Role of Hypothalamus in Acupuncture’s Effects
Abstract
:1. Introduction
2. Hypothalamus and Lateral Hypothalamic Area
Mechanisms of Acupuncture Effects
- 1.
- Pain Modulation
- 2.
- Stress and Anxiety Reduction
Mechanism | Role of Hypothalamus and LH | Effect of Acupuncture | Result or Effect | Main Neurotransmitters and Pathways | References |
---|---|---|---|---|---|
Pain Modulation | - Hypothalamus is involved in pain modulation and reward system - LH participates in reward behavior via orexin neurons | - Modulates neural circuits associated with the hypothalamus to alleviate pain - Activates the mesolimbic dopamine system | - Pain relief and activation of the reward system - Reduction in discomfort associated with pain | - Dopamine (DA) - Orexin - Mesolimbic dopamine system | [72,73,75] |
Stress and Anxiety Reduction | - Hypothalamus plays a key role in stress response and HPA axis regulation - LH is involved in stress responses via orexin neurons | - Regulates the HPA axis to control stress hormone secretion - Influences the release of CRH and NPY in the hypothalamus | - Decreased levels of stress hormones (adrenocorticotropic hormone (ACTH), cortisol) - Alleviation of stress and anxiety symptoms | - Corticotropin-releasing hormone (CRH) - Neuropeptide Y (NPY) - Enkephalin - Serotonin | [9,85,92] |
Modulation of Addiction Behavior | - LH plays a central role in the reward system - Orexin neurons regulate reward behaviors related to addiction | - Modulates dopamine release via the hypothalamus and LH - Acupuncture at HT7 reduces dopamine levels in the NAc | - Decreased reinforcing effects of drugs - Reduction in drug-seeking behavior and relapse - Alleviation of withdrawal symptoms | - Dopamine (DA) - Orexin - HPA axis - CRH and NPY | [79,81,82,85] |
- 3.
- Modulation of Addiction Behavior
3. Conclusions
4. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACTH | Adrenocorticotropic Hormone |
AgRP | Agouti-Related Peptide |
CPP | Conditioned Place Preference |
CRH | Corticotropin-Releasing Hormone |
DA | Dopamine |
EA | Electroacupuncture |
GABA | Gamma-Aminobutyric Acid |
HPA | Hypothalamic-–Pituitary-–Adrenal |
HT7 | Shenmen (Heart 7) |
LH | Lateral Hypothalamus |
MCH | Melanin-Concentrating Hormone |
mRNA | Messenger Ribonucleic Acid |
NAc | Nucleus Accumbens |
NPY | Neuropeptide Y |
VGlut2 | Vesicular Glutamate Transporter Type 2 |
VTA | Ventral Tegmental Area |
References
- National Institutes of Health. Acupuncture; National Center for Complementary and Integrative Health (NCCIH): Bethesda, MD, USA, 2023.
- Ernst, E. Acupuncture–a critical analysis. J. Intern. Med. 2006, 259, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Jishun, J.; Mittelman, M. Acupuncture: Past, present, and future. Glob. Adv. Health Med. 2014, 3, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Maciocia, G. A Comprehensive Text for Acupuncturists and Herbalists; Churchill Livingstone: London, UK, 1989. [Google Scholar]
- World Health Organization. Acupuncture: Review and Analysis of Reports on Controlled Clinical Trials; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Cheng, X.; Deng, L.J. Chinese Acupuncture and Moxibustion; Foreign Language Press: Beijing, China, 1999. [Google Scholar]
- Guo, K.; Lu, Y.; Wang, X.; Duan, Y.; Li, H.; Gao, F.; Wang, J. Multi-level exploration of auricular acupuncture: From traditional Chinese medicine theory to modern medical application. Front. Neurosci. 2024, 18, 1426618. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Lao, L.A. Neurobiological foundations of acupuncture: The relevance and future prospect based on neuroimaging evidence. Evid.-Based Complement. Altern. Med. 2013, 2013, 812568. [Google Scholar] [CrossRef] [PubMed]
- National Center for Complementary and Integrative Health. Acupuncture for Pain; National Institutes of Health (NIH): Bethesda, MD, USA, 2023.
- Nicolaides, N.C.; Galata, Z.; Kino, T.; Chrousos, G.P.; Charmandari, E. The human glucocorticoid receptor: Molecular basis of biologic function. Steroids 2010, 75, 1–12. [Google Scholar] [CrossRef]
- Herman, J.P.; Ostrander, M.M.; Mueller, N.K.; Figueiredo, H. Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2005, 29, 1201–1213. [Google Scholar] [CrossRef] [PubMed]
- Hurley, S.W.; Johnson, A.K. The role of the lateral hypothalamus and orexin in ingestive behavior: A model for the translation of past experience and sensed deficits into motivated behaviors. Front. Syst. Neurosci. 2014, 8, 216. [Google Scholar] [CrossRef] [PubMed]
- Grill, H.J.; Hayes, M.R. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab. 2012, 16, 296–309. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Han, R.; Yu, C.; Shen, F. Neural circuit mechanisms of acupuncture effect: Where are we now? Front. Neurol. 2024, 15, 1399925. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-Y.; Kim, Y.-K.; Kim, S.-Y.; Lee, H.; Choi, C.-J.; Chae, Y.; Park, H.-J. Acupuncture modulates brain neural activity in patients: A systematic review and meta-analysis. Orient. Pharm. Exp. Med. 2017, 17, 111–126. [Google Scholar] [CrossRef]
- Crivii, C.B.; Clichici, S.V.; Filip, A.G. Anatomy and Topography of the Hypothalamus; Humana: Cham, Switzerland, 2021; pp. 7–14. [Google Scholar]
- Grzeda, E.; Ziarniak, K.; Sliwowska, J.H. The paraventricular nucleus of the hypothalamus—The concertmaster of autonomic control. Focus on blood pressure regulation. Acta Neurobiol. Exp. (Wars) 2023, 83, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, S.; Marcus, E.M.; Pugsley, S.; Jacobson, S.; Marcus, E.M.; Pugsley, S. Hypothalamus, Neuroendocrine System, and Autonomic Nervous System; Springer: Cham, Switzerland, 2018; pp. 269–295. [Google Scholar]
- Elmquist, J.K.; Zigman, J.M.; Saper, C.B. Mechanisms of homeostatically regulated behaviors. In Neuroscience in the 21st Century: From Basic to Clinical; Springer: Cham, Switzerland, 2022; pp. 2415–2443. [Google Scholar]
- Seoane-Collazo, P.; Fernø, J.; Gonzalez, F.; Diéguez, C.; Leis, R.; Nogueiras, R.; López, M. Hypothalamic-autonomic control of energy homeostasis. Endocrine 2015, 50, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Grossman, S.P.; Grossman, L. Iontophoretic injections of kainic acid into the rat lateral hypothalamus: Effects on ingestive behavior. Physiol. Behav. 1982, 29, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Ardianto, C.; Yonemochi, N.; Yamamoto, S.; Yang, L.; Takenoya, F.; Shioda, S.; Nagase, H.; Ikeda, H.; Kamei, J. Opioid systems in the lateral hypothalamus regulate feeding behavior through orexin and GABA neurons. Neuroscience 2016, 320, 183–193. [Google Scholar] [CrossRef]
- Wiltshire, T.; Maixner, W.; Diatchenko, L. Relax, you won’t feel the pain. Nat. Neurosci. 2011, 14, 1496–1497. [Google Scholar] [CrossRef] [PubMed]
- Buijs, R.M. The autonomic nervous system: A balancing act. Handb. Clin. Neurol. 2013, 117, 1–11. [Google Scholar] [PubMed]
- Fakhoury, M.; Salman, I.; Najjar, W.; Merhej, G.; Lawand, N. The lateral hypothalamus: An uncharted territory for processing peripheral neurogenic inflammation. Front. Neurosci. 2020, 14, 101. [Google Scholar] [CrossRef]
- Stuber, G.D.; Wise, R.A. Lateral hypothalamic circuits for feeding and reward. Nat. Neurosci. 2016, 19, 198–205. [Google Scholar] [CrossRef]
- Frank, R.A.; Preshaw, R.L.; Stutz, R.M.; Valenstein, E.S. Lateral hypothalamic stimulation: Stimulus-bound eating and self-deprivation. Physiol. Behav. 1982, 29, 17–21. [Google Scholar] [CrossRef]
- Qualls-Creekmore, E.; Münzberg, H. Modulation of feeding and associated behaviors by lateral hypothalamic circuits. Endocrinology 2018, 159, 3631–3642. [Google Scholar] [CrossRef] [PubMed]
- Ling, D.; Rahman, A.; Jackson, M.; Bikson, M. Animal Studies in the Field of Transcranial Electric Stimulation; Springer: Cham, Switzerland, 2016; pp. 67–83. [Google Scholar]
- Sánchez-León, C.A.; Ammann, C.; Medina, J.F.; Márquez-Ruiz, J. Using animal models to improve the design and application of transcranial electrical stimulation in humans. Curr. Behav. Neurosci. Rep. 2018, 5, 125–135. [Google Scholar] [CrossRef]
- Bikson, M.; Dmochowski, J.; Rahman, A. The “quasi-uniform” assumption in animal and computational models of non-invasive electrical stimulation. Brain Stimul. 2013, 6, 704–705. [Google Scholar] [CrossRef]
- Chan, C.; Nicholson, C. Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. J. Physiol. 1986, 371, 89–114. [Google Scholar] [CrossRef] [PubMed]
- Mogenson, G.; Stevenson, J. Drinking induced by electrical stimulation of the lateral hypothalamus. Exp. Neurol. 1967, 17, 119–127. [Google Scholar] [CrossRef]
- Delgado, J.M.; Anand, B.K. Increase of food intake induced by electrical stimulation of the lateral hypothalamus. Am. J. Physiol.-Leg. Content 1952, 172, 162–168. [Google Scholar] [CrossRef]
- Horn, G.; Hinde, R.A. Short-Term Changes in Neural Activity and Behaviour: A Conference Sponsored by King’s College Research Centre Cambridge; CUP Archive: Cambridge, UK, 1970. [Google Scholar]
- Rankin, C.H.; Broster, B.S. Factors affecting habituation and recovery from habituation in the nematode Caenorhabditis elegans. Behav. Neurosci. 1992, 106, 239. [Google Scholar] [CrossRef] [PubMed]
- Cameron, J.D.; Doucet, É. Reinforcement and food hedonics: A look at how energy deprivation impacts food reward. In Handbook of Behavior, Food and Nutrition; Springer: New York, NY, USA, 2011; pp. 2285–2305. [Google Scholar]
- Cason, A.M.; Smith, R.J.; Tahsili-Fahadan, P.; Moorman, D.E.; Sartor, G.C.; Aston-Jones, G. Role of orexin/hypocretin in reward-seeking and addiction: Implications for obesity. Physiol. Behav. 2010, 100, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Hisano, S. Vesicular glutamate transporters in the brain. Anato. Sci. Int. 2003, 78, 191–204. [Google Scholar] [CrossRef]
- Juge, N.; Yoshida, Y.; Yatsushiro, S.; Omote, H.; Moriyama, Y. Vesicular glutamate transporter contains two independent transport machineries. J. Biol. Chem. 2006, 281, 39499–39506. [Google Scholar] [CrossRef] [PubMed]
- Fremeau, R.T.; Troyer, M.D.; Pahner, I.; Nygaard, G.O.; Tran, C.H.; Reimer, R.J.; Bellocchio, E.E.; Fortin, D.; Storm-Mathisen, J.; Edwards, R.H. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 2001, 31, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.N.; Ma, Y.F.; Hioki, H.; Wei, Y.Y.; Kaneko, T.; Mizuno, N.; Gao, G.D.; Li, J. Coexpression of VGLUT1 and VGLUT2 in trigeminothalamic projection neurons in the principal sensory trigeminal nucleus of the rat. J. Comp. Neurol. 2010, 518, 3149–3168. [Google Scholar] [CrossRef]
- Concetti, C.; Burdakov, D.J.F.i.N. Orexin/hypocretin and MCH neurons: Cognitive and motor roles beyond arousal. Front. Neurosci. 2021, 15, 639313. [Google Scholar] [CrossRef]
- Bonnavion, P.; Mickelsen, L.E.; Fujita, A.; De Lecea, L.; Jackson, A.C. Hubs and spokes of the lateral hypothalamus: Cell types, circuits and behaviour. J. Physiol. 2016, 594, 6443–6462. [Google Scholar] [CrossRef]
- Naganuma, F.; Kroeger, D.; Bandaru, S.S.; Absi, G.; Madara, J.C.; Vetrivelan, R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLOS Biol. 2019, 17, e3000172. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, D.S.; Tritos, N.A.; Mastaitis, J.W.; Kulkarni, R.; Kokkotou, E.; Elmquist, J.; Lowell, B.; Flier, J.S.; Maratos-Flier, E. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J. Clin. Investig. 2001, 107, 379–386. [Google Scholar] [CrossRef]
- Presse, F.; Conductier, G.; Rovere, C.; Nahon, J.-L. The melanin-concentrating hormone receptors: Neuronal and non-neuronal functions. Int. J. Obes. Suppl. 2014, 4, S31–S36. [Google Scholar] [CrossRef] [PubMed]
- Katzman, M.A.; Katzman, M.P. Neurobiology of the orexin system and its potential role in the regulation of hedonic tone. Brain Sci. 2022, 12, 150. [Google Scholar] [CrossRef]
- Arias-Carrión, O.; Caraza-Santiago, X.; Salgado-Licona, S.; Salama, M.; Machado, S.; Nardi, A.E.; Menéndez-González, M.; Murillo-Rodríguez, E. Orquestic regulation of neurotransmitters on reward-seeking behavior. Int. Arch. Med. 2014, 7, 29. [Google Scholar] [CrossRef]
- Pham, X.T.; Abe, Y.; Mukai, Y.; Ono, D.; Tanaka, K.F.; Ohmura, Y.; Wake, H.; Yamanaka, A. Glutamatergic signaling from melanin-concentrating hormone-producing neurons: A requirement for memory regulation, but not for metabolism control. PNAS Nexus 2024, 3, 275. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.Y.; Yoon, Y.S.; Lee, H.S. Differential distribution of melanin-concentrating hormone (MCH)-and hypocretin (Hcrt)-immunoreactive neurons projecting to the mesopontine cholinergic complex in the rat. Brain Res. 2011, 1424, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Pissios, P.; Bradley, R.L.; Maratos-Flier, E. Expanding the scales: The multiple roles of MCH in regulating energy balance and other biological functions. Endocr. Rev. 2006, 27, 606–620. [Google Scholar] [CrossRef]
- Vetrivelan, R.; Kong, D.; Ferrari, L.L.; Arrigoni, E.; Madara, J.C.; Bandaru, S.S.; Lowell, B.B.; Lu, J.; Saper, C.B. Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 2016, 336, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Briggs, C.; Hirasawa, M.; Semba, K. Sleep deprivation distinctly alters glutamate transporter 1 apposition and excitatory transmission to orexin and MCH neurons. J. Neurosci. 2018, 38, 2505–2518. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Virella, J.; Leinninger, G.M. The role of central neurotensin in regulating feeding and body weight. Endocrinology 2021, 162, bqab038. [Google Scholar] [CrossRef]
- Long, Q.; Li, W.; Zhang, W.; Han, B.; Chen, Q.; Shen, L.; Liu, X. Electrical stimulation mapping in the medial prefrontal cortex induced auditory hallucinations of episodic memory: A case report. Front. Hum. Neurosci. 2022, 16, 815232. [Google Scholar] [CrossRef]
- Slater, C.; Liu, Y.; Weiss, E.; Yu, K.; Wang, Q. The neuromodulatory role of the noradrenergic and cholinergic systems and their interplay in cognitive functions: A focused review. Brain Sci. 2022, 12, 890. [Google Scholar] [CrossRef]
- Lee, T.; Nicolas, J.-C.; Quarta, C. Molecular and functional mapping of the neuroendocrine hypothalamus: A new era begins. J. Endocrinol. Investig. 2024, 47, 2627–2648. [Google Scholar] [CrossRef]
- Kim, D.W.; Washington, P.W.; Wang, Z.Q.; Lin, S.H.; Sun, C.; Ismail, B.T.; Wang, H.; Jiang, L.; Blackshaw, S. The cellular and molecular landscape of hypothalamic patterning and differentiation from embryonic to late postnatal development. Nat. Commun. 2020, 11, 4360. [Google Scholar] [CrossRef]
- Rui, L.; Disorders, M. Brain regulation of energy balance and body weight. Rev. Endocr. Metab. Disord. 2013, 14, 387–407. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lin, Y.-C.; Zimmerman, C.A.; Essner, R.A.; Knight, Z.A. Hunger neurons drive feeding through a sustained, positive reinforcement signal. Elife 2016, 5, e18640. [Google Scholar] [CrossRef]
- Chen, Y.; Essner, R.A.; Kosar, S.; Miller, O.H.; Lin, Y.-C.; Mesgarzadeh, S.; Knight, Z.A. Sustained NPY signaling enables AgRP neurons to drive feeding. Elife 2019, 8, e46348. [Google Scholar] [CrossRef] [PubMed]
- Deer, T.R.; Pope, J.E.; Lamer, T.J.; Provenzano, D. Deer’s Treatment of Pain: An Illustrated Guide for Practitioners; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Derderian, C.; Shumway, K.R.; Tadi, P. Physiology, Withdrawal Response; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Leknes, S.; Tracey, I. A common neurobiology for pain and pleasure. Nat. Rev. Neurosci. 2008, 9, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Seca, S.; Patrício, M.; Kirch, S.; Franconi, G.; Cabrita, A.S.; Greten, H.J. Effectiveness of acupuncture on pain, functional disability, and quality of life in rheumatoid arthritis of the hand: Results of a double-blind randomized clinical trial. J. Altern. Complement. Med. 2019, 25, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, C. Acupuncture and chronic musculoskeletal pain. Curr. Rheumatol. Rep. 2020, 22, 80. [Google Scholar] [CrossRef]
- Li, P.; Xiao, M.; Ma, X.; Yan, X.; Ma, C. Acupuncture intervening depressive disorder: Research progress in its neurobiological mechanism. J. Acupunct. Tuina Sci. 2023, 21, 239–246. [Google Scholar] [CrossRef]
- Ma, S.; Huang, H.; Zhong, Z.; Zheng, H.; Li, M.; Yao, L.; Yu, B.; Wang, H. Effect of acupuncture on brain regions modulation of mild cognitive impairment: A meta-analysis of functional magnetic resonance imaging studies. Front. Aging Neurosci. 2022, 14, 914049. [Google Scholar] [CrossRef]
- Malenka, R. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience; McGraw-Hill Medical: New York, NY, USA, 2009. [Google Scholar]
- Carlsson, A.; Dahlström, A.; Fuxe, K.; Lindvist, M. Histochemical and biochemical detection of monoamine release from brain neurons. Life Sci. 1965, 4, 809–816. [Google Scholar] [CrossRef]
- Wise, R.A. Drug-activation of brain reward pathways. Drug Alcohol Depend. 1998, 51, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Ikemoto, S.; Bonci, A. Neurocircuitry of drug reward. Neuropharmacology 2014, 76, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Harley, C.W. Norepinephrine and dopamine as learning signals. Neural Plast. 2004, 11, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Schultz, W. Dopamine reward prediction error coding. Dialogues Clin. Neurosci. 2016, 18, 23–32. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Lee, H.-J.; Lee, M.T.; Wu, Y.-T.; Lee, Y.-H.; Hwang, L.-L.; Hung, M.-S.; Zimmer, A.; Mackie, K.; Chiou, L.-C. Median nerve stimulation induces analgesia via orexin-initiated endocannabinoid disinhibition in the periaqueductal gray. Proc. Natl. Acad. Sci. USA 2018, 115, E10720–E10729. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.; Tai, Y.; Shao, X.; Liang, Y.; Zheng, G.-q.; Wang, P.; Fang, J.; Liu, B. Electroacupuncture alleviates pain responses and inflammation in a rat model of acute gout arthritis. Altern. Med. 2018, 2018, 2598975. [Google Scholar] [CrossRef]
- Guo, H.; Wang, X.; Tian, J.; Huo, Y.; Han, J.S. 2 Hz and 100 Hz electroacupuncture accelerate the expression of genes encoding three opioid peptides in the rat brain. Acta Physiol. Sin. 1997, 49, 121–127. [Google Scholar]
- Ma, C.; Zou, Y.; Ye, Y.; Cao, M.; Yan, X. Progress in the mechanism of acupuncture intervention on pain emotion and pain cognition mediated by limbic system. J. Acupunct. Tuina Sci. 2022, 20, 499–504. [Google Scholar] [CrossRef]
- He, T.; Zhu, W.; Du, S.-Q.; Yang, J.-W.; Li, F.; Yang, B.-F.; Shi, G.-X.; Liu, C.-Z. Neural mechanisms of acupuncture as revealed by fMRI studies. Auton. Neurosci. 2015, 190, 1–9. [Google Scholar]
- Feng, Y.; Bai, L.; Ren, Y.; Chen, S.; Wang, H.; Zhang, W.; Tian, J. FMRI connectivity analysis of acupuncture effects on the whole brain network in mild cognitive impairment patients. Magn. Reson. Imaging 2012, 30, 672–682. [Google Scholar] [CrossRef]
- Guo, H.-F.; Tian, J.; Wang, X.; Fang, Y.; Hou, Y.; Han, J. Brain substrates activated by electroacupuncture (EA) of different frequencies (II): Role of Fos/Jun proteins in EA-induced transcription of preproenkephalin and preprodynorphin genes. Mol. Brain Res. 1996, 43, 167–173. [Google Scholar] [CrossRef]
- Lee, M.-J.; Ryu, J.-S.; Won, S.-K.; Namgung, U.; Jung, J.; Lee, S.-M.; Park, J.-Y. Effects of acupuncture on chronic stress-induced depression-like behavior and its central neural mechanism. Front. Psychol. 2019, 10, 1353. [Google Scholar] [CrossRef]
- Wang, C.; Chen, M.; Qin, C.; Qu, X.; Shen, X.; Liu, S. Lateral Hypothalamic Orexin Neurons Mediate the Reward Effects of Pain Relief Induced by Electroacupuncture. Front. Mol. Neurosci. 2022, 15, 812035. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, W.; Ruan, X.; Li, R.; Lee, T.; Weng, X.; Hu, J.; Yang, G. Activation of the hypothalamus characterizes the response to acupuncture stimulation in heroin addicts. Neurosci. Lett. 2007, 421, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.B.; Ahn, D.; Kim, H.K.; Guan, X.; Fan, Y.; Lee, B.H.; Kim, H.Y. Mediation of lateral hypothalamus orexin input to lateral habenula in the inhibitory effects of mechanical stimulation on psychomotor responses induced by cocaine. Front. Mol. Neurosci. 2023, 16, 1195939. [Google Scholar] [CrossRef] [PubMed]
- Ahn, D.; Jang, H.B.; Chang, S.; Kim, H.K.; Ryu, Y.; Lee, B.H.; Kim, S.C.; Bills, K.B.; Steffensen, S.C.; Fan, Y.; et al. Role of Lateral Hypothalamus in Acupuncture Inhibition of Cocaine Psychomotor Activity. Int. J. Mol. Sci. 2021, 22, 5994. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Jang, H.B.; Fan, Y.; Lee, B.H.; Kim, S.C.; Bills, K.B.; Steffensen, S.C.; Kim, H.Y. Nociceptive Stimuli Activate the Hypothalamus-Habenula Circuit to Inhibit the Mesolimbic Reward System and Cocaine-Seeking Behaviors. J. Neurosci. 2022, 42, 9180–9192. [Google Scholar] [CrossRef] [PubMed]
- Aston-Jones, G.; Smith, R.J.; Moorman, D.E.; Richardson, K. Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology 2009, 56, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, B.; Zhang, L.; Liu, S. Electroacupuncture suppresses morphine reward-seeking behavior: Lateral hypothalamic orexin neurons implicated. Neurosci. Lett. 2017, 661, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.Y.; Zhu, J.; Wang, Y.; Tian, Z.Z. Effects of acupuncture on hypothalamic-pituitary-adrenal axis: Current status and future perspectives. J. Integr. Med. 2024, 22, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-J.; Zhang, J.-J.; Qie, L.-L. Acupuncture Relieves the Excessive Excitation of Hypothalamic-Pituitary-Adrenal Cortex Axis Function and Correlates with the Regulatory Mechanism of GR, CRH, and ACTHR. Evid.-Based Complement. Altern. Med. 2014, 2014, 495379. [Google Scholar] [CrossRef] [PubMed]
- Eshkevari, L.; Permaul, E.; Mulroney, S. Acupuncture blocks cold stress-induced increases in the hypothalamus–pituitary–adrenal axis in the rat. J. Endocrinol. 2013, 217, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Cabıoğlu, M.; İşeri, S.; Çoban, A.; Çoban, F. Role of acupuncture in stress management. Marmara Pharm. J. 2012, 16, 107–114. [Google Scholar] [CrossRef]
- Simmons, B.L.; Nelson, D.L. Eustress at work: Extending the holistic stress model. Posit. Organ. Behav. 2007, 4, 40–53. [Google Scholar]
- Selye, H. The Stress of Life; Revised ed.; McGraw Hill: New York, NY, USA, 1978. [Google Scholar]
- Selye, H. The general adaptation syndrome and the diseases of adaptation. J. Clin. Endocrinol. 1946, 6, 117–230. [Google Scholar] [CrossRef] [PubMed]
- Selye, H. Stress: Eustress, Distress, and Human Perspectives. In Life Stress; Day, S.B., Ed.; Van Nostrand Reinhold: New York, NY, USA, 1982; pp. 3–13. [Google Scholar]
- Yang, W.; Chen, T.; Zhang, W.-W.; Tian, J.-H.; Yang, Y.-C.; Wang, Y.-Q. Neurobiological mechanism of acupuncture analgesia in chronic somatic pain. In Advanced Acupuncture Research: From Bench to Bedside; Springer: Cham, Switzerland, 2022; pp. 471–490. [Google Scholar]
- Savic, B.; Murphy, D.; Japundzic-Zigon, N. The Paraventricular Nucleus of the Hypothalamus in Control of Blood Pressure and Blood Pressure Variability. Front. Physiol. 2022, 13, 858941. [Google Scholar] [CrossRef]
- Dorsher, P.T.; da Silva, M.A.H. Acupuncture’s neuroanatomic and neurophysiologic basis. Longhua Chin. Med. 2022, 5, 8. [Google Scholar] [CrossRef]
- Pilozzi, A.; Carro, C.; Huang, X. Roles of β-endorphin in stress, behavior, neuroinflammation, and brain energy metabolism. Int. J. Mol. Sci. 2020, 22, 338. [Google Scholar] [CrossRef] [PubMed]
- Parrott, A.C.; Lasky, J. Ecstasy (MDMA) effects upon mood and cognition: Before, during and after a Saturday night dance. Psychopharmacology 1998, 139, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Krüger, T.H.; Haake, P.; Hartmann, U.; Schedlowski, M.; Exton, M.S. Orgasm-induced prolactin secretion: Feedback control of sexual drive? Neurosci. Biobehav. Rev. 2002, 26, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Le, J.-j.; Yi, T.; Qi, L.; Li, J.; Shao, L.; Dong, J.-C. Electroacupuncture regulate hypothalamic–pituitary–adrenal axis and enhance hippocampal serotonin system in a rat model of depression. Neurosci. Lett. 2016, 615, 66–71. [Google Scholar] [CrossRef]
- Heisler, L.K.; Pronchuk, N.; Nonogaki, K.; Zhou, L.; Raber, J.; Tung, L.; Yeo, G.S.H.; O'Rahilly, S.; Colmers, W.F.; Elmquist, J.K.; et al. Serotonin activates the hypothalamic–pituitary–adrenal axis via serotonin 2C receptor stimulation. J. Neurosci. 2007, 27, 6956–6964. [Google Scholar] [CrossRef]
- Jiang, Z.; Rajamanickam, S.; Justice, N.J. Local corticotropin-releasing factor signaling in the hypothalamic paraventricular nucleus. J. Neurosci. 2018, 38, 1874–1890. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, R.; Kim, H.K.; Lu, B.; Ma, J.; Xing, J.; Kim, H.Y. Role of Hypothalamus in Acupuncture’s Effects. Brain Sci. 2025, 15, 72. https://doi.org/10.3390/brainsci15010072
Bae R, Kim HK, Lu B, Ma J, Xing J, Kim HY. Role of Hypothalamus in Acupuncture’s Effects. Brain Sciences. 2025; 15(1):72. https://doi.org/10.3390/brainsci15010072
Chicago/Turabian StyleBae, Ryan, Hyung Kyu Kim, Baoji Lu, Jing Ma, Juping Xing, and Hee Young Kim. 2025. "Role of Hypothalamus in Acupuncture’s Effects" Brain Sciences 15, no. 1: 72. https://doi.org/10.3390/brainsci15010072
APA StyleBae, R., Kim, H. K., Lu, B., Ma, J., Xing, J., & Kim, H. Y. (2025). Role of Hypothalamus in Acupuncture’s Effects. Brain Sciences, 15(1), 72. https://doi.org/10.3390/brainsci15010072