Examining Specific Theory-of-Mind Aspects in Amnestic and Non-Amnestic Mild Cognitive Impairment: Their Relationships with Sleep Duration and Cognitive Planning
Abstract
:1. Introduction
Aims and Hypotheses of the Study
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Inclusion Criteria
2.4. Exclusion Criteria
2.5. Ethics
2.6. Procedure
2.7. Instruments
2.7.1. Theory of Mind
2.7.2. Νon-Literal Speech: Humor, Irony, Sarcasm, and Faux Pas Understanding Stories
2.7.3. Proverbs in Context
- When someone does good, they should throw it like a stone into the sea.
- When someone does a good deed, they should forget about it.
- Many people don’t care about the poor.
- Good deeds should not be advertised, and no reward should be expected.
2.7.4. Verbal Metaphors in Context
- The famous card player won all the casino’s bank money.
- The famous card player undressed the casino’s bank.
- The famous card player impressed all the other players at the casino.
2.7.5. Nominal Metaphors in Context
- Long-time friends often drink wine.
- Long-lasting friendship has a beneficial effect on people’s lives.
- Wine usually accompanies food.
2.7.6. Third-Order ToM Stories
2.8. Visual Dynamic Emotion-Recognition Test
The TASIT—PART I: Emotion Evaluation Test (EET–PART 1–FORM A)
2.9. Cognitive Planning
2.10. Sleep Duration
Actigraphy
2.11. Statistical Analysis
3. Results
3.1. ToM Performance
3.2. Correlations Between All Variables of Interest
3.3. Mediation Analysis
4. Discussion
4.1. The Role of Amnestic and Non-Amnestic Mild Cognitive Impairment in Theory-of-Mind Performance
4.2. The Impact of the Associations Among Sleep Duration, Cognitive Planning and ToM Abilities
5. Conclusions
6. Limitations
7. Future Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.; Ganguli, M.; Gloss, D.; Rae-Grant, A. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018, 90, 126–135. [Google Scholar] [CrossRef]
- Ansart, M.; Epelbaum, S.; Bassignana, G.; Bône, A.; Bottani, S.; Cattai, T.; Couronné, R.; Faouzi, J.; Koval, I.; Louis, M.; et al. Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative, and critical review. Med. Image Anal. 2021, 67, 101848. [Google Scholar] [CrossRef]
- Caffò, A.O.; Spano, G.; Tinella, L.; Lopez, A.; Ricciardi, E.; Stasolla, F.; Bosco, A. The Prevalence of Amnestic and Non-Amnestic Mild Cognitive Impairment and Its Association with Different Lifestyle Factors in a South Italian Elderly Population. Int. J. Environ. Res. Public Health 2022, 19, 3097. [Google Scholar] [CrossRef] [PubMed]
- Lara, E.; Koyanagi, A.; Olaya, B.; Lobo, A.; Miret, M.; Tyrovolas, S.; Ayuso-Mateos, J.L.; Haro, J.M. Mild Cognitive Impairment in a Spanish Representative Sample: Prevalence and Associated Factors. Int. J. Geriatr. Psychiatry 2016, 31, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Formica, C.; Bonanno, L.; Todaro, A.; Marra, A.; Alagna, A.; Corallo, F.; Marino, S.; Bramanti, A.; De Salvo, S. The role of mind theory in patients affected by neurodegenerative disorders and impact on caregiver burden. J. Clin. Neurosci. 2020, 78, 291–295. [Google Scholar] [CrossRef]
- Osterhaus, C.; Koerber, S. The complex associations between scientific reasoning and advanced theory of mind. Child Dev. 2023, 94, e18–e42. [Google Scholar] [CrossRef]
- Tsentidou, G.; Moraitou, D.; Tsolaki, M. Emotion Recognition in a Health Continuum: Comparison of Healthy Adults of Advancing Age, Community Dwelling Adults Bearing Vascular Risk Factors and People Diagnosed with Mild Cognitive Impairment. Int. J. Environ. Res. Public Health 2022, 19, 13366. [Google Scholar] [CrossRef]
- Kessels, R.P.C.; Elferink, M.W.; van Tilborg, I. Social cognition and social functioning in patients with amnestic mild cognitive impairment or Alzheimer’s dementia. J. Neuropsychol. 2020, 15, 186–203. [Google Scholar] [CrossRef] [PubMed]
- Taylor, T.; Edwards, T.L. What Can We Learn by Treating Perspective Taking as Problem Solving? Perspect. Behav. Sci. 2021, 44, 359–387. [Google Scholar] [CrossRef]
- Rothermich, K.; Giorio, C.; Falkins, S.; Leonard, L.; Roberts, A. Nonliteral language processing across the lifespan. Acta Psychol. 2021, 212, 103213. [Google Scholar] [CrossRef]
- Perrotta, G. The Theory of Mind (ToM): Theoretical, Neurobiological, and Clinical Profiles. J. Neurosci. Neurol. Surg. 2020, 7. [Google Scholar] [CrossRef]
- Rolls, E.T. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala. Brain Struct. Funct. 2023, 228, 1201–1257. [Google Scholar] [CrossRef] [PubMed]
- Šimić, G.; Tkalčić, M.; Vukić, V.; Mulc, D.; Španić, E.; Šagud, M.; Olucha-Bordonau, F.E.; Vukšić, M.; Hof, P.R. Understanding Emotions: Origins and Roles of the Amygdala. Biomolecules 2021, 11, 823. [Google Scholar] [CrossRef]
- Morellini, L.; Izzo, A.; Ceroni, M.; Rossi, S.; Zerboni, G.; Rege-Colet, L.; Biglia, E.; Sacco, L. Theory of mind in patients with mild cognitive impairment: A systematic review. Front. Psychol. 2022, 13, 994070. [Google Scholar] [CrossRef]
- Palermo, S.; Carassa, A.; Morese, R. Editorial: Perspective-Taking, Self-Awareness, and Social Cognition in Neurodegenerative Disorders, Cerebral Abnormalities, and Acquired Brain Injuries (ABI): A Neurocognitive Approach. Front. Psychol. 2020, 11, 614609. [Google Scholar] [CrossRef] [PubMed]
- Tran, K.H.; McDonald, A.P.; D’Arcy, R.C.N.; Song, X. Contextual Processing and the Impacts of Aging and Neurodegeneration: A Scoping Review. Clin. Interv. Aging 2021, 16, 345–361. [Google Scholar] [CrossRef] [PubMed]
- Tsentidou, G.; Moraitou, D.; Tsolaki, M. Similar Theory of Mind Deficits in Community Dwelling Older Adults with Vascular Risk Profile and Patients with Mild Cognitive Impairment: The Case of Paradoxical Sarcasm Comprehension. Brain Sci. 2021, 11, 627. [Google Scholar] [CrossRef] [PubMed]
- Prince, J.B.; Davis, H.L.; Tan, J.; Muller-Townsend, K.; Markovic, S.; Lewis, D.M.G.; Hastie, B.; Thompson, M.B.; Drummond, P.D.; Fujiyama, H.; et al. Cognitive and Neuroscientific Perspectives of Healthy Ageing. Neurosci. Biobehav. Rev. 2024, 161, 105649. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Baek, S.H.; Lai, M.K.P.; Arumugam, T.V.; Jo, D.G. Aging-associated sensory decline and Alzheimer’s disease. Mol. Neurodegener. 2024, 19, 93. [Google Scholar] [CrossRef] [PubMed]
- Faustmann, L.L.; Eckhardt, L.; Hamann, P.S.; Altgassen, M. The effects of separate facial areas on emotion recognition in different adult age groups: A laboratory and a naturalistic study. Front. Psychol. 2022, 13, 859464. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A. Mild cognitive impairment in Parkinson’s disease: Current view. Front. Cogn. 2024, 3, 1369538. [Google Scholar] [CrossRef]
- Dowker, A.; Frye, D.; Tsuji, H. Editorial: Theory of mind in relation to other cognitive abilities. Front. Psychol. 2023, 13, 1123321. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wang, X. Humor experience facilitates ongoing cognitive tasks: Evidence from pun comprehension. Front. Psychol. 2023, 14, 1127275. [Google Scholar] [CrossRef]
- Georgoudas, M.; Moraitou, D.; Poptsi, E.; Tsardoulias, E.; Kesanli, D.; Papaliagkas, V.; Tsolaki, M. The Mixed Role of Sleep and Time of Day in Working Memory Performance of Older Adults with Mild Cognitive Impairment. Healthcare 2024, 12, 1622. [Google Scholar] [CrossRef]
- Luo, Y.; Qiao, M.; Liang, Y.; Chen, C.; Zeng, L.; Wang, L.; Wu, W. Functional Brain Connectivity in Mild Cognitive Impairment With Sleep Disorders: A Study Based on Resting-State Functional Magnetic Resonance Imaging. Front. Aging Neurosci. 2022, 14, 812664. [Google Scholar] [CrossRef]
- Konu, D.; Turnbull, A.; Karapanagiotidis, T.; Wang, H.T.; Brown, L.R.; Jefferies, E.; Smallwood, J. A role for the ventromedial prefrontal cortex in self-generated episodic social cognition. NeuroImage 2020, 218, 116977. [Google Scholar] [CrossRef]
- Wei, R.; Ganglberger, W.; Sun, H.; Hadar, P.N.; Gollub, R.L.; Pieper, S.; Billot, B.; Au, R.; Iglesias, J.E.; Cash, S.S.; et al. Linking brain structure, cognition, and sleep: Insights from clinical data. Sleep 2024, 47, zsad294. [Google Scholar] [CrossRef]
- Franks, K.H.; Rowsthorn, E.; Nicolazzo, J.; Boland, A.; Lavale, A.; Baker, J.; Pase, M.P. The treatment of sleep dysfunction to improve cognitive function: A meta-analysis of randomized controlled trials. Sleep Med. 2023, 101, 118–126. [Google Scholar] [CrossRef]
- Liguori, C.; Cremascoli, R.; Maestri, M.; Fernandes, M.; Izzi, F.; Tognoni, G.; Placidi, F. Obstructive sleep apnea syndrome and Alzheimer’s disease pathology: May continuous positive airway pressure treatment delay cognitive deterioration? Sleep Breath. 2021, 25, 2135–2139. [Google Scholar] [CrossRef]
- Clemente, L.; Gasparre, D.; Alfeo, F.; Battista, F.; Abbatantuono, C.; Curci, A.; Taurisano, P. Theory of Mind and Executive Functions in Individuals with Mild Cognitive Impairment or Healthy Aging. Brain Sci. 2023, 13, 1356. [Google Scholar] [CrossRef]
- Michaelian, J.C.; Mowszowski, L.; Guastella, A.J.; Henry, J.D.; Duffy, S.; McCade, D.; Naismith, S.L. Theory of Mind in Mild Cognitive Impairment—Relationship with Limbic Structures and Behavioural Change. J. Int. Neuropsychol. Soc. 2019, 25, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- Tomaso, C.C.; Johnson, A.B.; Nelson, T.D. The effect of sleep deprivation and restriction on mood, emotion, and emotion regulation: Three meta-analyses in one. Sleep 2021, 44, zsaa289. [Google Scholar] [CrossRef] [PubMed]
- Torossian, M.; Fiske, S.M.; Jacelon, C.S. Sleep, Mild Cognitive Impairment, and Interventions for Sleep Improvement: An Integrative Review. West. J. Nurs. Res. 2021, 43, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Gasparre, D.; Pepe, I.; Abbatantuono, C.; Introna, A.; Biasi, M.M.; Paparella, G.; De Caro, M.F.; Defazio, G.; Taurisano, P. Social Cognition and Emotion Inference Abilities in Healthy Aging and Mild Cognitive Impairment. Alzheimer’s Dement. 2023, 19, e077013. [Google Scholar] [CrossRef]
- Mayer, G.; Frohnhofen, H.; Jokisch, M.; Hermann, D.M.; Gronewold, J. Associations of Sleep Disorders with All-Cause MCI/Dementia and Different Types of Dementia—Clinical Evidence, Potential Pathomechanisms, and Treatment Options: A Narrative Review. Front. Neurosci. 2024, 18, 1372326. [Google Scholar] [CrossRef] [PubMed]
- Batzikosta, A.; Moraitou, D.; Steiropoulos, P.; Papantoniou, G.; Kougioumtzis, G.A.; Katsouri, I.-G.; Sofologi, M.; Tsolaki, M. The Relationships of Specific Cognitive Control Abilities with Objective and Subjective Sleep Parameters in Mild Cognitive Impairment: Revealing the Association between Cognitive Planning and Sleep Duration. Brain Sci. 2024, 14, 813. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Caracciolo, B.; Brayne, C.; Gauthier, S.; Jelic, V.; Fratiglioni, L. Mild Cognitive Impairment: A Concept in Evolution. J. Intern. Med. 2014, 275, 214–228. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2022. [Google Scholar]
- Yesavage, J.A.; Brink, T.L.; Rose, T.L.; Lum, O.; Huang, V.; Adey, M.; Leirer, V.O. Development and Validation of a Geriatric Depression Screening Scale: A Preliminary Report. J. Psychiatr. Res. 1982, 17, 37–49. [Google Scholar] [CrossRef]
- Fountoulakis, K.N.; Tsolaki, M.; Iacovides, A.; Yesavage, J.; O’Hara, R.; Kazis, A.; Ierodiakonou, C. The Validation of the Short Form of the Geriatric Depression Scale (GDS) in Greece. Aging Clin. Exp. Res. 1999, 11, 367–372. [Google Scholar] [CrossRef]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An Inventory for Measuring Depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef]
- Beck, A.T.; Epstein, N.; Brown, G.; Steer, R.A. An Inventory for Measuring Clinical Anxiety: Psychometric Properties. J. Consult. Clin. Psychol. 1988, 56, 893–897. [Google Scholar] [CrossRef]
- Sinoff, G.; Ore, L.; Zlotogorsky, D.; Tamir, A. Short Anxiety Screening Test—A Brief Instrument for Detecting Anxiety in the Elderly. Int. J. Geriatr. Psychiatry 1999, 14, 1062–1071. [Google Scholar] [CrossRef]
- Grammatikopoulos, I.A.; Sinoff, G.; Alegakis, A.; Kounalakis, D.; Antonopoulou, M.; Lionis, C. The Short Anxiety Screening Test in Greek: Translation and Validation. Ann. Gen. Psychiatry 2010, 9, 1–8. [Google Scholar] [CrossRef]
- Cummings, J.L.; Mega, M.; Gray, K.; Rosenberg-Thompson, S.; Carusi, D.A.; Gornbein, J. The Neuropsychiatric Inventory: Comprehensive Assessment of Psychopathology in Dementia. Neurology 1994, 44, 2308. [Google Scholar] [CrossRef]
- Politis, A.M.; Mayer, L.S.; Passa, M.; Maillis, A.; Lyketsos, C.G. Validity and Reliability of the Newly Translated Hellenic Neuropsychiatric Inventory (H-NPI) Applied to Greek Outpatients with Alzheimer’s Disease: A Study of Disturbing Behaviors among Referrals to a Memory Clinic. Int. J. Geriatr. Psychiatry 2004, 19, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-Mental State: A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Fountoulakis, K.N.; Tsolaki, M.; Chantzi, H.; Kazis, A.D. Mini Mental State Examination (MMSE): A Validation Study in Greece. Am. J. Alzheimers Dis. Other Demen. 2000, 15, 342–345. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Poptsi, E.; Moraitou, D.; Eleftheriou, M.; Kounti-Zafeiropoulou, F.; Papasozomenou, C.; Agogiatou, C.; Bakoglidou, E.; Batsila, G.; Liapi, D.; Markou, N.; et al. Normative Data for the Montreal Cognitive Assessment in Greek Older Adults with Subjective Cognitive Decline, Mild Cognitive Impairment, and Dementia. J. Geriatr. Psychiatry Neurol. 2019, 32, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Kounti, F.; Tsolaki, M.; Kiosseoglou, G. Functional Cognitive Assessment Scale (FUCAS): A New Scale to Assess Executive Cognitive Function in Daily Life Activities in Patients with Dementia and Mild Cognitive Impairment. Hum. Psychopharmacol. 2006, 21, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Reisberg, B.; Ferris, S.H.; de Leon, M.J.; Crook, T. The Global Deterioration Scale for Assessment of Primary Degenerative Dementia. Am. J. Psychiatry 1982, 139, 1136–1139. [Google Scholar] [CrossRef] [PubMed]
- Tsolaki, M.; Poptsi, E.; Aggogiatou, C.; Markou, N.; Zafeiropoulos, S. Computer-Based Cognitive Training Versus Paper and Pencil Training: Which Is More Effective? A Randomized Controlled Trial in People with Mild Cognitive Impairment. JSM Alzheimer’s Dis. Relat. Dement. 2017, 4, 1032. [Google Scholar]
- Nazlidou, E.I.; Moraitou, D.; Natsopoulos, D.; Papantoniou, G. Social Cognition in Adults: The Role of Cognitive Control. Hellenic J. Nucl. Med. 2015, 18 (Suppl. 1), 109–121. [Google Scholar]
- McDonald, S.; Bornhofen, C.; Shum, D.H.K.; Long, E.; Saunders, C.; Neulinger, K. Reliability and Validity of The Awareness of Social Inference Test (TASIT): A Clinical Test of Social Perception. Disabil. Rehabil. 2006, 28, 1529–1542. [Google Scholar] [CrossRef] [PubMed]
- Moraitou, D.; Papantoniou, G.; Gkinopoulos, T.; Nigritinou, M. Older Adults’ Decoding of Emotions: Age-Related Differences in Interpreting Dynamic Emotional Displays and the Well-Preserved Ability to Recognize Happiness. Psychogeriatrics 2013, 13, 139–147. [Google Scholar] [CrossRef]
- Delis, D.C.; Kaplan, E.; Kramer, J.H. Delis-Kaplan Executive Function System (D–KEFS) [Database record]. APA PsycTests 2001, 10, t15082. [Google Scholar]
- Yuan, H.; Hill, E.A.; Kyle, S.D.; Doherty, A. A systematic review of the performance of actigraphy in measuring sleep stages. J. Sleep Res. 2024, 33, e14143. [Google Scholar] [CrossRef]
- Lee, M.P.; Hoang, K.; Park, S.; Song, Y.M.; Joo, E.Y.; Chang, W.; Kim, J.H.; Kim, J.K. Imputing missing sleep data from wearables with neural networks in real-world settings. Sleep 2024, 47, zsad266. [Google Scholar] [CrossRef]
- Chinoy, E.D.; Cuellar, J.A.; Huwa, K.E.; Jameson, J.T.; Watson, C.H.; Bessman, S.C.; Hirsch, D.A.; Cooper, A.D.; Drummond, S.P.A.; Markwald, R.R. Performance of seven consumer sleep-tracking devices compared with polysomnography. Sleep 2021, 44, zsaa291. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, Version 24.0; IBM Corp: Armonk, NY, USA, 2016. [Google Scholar]
- JASP Team. JASP (Version 0.18.3); [Computer Software]; JASP: Amsterdam, The Netherlands, 2024. [Google Scholar]
- MacKinnon, D.P.; Krull, J.L.; Lockwood, C.M. Equivalence of the Mediation, Confounding, and Suppression Effect. Prev. Sci. 2000, 1, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, F.; Baglio, F.; Massaro, D.; Alberoni, M.; Nemni, R.; Marchetti, A.; Castelli, I. Social cognition in rehabilitation context: Different evolution of affective and cognitive theory of mind in mild cognitive impairment. Behav. Neurol. 2020, 2020, 5204927. [Google Scholar] [CrossRef] [PubMed]
- Eramudugolla, R.; Huynh, K.; Zhou, S.; Amos, J.G.; Anstey, K.J. Social cognition and social functioning in MCI and dementia in an epidemiological sample. J. Int. Neuropsychol. Soc. 2021, 28, 661–672. [Google Scholar] [CrossRef]
- Maggi, G.; Giacobbe, C.; Vitale, C.; Amboni, M.; Obeso, I.; Santangelo, G. Theory of mind in mild cognitive impairment and Parkinson’s disease: The role of memory impairment. Cogn. Affect. Behav. Neurosci. 2024, 24, 156–170. [Google Scholar] [CrossRef]
- Song, J. Amygdala activity and amygdala-hippocampus connectivity: Metabolic diseases, dementia, and neuropsychiatric issues. Biomed. Pharmacother. 2023, 162, 114647. [Google Scholar] [CrossRef] [PubMed]
- Mueller, K.D.; Hermann, B.; Mecollari, J.; Turkstra, L.S. Connected speech and language in mild cognitive impairment and Alzheimer’s disease: A review of picture description tasks. J. Clin. Exp. Neuropsychol. 2018, 40, 917–939. [Google Scholar] [CrossRef]
- Hauptman, M.; Blank, I.; Fedorenko, E. Non-literal language processing is jointly supported by the language and theory of mind networks: Evidence from a novel meta-analytic fMRI approach. Cortex 2023, 162, 96–114. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Lu, J.J.; Wu, J.J.; Xiang, Y.T.; Zheng, M.X.; Hua, X.Y.; Xu, J.G. The moderating role of information processing speed in the relationship between brain remodeling and episodic memory in amnestic mild cognitive impairment. Alzheimer’s Dement. 2024, 20, 6793–6809. [Google Scholar] [CrossRef]
- Hertrich, I.; Dietrich, S.; Ackermann, H. The margins of the language network in the brain. Front. Commun. 2020, 5, 519955. [Google Scholar] [CrossRef]
- Kljajevic, V. Older and wiser: Interpretation of proverbs in the face of age-related cortical atrophy. Front. Aging Neurosci. 2022, 14, 919470. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huang, L. Comprehension of metaphors in patients with mild cognitive impairment: Evidence from behavioral and ERP data. Acta Psychol. 2023, 235, 103894. [Google Scholar] [CrossRef] [PubMed]
- Mashal, N.; Faust, M. The Effects of Metaphoricity and Presentation Style on Brain Activation During Text Comprehension. Metaphor. Symb. 2010, 25, 19–33. [Google Scholar] [CrossRef]
- Perry, D.C.; Brown, J.A.; Possin, K.L.; Datta, S.; Trujillo, A.; Radke, A.; Karydas, A.; Kornak, J.; Sias, A.C.; Rabinovici, G.D.; et al. Clinicopathological Correlations in Behavioural Variant Frontotemporal Dementia. Brain 2017, 140, 3329–3345. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; FitzGerald, T.; Rigoli, F.; Schwartenbeck, P.; Pezzulo, G. Active Inference: A Process Theory. Neural Comput. 2017, 29, 1–49. [Google Scholar] [CrossRef]
- Knopper, R.W.; Hansen, B. Locus Coeruleus and the Defensive Activation Theory of Rapid Eye Movement Sleep: A MechanisticPerspective. Front. Neurosci. 2023, 17, 1094812. [Google Scholar] [CrossRef]
- Holyoak, K.J.; Stamenković, D. Metaphor comprehension: A critical review of theories and evidence. Psychol. Bull. 2018, 144, 641–671. [Google Scholar] [CrossRef]
- Voits, T.; Rothman, J.; Calabria, M.; Robson, H.; Aguirre, N.; Cattaneo, G.; Pliatsikas, C. Hippocampal adaptations in mild cognitive impairment patients are modulated by bilingual language experiences. Biling. Lang. Cogn. 2024, 27, 263–273. [Google Scholar] [CrossRef]
- Randhi, B.; Gutlapalli, S.D.; Pu, J.; Zaidi, M.F.; Patel, M.; Atluri, L.M.; Gonzalez, N.A.; Sakhamuri, N.; Athiyaman, S.; Hamid, P. Sleep disorders in mild cognitive impairment. Cureus 2023, 15, e36202. [Google Scholar] [CrossRef]
- Mattos, M.K.; Chang, A.; Pitcher, K.; Whitt, C.; Ritterband, L.M.; Quigg, M.S. A review of insomnia treatments for patients with mild cognitive impairment. Aging Dis. 2021, 12, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.R.; Moreira, P.S.; Machado, A.; Sousa, N. Sleep disturbances and cognitive impairment: A comprehensive review exploring the link between MCI and sleep quality. Nat. Sci. Sleep 2023, 15, 103–120. [Google Scholar]
- Khan, M.A.; Al-Jahdali, H. The consequences of sleep deprivation on cognitive performance. Neurosciences 2023, 28, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-C.; Wang, X.-Y. Longitudinal associations between sleep duration and cognitive impairment in Chinese elderly. Front. Aging Neurosci. 2022, 14, 1037650. [Google Scholar] [CrossRef]
- Wang, F.; Liu, C.-J. Cognitive processes in rule violation. Adv. Cogn. Psychol. 2024, 20, 35–43. [Google Scholar] [CrossRef]
- Lo, J.C.; Ong, J.L.; Leong, R.L.; Gooley, J.J.; Chee, M.W. Cognitive performance and sleep quality in relation to mild cognitive impairment. Neurobiol. Aging 2022, 115, 81–89. [Google Scholar]
- Carriedo, N.; Corral, A.; Montoro, P.R.; Herrero, L.; Ballestrino, P.; Sebastián, I. The development of metaphor comprehension and its relationship with relational verbal reasoning and executive function. PLoS ONE 2016, 11, e0150289. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Huang, J.; Li, L.; Lin, T.; Zou, L. Neural network of metaphor comprehension: An ALE meta-analysis and MACM analysis. Cereb. Cortex 2023, 33, 10918–10930. [Google Scholar] [CrossRef] [PubMed]
Pathway | Estimate | Std. Error | z-Value | p | 95% CI Lower | 95% CIUpper |
---|---|---|---|---|---|---|
Direct effects | ||||||
TST → TASIT-PART 1 | 0.113 | 0.180 | 0.630 | 0.529 | −0.239 | 0.466 |
TST → non-literal speech 1 | −0.399 | 0.747 | −0.534 | 0.593 | −1.862 | 1.065 |
TST → non-literal speech 2 | 1.312 | 2.420 | 0.542 | 0.588 | −3.431 | 6.054 |
TST → third-order ToM stories | 1.270 | 0.759 | 1.674 | 0.094 | −0.217 | 2.758 |
TST → Nominal Metaphors | −0.840 | 0.804 | −1.045 | 0.296 | −2.416 | 0.735 |
TST → Proverbs in Context | 1.759 | 1.252 | 1.405 | 0.160 | −0.695 | 4.213 |
TST → Verbal Metaphors | 0.092 | 0.662 | 0.139 | 0.889 | −0.206 | 1.390 |
Indirect effects | ||||||
TST → DKEFS–TT Total achievement score → TASIT-PART 1 | 0.007 | 0.046 | 0.153 | 0.878 | −0.084 | 0.098 |
TST → DKEFS–TT Total number of problems → TASIT-PART 1 | 0.112 | 0.069 | 1.628 | 0.104 | −0.023 | 0.248 |
TST → DKEFS–TT Total number of rules’ violations → TASIT-PART1 | 0.113 | 0.056 | 2.026 | 0.043 | 0.004 | 0.223 |
TST → DKEFS–TT Total achievement score → Non-literal speech 1 | −0.457 | 0.287 | −1.593 | 0.111 | −1.020 | 0.105 |
TST → DKEFS–TT Total number of problems → Non-literal speech 1 | 0.748 | 0.383 | 1.951 | 0.051 | −0.003 | 1.499 |
TST → DKEFS–TT Total number of rules’ violations → Non-literal speech 1 | 1.058 | 0.380 | 2.786 | 0.005 | 0.314 | 1.802 |
TST → DKEFS–TT Total achievement score → Non-literal speech 2 | −1.012 | 0.782 | −1.295 | 0.195 | −2.544 | 0.520 |
TST → DKEFS–TT Total number of problems → Non-literal speech 2 | 2.719 | 1.353 | 2.010 | 0.044 | 0.068 | 5.371 |
TST → DKEFS–TT Total number of rules’ violations → Non-literal speech 2 | 4.530 | 1.548 | 2.927 | 0.003 | 1.496 | 7.563 |
TST → DKEFS–TT Total achievement score → Τhird-order ToM stories | 0.179 | 0.212 | 0.842 | 0.400 | −0.238 | 0.595 |
TST → DKEFS–TT Total number of problems → Τhird-order ToM stories | 0.369 | 0.261 | 1.414 | 0.157 | −0.142 | 0.880 |
TST → DKEFS–TT Total number of rules’ violations → Τhird-order ToM | 1.114 | 0.397 | 2.807 | 0.005 | 0.336 | 1.892 |
TST → DKEFS–TT Total achievement score → Nominal Metaphors | 0.159 | 0.220 | 0.723 | 0.470 | −0.272 | 0.590 |
TST → DKEFS–TT Total number of problems → Nominal Metaphors | 0.315 | 0.257 | 1.223 | 0.221 | −0.190 | 0.819 |
TST → DKEFS–TT Total number of rules’ violations → Nominal Metaphors | 0.592 | 0.268 | 2.207 | 0.027 | 0.066 | 1.118 |
TST → DKEFS–TT Total achievement score → Proverbs in Context | −0.137 | 0.329 | −0.416 | 0.678 | −0.781 | 0.507 |
TST → DKEFS–TT Total number of problems → Proverbs in Context | 0.798 | 0.486 | 1.644 | 0.100 | −0.153 | 1.750 |
TST → DKEFS–TT Total number of rules’ violations → Proverbs in Context | 0.970 | 0.429 | 2.264 | 0.024 | 0.130 | 1.810 |
TST → DKEFS–TT Total achievement score → Verbal Metaphors | 0.176 | 0.189 | 0.930 | 0.352 | −0.195 | 0.547 |
TST → DKEFS–TT Total number of problems → Verbal Metaphors | 0.285 | 0.218 | 1.306 | 0.192 | −0.143 | 0.713 |
TST → DKEFS–TT Total number of rules’ violations → Verbal Metaphors | 0.006 | 0.158 | 0.037 | 0.971 | −0.304 | 0.315 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batzikosta, A.; Moraitou, D.; Steiropoulos, P.; Papantoniou, G.; Kougioumtzis, G.A.; Katsouri, I.-G.; Sofologi, M.; Tsolaki, M. Examining Specific Theory-of-Mind Aspects in Amnestic and Non-Amnestic Mild Cognitive Impairment: Their Relationships with Sleep Duration and Cognitive Planning. Brain Sci. 2025, 15, 57. https://doi.org/10.3390/brainsci15010057
Batzikosta A, Moraitou D, Steiropoulos P, Papantoniou G, Kougioumtzis GA, Katsouri I-G, Sofologi M, Tsolaki M. Examining Specific Theory-of-Mind Aspects in Amnestic and Non-Amnestic Mild Cognitive Impairment: Their Relationships with Sleep Duration and Cognitive Planning. Brain Sciences. 2025; 15(1):57. https://doi.org/10.3390/brainsci15010057
Chicago/Turabian StyleBatzikosta, Areti, Despina Moraitou, Paschalis Steiropoulos, Georgia Papantoniou, Georgios A. Kougioumtzis, Ioanna-Giannoula Katsouri, Maria Sofologi, and Magda Tsolaki. 2025. "Examining Specific Theory-of-Mind Aspects in Amnestic and Non-Amnestic Mild Cognitive Impairment: Their Relationships with Sleep Duration and Cognitive Planning" Brain Sciences 15, no. 1: 57. https://doi.org/10.3390/brainsci15010057
APA StyleBatzikosta, A., Moraitou, D., Steiropoulos, P., Papantoniou, G., Kougioumtzis, G. A., Katsouri, I.-G., Sofologi, M., & Tsolaki, M. (2025). Examining Specific Theory-of-Mind Aspects in Amnestic and Non-Amnestic Mild Cognitive Impairment: Their Relationships with Sleep Duration and Cognitive Planning. Brain Sciences, 15(1), 57. https://doi.org/10.3390/brainsci15010057