
Viewed by 106
Abstract
Liver steatosis, the hallmark component of metabolic dysfunction-associated steatotic liver disease (MASLD), is particularly common among individuals with type 2 diabetes mellitus (T2DM). Shared mechanisms such as insulin resistance, oxidative stress, and chronic inflammation contribute to the coexistence of these conditions and accelerate [...] Read more.
Liver steatosis, the hallmark component of metabolic dysfunction-associated steatotic liver disease (MASLD), is particularly common among individuals with type 2 diabetes mellitus (T2DM). Shared mechanisms such as insulin resistance, oxidative stress, and chronic inflammation contribute to the coexistence of these conditions and accelerate disease progression, emphasizing the need for effective therapeutic strategies. In this 12-month, randomized, double-blind, placebo-controlled trial, 227 obese individuals with T2DM were assigned to receive either 1500 mg of curcumin daily or placebo. Curcumin significantly reduced liver fat content, liver stiffness, and glycated hemoglobin (HbA1c) compared with placebo (all p < 0.001). Improvements were also noted in inflammatory mediators, including interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) (all p < 0.001), reflecting curcumin’s anti-inflammatory effects. Antioxidant benefits were evident, as total antioxidant capacity (TAC), glutathione peroxidase (GPx), and superoxide dismutase (SOD) increased, while malondialdehyde levels decreased (all p < 0.001). Systematic safety assessments, including liver and kidney function tests, revealed no clinically significant abnormalities. Mild gastrointestinal discomfort was the most common non-serious adverse event. Overall, these findings support curcumin as a safe and effective adjunctive therapy for improving liver steatosis in obese patients with T2DM. Full article
Show Figures

Graphical abstract

21 pages, 4584 KB  
Article
Unlocking Hopeaphenol: A Potent Ally Against Cardiac Hypertrophy via AMPK Activation
by Jinhong Chen, Mengyuan Wang, Zhongzheng Zhang, Chongkai Fang, Haowen Zhuang, Jiaqi Zhao, Tianyu Wang, Junyan Wang, Chun Li and Chunping Fang
Nutrients 2025, 17(18), 3025; https://doi.org/10.3390/nu17183025 - 22 Sep 2025
Viewed by 154
Abstract
Background: Abnormal mitochondrial energy metabolism is a key factor in the development and progression of cardiac hypertrophy. Hopeaphenol (HP), a tetramer of the natural polyphenol resveratrol, exhibits higher biological activity than resveratrol, but its specific role in cardiac hypertrophy and underlying mechanisms remains [...] Read more.
Background: Abnormal mitochondrial energy metabolism is a key factor in the development and progression of cardiac hypertrophy. Hopeaphenol (HP), a tetramer of the natural polyphenol resveratrol, exhibits higher biological activity than resveratrol, but its specific role in cardiac hypertrophy and underlying mechanisms remains unclear. Methods: This study explored the protective effect and mechanism of hopeaphenol on cardiac hypertrophy through in vivo and in vitro experiments. In in vivo experiments, transverse aortic constriction (TAC) was used to induce cardiac hypertrophy in mice; HE, Masson, and WGA staining were applied to observe myocardial changes, ELISA was used to detect animal serum indicators, and the Cellular Thermal Shift Assay (CETSA) was conducted to verify the interaction between hopeaphenol and AMPK. In in vitro experiments, angiotensin II (Ang II) was used to induce hypertrophy of HL-1 cardiomyocytes, and the AMPK-specific inhibitor Compound C was employed to confirm the role of the AMPK pathway. Results: In in vivo experiments, TAC-induced cardiac hypertrophy in mice was characterized by left ventricular cavity enlargement and decreased ejection fraction; hopeaphenol treatment significantly improved these cardiac function indices, and HE, Masson, and WGA staining confirmed that hopeaphenol could restore cardiomyocyte morphology and reduce fibrosis. ELISA results of animal serum showed that hopeaphenol could improve metabolic disorders in TAC mice. Furthermore, CETSA confirmed a direct interaction between hopeaphenol and AMPK. In in vitro experiments, hopeaphenol reduced Ang II-induced hypertrophy and apoptosis of HL-1 cardiomyocytes, enhanced mitochondrial membrane potential, and decreased reactive oxygen species (ROS) levels by activating the AMPK pathway; moreover, the AMPK-specific inhibitor Compound C blocked these effects. This suggests that hopeaphenol’s cardioprotective effect is largely mediated by AMPK activation. Conclusions: The protective effect of hopeaphenol on cardiac hypertrophy is highly dependent on the activation of the AMPK signaling pathway, with CETSA and molecular docking supporting direct binding between hopeaphenol and AMPK; this pathway improves mitochondrial dysfunction through AMPK, thereby alleviating heart failure caused by pressure overload. This finding identifies hopeaphenol as a potential candidate for further development in the prevention and treatment of heart failure. Full article
(This article belongs to the Section Nutritional Epidemiology)
Show Figures

Figure 1

15 pages, 3145 KB  
Article
Economic, Environmental, and Safety Multi-Objective Optimization Design for Separation of Tetrahydrofuran/Methanol/Water Mixture
by Mengdie Gao, Qiyu Zhang, Zhehao Jin, Yishan Liu and Yiyang Dai
Separations 2025, 12(9), 255; https://doi.org/10.3390/separations12090255 - 21 Sep 2025
Viewed by 235
Abstract
Tetrahydrofuran (THF) and methanol (MeOH) are widely used as organic solvents in chemical, pharmaceutical, and other industrial fields. The wastewater from producing 1,4-butanediol contains THF, MeOH, and water ternary azeotropic mixture. In this study, to protect the environment and improve economic feasibility, THF [...] Read more.
Tetrahydrofuran (THF) and methanol (MeOH) are widely used as organic solvents in chemical, pharmaceutical, and other industrial fields. The wastewater from producing 1,4-butanediol contains THF, MeOH, and water ternary azeotropic mixture. In this study, to protect the environment and improve economic feasibility, THF and MeOH from the wastewater must be recovered. Triple-column extractive distillation (TED), pressure-swing azeotropic distillation (PSAD) and reactive extractive dividing-wall column (REDWC) are introduced to separate this ternary system, and the NSGA-III algorithm is introduced to optimize the processes, taking the total annual cost (TAC), CO2 emissions, and process route index (PRI) as objective functions. The results indicate that in comparison with TED process, TAC of PSAD and REDWC is reduced by 29.92% and 24.25%, respectively, and CO2 emissions decreased by 18.01% and 25.13%, while PRI increased by 150.25% and 100.50%. This study can provide an insight for the design of ternary azeotropic system separation. Full article
(This article belongs to the Special Issue Novel Solvents and Methods in Distillation Process)
Show Figures

Figure 1

28 pages, 4648 KB  
Article
Allosteric Control Overcomes Steric Limitations for Neutralizing Antibodies Targeting Conserved Binding Epitopes of the SARS-CoV-2 Spike Protein: Exploring the Intersection of Binding, Allostery, and Immune Escape with a Multimodal Computational Approach
by Mohammed Alshahrani, Vedant Parikh, Brandon Foley and Gennady Verkhivker
Biomolecules 2025, 15(9), 1340; https://doi.org/10.3390/biom15091340 - 18 Sep 2025
Viewed by 310
Abstract
Understanding the atomistic basis of multi-layer mechanisms employed by broadly reactive neutralizing antibodies of the SARS-CoV-2 spike protein without directly blocking receptor engagement remains an important challenge in coronavirus immunology. Class 4 antibodies represent an intriguing case: they target a deeply conserved, cryptic [...] Read more.
Understanding the atomistic basis of multi-layer mechanisms employed by broadly reactive neutralizing antibodies of the SARS-CoV-2 spike protein without directly blocking receptor engagement remains an important challenge in coronavirus immunology. Class 4 antibodies represent an intriguing case: they target a deeply conserved, cryptic epitope on the receptor-binding domain yet exhibit variable neutralization potency across subgroups F1 (CR3022, EY6A, COVA1-16), F2 (DH1047), and F3 (S2X259). The molecular basis for this variability is not fully understood. Here, we employed a multi-modal computational approach integrating atomistic and coarse-grained molecular dynamics simulations, binding free energy calculations, mutational scanning, and dynamic network analysis to elucidate how these antibodies engage the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and influence its function. Our results reveal that neutralization efficacy arises from the interplay of direct interfacial interactions and allosteric effects. Group F1 antibodies (CR3022, EY6A, COVA1-16) primarily operate via classic allostery, modulating flexibility in RBD loop regions to indirectly interfere with the ACE2 receptor binding through long-range effects. Group F2 antibody DH1047 represents an intermediate mechanism, combining partial steric hindrance—through engagement of ACE2-critical residues T376, R408, V503, and Y508—with significant allosteric influence, facilitated by localized communication pathways linking the epitope to the receptor interface. Group F3 antibody S2X259 achieves potent neutralization through a synergistic mechanism involving direct competition with ACE2 and localized allosteric stabilization, albeit with potentially increased escape vulnerability. Dynamic network analysis identified a conserved “allosteric ring” within the RBD core that serves as a structural scaffold for long-range signal propagation, with antibody-specific extensions modulating communication to the ACE2 interface. These findings support a model where Class 4 neutralization strategies evolve through the refinement of peripheral allosteric connections rather than epitope redesign. This study establishes a robust computational framework for understanding the atomistic basis of neutralization activity and immune escape for Class 4 antibodies, highlighting how the interplay of binding energetics, conformational dynamics, and allosteric modulation governs their effectiveness against SARS-CoV-2. Full article
(This article belongs to the Special Issue Protein Biophysics)
Show Figures

Graphical abstract

32 pages, 2959 KB  
Article
Real-Time AI-Based Data Prioritization for MODBUS TCP Communication in IoT-Enabled LVDC Energy Systems
by Francisco J. Arroyo-Valle, Sandra Roger and Jose Saldana
Electronics 2025, 14(18), 3681; https://doi.org/10.3390/electronics14183681 - 17 Sep 2025
Viewed by 279
Abstract
This paper presents an intelligent communication architecture, designed to manage multiple power devices operating within a shared Low-Voltage Direct Current (LVDC) bus. These devices act either as energy consumers, e.g., Electric Vehicle (EV) chargers, Power Distribution Units (PDUs), or as sources and regulators, [...] Read more.
This paper presents an intelligent communication architecture, designed to manage multiple power devices operating within a shared Low-Voltage Direct Current (LVDC) bus. These devices act either as energy consumers, e.g., Electric Vehicle (EV) chargers, Power Distribution Units (PDUs), or as sources and regulators, e.g., Alternating Current-to-Direct Current (AC/DC) converters, energy storage system (ESS) units. Communication is established using industrial protocols such as Modular Digital Bus (MODBUS) over Transmission Control Protocol (TCP) or Remote Terminal Unit (RTU), and Controller Area Network (CAN). The proposed system supports both data acquisition and configuration of field devices. It exposes their information to an Energy Management System (EMS) via a MODBUS TCP server. A key contribution of this work is the integration of a lightweight Machine Learning (ML)-based data prioritization mechanism that dynamically adjusts the update frequency of each MODBUS parameter based on its current relevance. This ML-based method has been prototyped and evaluated within a virtualized Internet of Things (IoT) gateway environment. It enables real-time, efficient, and scalable communication without altering the EMS or disrupting legacy protocol operations. Furthermore, the proposed approach allows for early testing and validation of the prioritization strategy before full hardware integration in the demonstrators planned as part of the SHIFT2DC project under the Horizon Europe program. Full article
(This article belongs to the Special Issue Collaborative Intelligent Automation System for Smart Industry)
Show Figures

Graphical abstract

46 pages, 3434 KB  
Review
System-Level Compact Review of On-Board Charging Technologies for Electrified Vehicles: Architectures, Components, and Industrial Trends
by Pierpaolo Dini, Sergio Saponara, Sajib Chakraborty and Omar Hegazy
Batteries 2025, 11(9), 341; https://doi.org/10.3390/batteries11090341 - 17 Sep 2025
Viewed by 408
Abstract
The increasing penetration of electrified vehicles is accelerating the evolution of on-board and off-board charging systems, which must deliver higher efficiency, power density, safety, and bidirectionality under increasingly demanding constraints. This article presents a system-level review of state-of-the-art charging architectures, with a focus [...] Read more.
The increasing penetration of electrified vehicles is accelerating the evolution of on-board and off-board charging systems, which must deliver higher efficiency, power density, safety, and bidirectionality under increasingly demanding constraints. This article presents a system-level review of state-of-the-art charging architectures, with a focus on galvanically isolated power conversion stages, wide-bandgap-based switching devices, battery pack design, and real-world implementation trends. The analysis spans the full energy path—from grid interface to battery terminals—highlighting key aspects such as AC/DC front-end topologies (Boost, Totem-Pole, Vienna, T-Type), high-frequency isolated DC/DC converters (LLC, PSFB, DAB), transformer modeling and optimization, and the functional integration of the Battery Management System (BMS). Attention is also given to electrochemical cell characteristics, pack architecture, and their impact on OBC design constraints, including voltage range, ripple sensitivity, and control bandwidth. Commercial solutions are examined across Tier 1–3 suppliers, illustrating how technical enablers such as SiC/GaN semiconductors, planar magnetics, and high-resolution BMS coordination are shaping production-grade OBCs. A system perspective is maintained throughout, emphasizing co-design approaches across hardware, firmware, and vehicle-level integration. The review concludes with a discussion of emerging trends in multi-functional power stages, V2G-enabled interfaces, predictive control, and platform-level convergence, positioning the on-board charger as a key node in the energy and information architecture of future electric vehicles. Full article
Show Figures

Figure 1

54 pages, 1209 KB  
Systematic Review
Combined Use of Electroencephalography and Transcranial Electrical Stimulation: A Systematic Review
by Pasquale Arpaia, Anna Della Calce, Lucrezia Di Marino, Luciana Lorenzon, Luigi Maffei, Nicola Moccaldi and Pedro M. Ramos
Sensors 2025, 25(18), 5773; https://doi.org/10.3390/s25185773 - 16 Sep 2025
Viewed by 469
Abstract
This systematic review examines the combined use of electroencephalography (EEG) and transcranial electrical stimulation (tES) in both clinical and healthy populations. The review focuses on EEG’s role in guiding, monitoring, and evaluating tES interventions and assesses the generalizability of EEG responses to different [...] Read more.
This systematic review examines the combined use of electroencephalography (EEG) and transcranial electrical stimulation (tES) in both clinical and healthy populations. The review focuses on EEG’s role in guiding, monitoring, and evaluating tES interventions and assesses the generalizability of EEG responses to different tES protocols. A comprehensive search across Google Scholar, PubMed, Scopus, IEEE Xplore, ScienceDirect, and Web of Science identified 162 relevant studies using the query: “EEG AND (tDCS OR transcranial direct current stimulation OR tACS OR transcranial alternating current stimulation OR tRNS OR transcranial random noise stimulation OR tPCS OR transcranial pulsed current stimulation)”. Quality was assessed using the Quality Assessment Tool for Quantitative Studies (QATQS). Most studies used EEG post tES to assess neuromodulatory effects, with fewer studies using EEG for protocol design or incorporating real-time EEG for adaptive stimulation. Some studies integrated EEG both before and after stimulation, but considerable heterogeneity in tES parameters and EEG metrics limited reproducibility and comparability. Many studies reported non-significant EEG changes despite standardized approaches. Methodological quality was generally low, and the link between EEG changes and clinical outcomes remains unclear. The findings underscore the potential of EEG-informed, personalized tES protocols, though the use of real-time closed-loop systems remains a limited approach in current research. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

12 pages, 11479 KB  
Article
MoS2-PtX2 Vertical Heterostructures
by Nikolay Minev, Blagovest Napoleonov, Dimitre Dimitrov, Vladimira Videva, Velichka Strijkova, Denitsa Nicheva, Ivalina Avramova, Tamara Petkova and Vera Marinova
Nanomaterials 2025, 15(18), 1415; https://doi.org/10.3390/nano15181415 - 15 Sep 2025
Viewed by 299
Abstract
This study reports the successful fabrication and characterization of two-dimensional (2D) vertical heterostructures composed of a semiconducting molybdenum disulfide (MoS2) layer stacked with semimetallic platinum dichalcogenides (PtSe2 and PtTe2). The heterostructures were created using a versatile fabrication method [...] Read more.
This study reports the successful fabrication and characterization of two-dimensional (2D) vertical heterostructures composed of a semiconducting molybdenum disulfide (MoS2) layer stacked with semimetallic platinum dichalcogenides (PtSe2 and PtTe2). The heterostructures were created using a versatile fabrication method that combines chemical vapor deposition (CVD) to grow high-quality MoS2 nanolayers with thermally assisted conversion (TAC) for the synthesis of the Pt-based layers. The final MoS2/PtSe2 and MoS2/PtTe2 heterostructures were then assembled via a dry transfer process, ensuring high structural integrity. The quality and properties of these heterostructures were investigated using a range of advanced spectroscopic techniques. Raman spectroscopy confirmed the presence of characteristic vibrational modes for each material, validating successful formation. X-ray photoelectron spectroscopy (XPS) analysis further confirmed the elemental composition and oxidation states, though it also revealed the presence of elemental Pt0 and oxidized Te+4 in the PtTe2 layer, suggesting an incomplete conversion. Importantly, the photoluminescence (PL) spectra showed a significant quenching effect, a clear sign of strong interlayer charge transfer, which is essential for optoelectronic applications. Finally, UV-Vis-NIR spectrophotometry demonstrated the combined optical properties of the stacked layers, with the Pt-based layers causing broadening and a blue-shift in the MoS2 exciton peaks, indicating altered electronic and optical behavior. This research provides valuable insights into the synthesis and fundamental properties of MoS2/PtX2 heterostructures, highlighting their potential for next-generation electronic and optoelectronic devices. Full article
Show Figures

Graphical abstract

17 pages, 1772 KB  
Article
Effect of Fermentation With and Without the Addition of Carrots on the Total Antioxidant Capacity of White and Red Cabbage
by Małgorzata Rak, Grzegorz Bartosz and Izabela Sadowska-Bartosz
Processes 2025, 13(9), 2928; https://doi.org/10.3390/pr13092928 - 13 Sep 2025
Viewed by 411
Abstract
Cabbage is one of the most popular vegetables all over the world, with white cabbage generally being more popular than red cabbage. This study aimed at a comparison of the antioxidant properties of fresh and fermented white and red cabbage. Total phenolic content, [...] Read more.
Cabbage is one of the most popular vegetables all over the world, with white cabbage generally being more popular than red cabbage. This study aimed at a comparison of the antioxidant properties of fresh and fermented white and red cabbage. Total phenolic content, the content of anthocyanins and carotenoids, and the Total Antioxidant Capacity (TAC) assayed by ABTS scavenging, DPPH scavenging, FRAP, and ORAC of fresh white and red cabbage, fermented white and red cabbage (sauerkraut), and sauerkraut juice were compared. The TAC of fresh and fermented red cabbage, and of red sauerkraut juice (110.3 ± 8.9, 47.4 ± 4.6 and 48.9 ± 5.7 mmol Trolox equivalents/kg, respectively) was significantly higher than the TAC of fresh and fermented white cabbage and white sauerkraut juice (5.1 ± 0.2, 7.9 ± 0.9 and 6.6 ± 0.9 mmol TE/kg, respectively, when assayed by ORAC). The TAC of white sauerkraut and white sauerkraut juice could be elevated by fermentation with 20% of black carrots (to 16.4 ± 1.2 and 10.5 ± 0.8 mmol TE/kg, respectively) but the TAC of red sauerkraut and red sauerkraut juice was diminished by a mixture of either orange or black carrots, which are of lower anthocyanin content than the red cabbage (41.8 ± 3.0 and 29.2 ± 3.1 mmol TE/kg, respectively). These results may justify the promotion of the broad consumption of red cabbage, both fresh and fermented, and encourage the usage of red cabbage as a promising material for functional foods. Full article
(This article belongs to the Special Issue Evaluation and Utilization of Antioxidant Activity in Food Products)
Show Figures

Figure 1

15 pages, 5846 KB  
Article
The Effect of Ore Pre-Heating on the Operation of a 300 kVA Submerged Arc Furnace for High Carbon Ferromanganese Alloy Production—Pilot Study Results
by Matale Samuel Moholwa, Sello Peter Tsebe, Derek Hayman, Sanda Moloane, Joalet Steenkamp, Martin Sitefane and Driaan Bezuidenhout
Minerals 2025, 15(9), 968; https://doi.org/10.3390/min15090968 - 13 Sep 2025
Viewed by 331
Abstract
The effect of ore pre-heating on the operation of a 300 kVA Submerged Arc Furnace (SAF) for high carbon ferromanganese (HCFeMn) alloy was investigated. The two types of Mn ores from the Kalahari Manganese Field (KMF) were used in the investigation (Ore #1 [...] Read more.
The effect of ore pre-heating on the operation of a 300 kVA Submerged Arc Furnace (SAF) for high carbon ferromanganese (HCFeMn) alloy was investigated. The two types of Mn ores from the Kalahari Manganese Field (KMF) were used in the investigation (Ore #1 and Ore #2). Quartz and coke sourced from South Africa were used as a fluxing agent and a reductant, respectively. The Mn ores, reductant and fluxing agent were delivered to Mintek with a size range of +6–20 mm and were sent to our in-house laboratories to determine the chemical and physical properties. The samples were taken for Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), combustion method (LECO), proximate analysis and quantitative X-ray diffraction (QXRD). A newly designed and constructed pilot facility at Mintek was used in the investigation. The facility included a 1 t/h rotary kiln coupled to an electric arc furnace supplied with an alternating current (AC) with a 300 kVA tap-changer transformer. The main aim of the investigation was to demonstrate the effect of ore pre-heating to 600 °C on the furnace energy consumption and CO/CO2 emissions. The experimental approach adopted involved feeding Mn ore to establish baseline operating conditions, followed by feeding of Mn ore pre-heated with a rotary kiln to compare operational parameters. The pilot campaign experienced several operational challenges but there were periods of stable operation that enabled data collection for furnace energy consumption and CO/CO2 emissions. The effect of pre-heating the ore to 600 °C on the SAF energy consumption and CO/CO2 emissions was demonstrated successfully and revealed that energy savings and reduction in furnace CO2 emissions is achievable. Pre-heating Mn ore to 600 °C lowered the furnace energy consumption by an average of 22.5% and CO2 emissions by an average of 37%. The campaign also achieved an overall manganese recovery of 86%. Operating the furnace with hot feed increased the heat losses through the roof by 300% compared to heat losses observed during cold feed. There were also no significant changes in the furnace electrical parameters observed between the two feed modes. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

Back to TopTop