Cerebellar Volume Measures Differentiate Multiple Sclerosis Fallers from Non-Fallers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Motor Measures
2.2. Sensory Assessment
2.3. Fall Assessment
2.4. Cognitive Measure
2.5. Patient-Reported Outcomes
2.6. Structural Magnetic Resonance Imaging (MRI) Acquisition
2.7. Image Analysis
2.8. Statistical Analyses
3. Results
3.1. Participants
3.2. Functional Performance in HC, MS Fallers, and MS Non-Fallers
3.3. Cerebellar Volume Measures in HC, MS Fallers, and MS Non-Fallers
3.4. Relationships Between Cerebellar Volume and Clinical Function
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, W.-J.; Chen, W.-W.; Zhang, X. Multiple sclerosis: Pathology, diagnosis and treatments. Exp. Ther. Med. 2017, 13, 3163–3166. [Google Scholar] [CrossRef]
- Edwards, E.M.; Fritz, N.E.; Therrien, A.S. Cerebellar Dysfunction in Multiple Sclerosis: Considerations for Research and Rehabilitation Therapy. Neurorehabilit. Neural Repair 2022, 36, 103–106. [Google Scholar] [CrossRef]
- Kalron, A.; Allali, G.; Achiron, A. Cerebellum and cognition in multiple sclerosis: The fall status matters. J. Neurol. 2018, 265, 809–816. [Google Scholar] [CrossRef]
- Silber, E.; Sharief, M.K. Axonal degeneration in the pathogenesis of multiple sclerosis. J. Neurol. Sci. 1999, 170, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Sosnoff, J.J.; Socie, M.J.; Boes, M.K.; Sandroff, B.M.; Pula, J.H.; Suh, Y.; Weikert, M.; Balantrapu, S.; Morrison, S.; Motl, R.W. Mobility, balance and falls in persons with multiple sclerosis. PLoS ONE 2011, 6, e28021. [Google Scholar] [CrossRef]
- Nilsagård, Y.; Lundholm, C.; Denison, E.; Gunnarsson, L.-G. Predicting accidental falls in people with multiple sclerosis—A longitudinal study. Clin. Rehabil. 2009, 23, 259–269. [Google Scholar] [CrossRef]
- Coote, S.; Comber, L.; Quinn, G.; Santoyo-Medina, C.; Kalron, A.; Gunn, H. Falls in People with Multiple Sclerosis: Risk Identification, Intervention, and Future Directions. Int. J. MS Care 2020, 22, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Gunn, H.; Markevics, S.; Haas, B.; Marsden, J.; Freeman, J. Systematic Review: The Effectiveness of Interventions to Reduce Falls and Improve Balance in Adults with Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2015, 96, 1898–1912. [Google Scholar] [CrossRef]
- Edwards, E.M.; Stanley, J.A.; Daugherty, A.M.; Lynn, J.; Borich, M.R.; Fritz, N.E. Associations between myelin water imaging and measures of fall risk and functional mobility in multiple sclerosis. J. Neuroimaging 2023, 33, 94–101. [Google Scholar] [CrossRef]
- Fritz, N.E.; Edwards, E.M.; Ye, C.; Prince, J.; Yang, Z.; Gressett, T.; Keller, J.; Myers, E.; Calabresi, P.A.; Zackowski, K.M. Cerebellar Contributions to Motor and Cognitive Control in Multiple Sclerosis✰✰✰. Arch. Phys. Med. Rehabil. 2022, 103, 1592–1599. [Google Scholar] [CrossRef] [PubMed]
- Fritz, N.E.; Edwards, E.M.; Keller, J.; Eloyan, A.; Calabresi, P.A.; Zackowski, K.M. Combining magnetization transfer ratio MRI and quantitative measures of walking improves the identification of fallers in MS. Brain Sci. 2020, 10, 822. [Google Scholar] [CrossRef] [PubMed]
- Kalron, A.; Givon, U.; Frid, L.; Dolev, M.; Achiron, A. Static posturography and falls according to pyramidal, sensory and cerebellar functional systems in people with multiple sclerosis. PLoS ONE 2016, 11, e0164467. [Google Scholar] [CrossRef] [PubMed]
- Prosperini, L.; Kouleridou, A.; Petsas, N.; Leonardi, L.; Tona, F.; Pantano, P.; Pozzilli, C. The relationship between infratentorial lesions, balance deficit and accidental falls in multiple sclerosis. J. Neurol. Sci. 2011, 304, 55–60. [Google Scholar] [CrossRef]
- Wilkins, A. Cerebellar dysfunction in multiple sclerosis. Front. Neurol. 2017, 8, 312. [Google Scholar] [CrossRef]
- Weier, K.; Banwell, B.; Cerasa, A.; Collins, D.L.; Dogonowski, A.-M.; Lassmann, H.; Quattrone, A.; Sahraian, M.A.; Siebner, H.R.; Sprenger, T. The Role of the Cerebellum in Multiple Sclerosis. Cerebellum 2015, 14, 364–374. [Google Scholar] [CrossRef]
- Cocozza, S.; Petracca, M.; Mormina, E.; Buyukturkoglu, K.; Podranski, K.; Heinig, M.M.; Pontillo, G.; Russo, C.; Tedeschi, E.; Russo, C.V.; et al. Cerebellar lobule atrophy and disability in progressive MS. J. Neurol. Neurosurg. Psychiatry 2017, 88, 1065–1072. [Google Scholar] [CrossRef]
- Stoodley, C.J.; Schmahmann, J.D. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 2010, 46, 831–844. [Google Scholar] [CrossRef] [PubMed]
- Prosperini, L.; Sbardella, E.; Raz, E.; Cercignani, M.; Tona, F.; Bozzali, M.; Petsas, N.; Pozzilli, C.; Pantano, P. Multiple sclerosis: White and gray matter damage associated with balance deficit detected at static posturography. Radiology 2013, 268, 181–189. [Google Scholar] [CrossRef]
- Kalron, A.; Menascu, S.; Givon, U.; Dolev, M.; Achiron, A. Is the walk ratio a window to the cerebellum in multiple sclerosis? A structural magnetic resonance imaging study. Eur. J. Neurol. 2020, 27, 454–460. [Google Scholar] [CrossRef]
- Carass, A.; Cuzzocreo, J.L.; Han, S.; Hernandez-Castillo, C.R.; Rasser, P.E.; Ganz, M.; Beliveau, V.; Dolz, J.; Ben Ayed, I.; Desrosiers, C.; et al. Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images. NeuroImage 2018, 183, 150–172. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Carass, A.; He, Y.; Prince, J.L. Automatic cerebellum anatomical parcellation using U-Net with locally constrained optimization. NeuroImage 2020, 218, 116819. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Valet, M.; Lejeune, T.; Devis, M.; van Pesch, V.; El Sankari, S.; Stoquart, G. Timed Up-and-Go and 2-Minute Walk Test in patients with multiple sclerosis with mild disability: Reliability, responsiveness and link with perceived fatigue. Eur. J. Phys. Rehabil. Med. 2019, 55, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Rudick, R.; Antel, J.; Confavreux, C.; Cutter, G.; Ellison, G.; Fischer, J.; Lublin, F.; Miller, A.; Petkau, J.; Rao, S.; et al. Recommendations from the national multiple sclerosis society clinical outcomes assessment task force. Ann. Neurol. 1997, 42, 379–382. [Google Scholar] [CrossRef]
- Rosti-Otajärvi, E.; Hämäläinen, P.; Koivisto, K.; Hokkanen, L. The reliability of the MSFC and its components. Acta Neurol. Scand. 2008, 117, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Kieseier, B.C.; Pozzilli, C. Assessing walking disability in multiple sclerosis. Mult. Scler. J. 2012, 18, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M.D.; Marrie, R.A.; Cohen, J.A. Evaluation of the six-minute walk in multiple sclerosis subjects and healthy controls. Mult. Scler. J. 2008, 14, 383–390. [Google Scholar] [CrossRef]
- Keller, J.L.; Fritz, N.; Chiang, C.C.; Jiang, A.; Thompson, T.; Cornet, N.; Newsome, S.D.; Calabresi, P.A.; Zackowski, K. Adapted resistance training improves strength in eight weeks in individuals with multiple sclerosis. J. Vis. Exp. 2016, 2016, e53449. [Google Scholar] [CrossRef]
- Newsome, S.D.; Wang, J.I.; Kang, J.Y.; Calabresi, P.A.; Zackowski, K.M. Quantitative measures detect sensory and motor impairments in multiple sclerosis. J. Neurol. Sci. 2011, 305, 103–111. [Google Scholar] [CrossRef]
- Nieuwenhuis, M.M.; Van Tongeren, H.; Sørensen, P.S.; Ravnborg, M. The Six Spot Step Test: A new measurement for walking ability in multiple sclerosis. Mult. Scler. J. 2006, 12, 495–500. [Google Scholar] [CrossRef]
- Fritz, N.E.; Jiang, A.; Keller, J.; Zackowski, K.M. Utility of the Six-Spot Step Test as a Measure of Walking Performance in Ambulatory Individuals With Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2016, 97, 507–512. [Google Scholar] [CrossRef]
- Franchignoni, F.; Tesio, L.; Martino, M.T.; Ricupero, C. Reliability of four simple, quantitative tests of balance and mobility in healthy elderly females. Aging Clin. Exp. Res. 1998, 10, 26–31. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Larkin, P.A.; Cook, A.C.; Gear, J.; Singer, J. Decrease in timed balance test scores with aging. Phys. Ther. 1984, 64, 1067–1070. [Google Scholar] [CrossRef]
- Fritz, N.E.; Eloyan, A.; Glaister, J.; Dewey, B.E.; Al-Louzi, O.; Costello, M.G.; Chen, M.; Prince, J.L.; Calabresi, P.A.; Zackowski, K.M. Quantitative vibratory sensation measurement is related to sensory cortical thickness in MS. Ann. Clin. Transl. Neurol. 2019, 6, 586–595. [Google Scholar] [CrossRef]
- Arezzo, J.; Schaumburg, H.; Laudadio, C. The Vibraton: A simple device for quantitative evaluation of tactile/vibratory sense. Neurology 1985, 35 (Suppl. S1), 169. [Google Scholar]
- Benedict, R.H.B.; Deluca, J.; Phillips, G.; LaRocca, N.; Hudson, L.D.; Rudick, R. Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis. Mult. Scler. 2017, 23, 721–733. [Google Scholar] [CrossRef]
- Benedict, R.H.B.; Amato, M.P.; DeLuca, J.; Geurts, J.J.G. Cognitive impairment in multiple sclerosis: Clinical management, MRI, and therapeutic avenues. Lancet Neurol. 2020, 19, 860–871. [Google Scholar] [CrossRef] [PubMed]
- Hobart, J.C.; Riazi, A.; Lamping, D.L.; Fitzpatrick, R.; Thompson, A.J. Measuring the impact of MS on walking ability: The 12-item MS Walking Scale (MSWS-12). Neurology 2003, 60, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Cleeland, C.S.; Ryan, K.M. Pain assessment: Global use of the Brief Pain Inventory. Ann. Acad. Med. Singap. 1994, 23, 129–138. [Google Scholar] [PubMed]
- Osborne, T.L.; Raichle, K.A.; Jensen, M.P.; Ehde, D.M.; Kraft, G. The Reliability and Validity of Pain Interference Measures in Persons with Multiple Sclerosis. J. Pain Symptom Manag. 2006, 32, 217–229. [Google Scholar] [CrossRef]
- Vickrey, B.G.; Hays, R.D.; Harooni, R.; Myers, L.W.; Ellison, G.W. A health-related quality of life measure for multiple sclerosis. Qual. Life Res. 1995, 4, 187–206. [Google Scholar] [CrossRef]
- Ware, J.E.; Sherbourne, C.D. The MOS 36-item short-form health survey (Sf-36): I. conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- McHorney, C.A.; Ware, J.E.J.; Lu, J.F.R.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Med. Care 1994, 32, 40–66. [Google Scholar] [CrossRef]
- Han, S.; He, Y.; Carass, A.; Ying, S.H.; Prince, J.L. Cerebellum parcellation with convolutional neural networks. In Proceedings of the Medical Imaging 2019: Image Processing, San Diego, CA, USA, 16–21 February 2019; pp. 143–148. [Google Scholar] [CrossRef]
- Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: Improved N3 bias correction. IEEE Trans. Med. Imaging 2010, 29, 1310–1320. [Google Scholar] [CrossRef]
- Fonov, V.; Evans, A.C.; Botteron, K.; Almli, C.R.; McKinstry, R.C.; Collins, D.L. Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 2011, 54, 313–327. [Google Scholar] [CrossRef]
- Kalron, A. The relationship between specific cognitive domains, fear of falling, and falls in people with multiple sclerosis. BioMed Res. Int. 2014, 2014, 281760. [Google Scholar] [CrossRef] [PubMed]
- Edwards, E.M.; Daugherty, A.M.; Nitta, M.; Atalla, M.; Fritz, N.E. Backward walking sensitively detects fallers in persons with multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 45, 102390. [Google Scholar] [CrossRef]
- Edwards, E.M.; Kegelmeyer, D.A.; Kloos, A.D.; Nitta, M.; Raza, D.; Nichols-Larsen, D.S.; Fritz, N.E. Backward Walking and Dual-Task Assessment Improve Identification of Gait Impairments and Fall Risk in Individuals with MS. Mult. Scler. Int. 2020, 2020, 6707414. [Google Scholar] [CrossRef]
- Anderson, V.; Wheeler-Kingshott, C.; Abdel-Aziz, K.; Miller, D.; Toosy, A.; Thompson, A.; Ciccarelli, O. A comprehensive assessment of cerebellar damage in multiple sclerosis using diffusion tractography and volumetric analysis. Mult. Scler. J. 2011, 17, 1079–1087. [Google Scholar] [CrossRef]
- Bonacchi, R.; Meani, A.; Pagani, E.; Marchesi, O.; Filippi, M.; Rocca, M.A. The role of cerebellar damage in explaining disability and cognition in multiple sclerosis phenotypes: A multiparametric MRI study. J. Neurol. 2022, 269, 3841–3857. [Google Scholar] [CrossRef] [PubMed]
- Rekik, A.; Aissi, M.; Rekik, I.; Mhiri, M.; Frih, M.A. Brain atrophy patterns in multiple sclerosis patients treated with natalizumab and its clinical correlates. Brain Behav. 2022, 12, e2573. [Google Scholar] [CrossRef]
- Ramanoel, S.; York, E.; Habas, C. Participation of the caudal cerebellar lobule IX to the dorsal attentional network. Cerebellum Ataxias 2018, 5, 9. [Google Scholar] [CrossRef]
- Guell, X.; Schmahmann, J.D.; Gabrieli, J.D.E.; Ghosh, S.S. Functional gradients of the cerebellum. eLife 2018, 7, e36652. [Google Scholar] [CrossRef] [PubMed]
- Eskut, N.; Koc, A.M.; Köskderelioglu, A.; Bilgin, Y.O.U.; Tekindal, M.A. Is there a relationship between fall status, cognition and cerebellar lobule volume in patients with multiple sclerosis? Appl. Neuropsychol. Adult 2023, 30, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Prosperini, L.; Fanelli, F.; Petsas, N.; Sbardella, E.; Tona, F.; Raz, E.; Fortuna, D.; De Angelis, F.; Pozzilli, C.; Pantano, P. Multiple sclerosis: Changes in microarchitecture of white matter tracts after training with a video game balance board. Radiology 2014, 273, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Block, V.J.; Pitsch, E.A.; Gopal, A.; Zhao, C.; Pletcher, M.J.; Marcus, G.M.; Olgin, J.E.; Hollenbach, J.; Bove, R.; Cree, B.A.C.; et al. Identifying falls remotely in people with multiple sclerosis. J. Neurol. 2022, 269, 1889–1898. [Google Scholar] [CrossRef]
- Landers, M.R.; Jacobson, K.M.; Matsunami, N.E.; McCarl, H.E.; Regis, M.T.; Longhurst, J.K. A vicious cycle of fear of falling avoidance behavior in Parkinson’s disease: A path analysis. Clin. Park. Relat. Disord. 2021, 4, 100089. [Google Scholar] [CrossRef] [PubMed]
- Ellmers, T.J.; Wilson, M.R.; Kal, E.C.; Young, W.R. The perceived control model of falling: Developing a unified framework to understand and assess maladaptive fear of falling. Age Ageing 2023, 52, afad093. [Google Scholar] [CrossRef]
Healthy Control (n = 29) | MS (n = 31) | MS Fallers (n = 15) | MS Non-Fallers (n = 16) | |
---|---|---|---|---|
Age (years) | 50.8 (11.6) | 49.48 (11.6) | 50.3 (12.6) | 48.7 (11.0) |
Sex | 9 M; 20 F | 12 M; 19 F | 6 M; 9 F | 6 M; 10 F |
Symptom Duration (years) | - | 12.5 (9.6) | 13.9 (11.1) | 11.2 (8.1) |
EDSS | - | 4 [1.0–6.5] | 4 [1–6.5] | 3.5 [1–6.5] |
TUG (s) | 5.8 (1.1) | 7.9 (2.4) * | 8.6 (2.7) * | 7.2 (2.0) * |
T25FW (s) | 4.1 (0.71) | 5.6 (2.3) * | 6.4 (2.7) * | 4.9 (1.5) * |
Walk Velocity | 2.0 (0.32) | 1.6 (0.5) * | 1.4 (0.5) * | 1.7 (0.6) |
2MWT (m) | 200.8 (32.3) | 161.2 (46.4) * | 147.2 (44.6) * | 173.2 (46.0) |
Summed Strength (pounds) | 303.9 (65.2) | 205.3 (95.1) * | 206.1 (109.7) * | 204.6 (82.9) * |
SSST (seconds) | 6.7 (1.4) | 10.3 (4.0) * | 11.1 (4.1) * | 9.62 (3.9) * |
Balance (#Romberg) | 6.0 (0.0) | 4.7 (1.1) * | 4.6 (1.1) * | 4.75 (1.1) * |
Vibration Sensation Avg (vu) | 2.6 (1.6) | 6.2 (3.3) * | 6.3 (3.4) * | 6.1 (3.2) * |
SDMT | 59.7 (6.0) | 47.3 (12.3) * | 41.8 (11.7) *† | 52.8 (10.6) * |
MSWS-12 | - | 43.1 (27.5) | 49.7 (23.6) | 36.8 (30.1) |
BPI Severity | 0.75 (0.85) | 2.1 (2.2) * | 2.8 (2.7) * | 1.5 (1.6) |
BPI Interference | 0.26 (0.63) | 1.8 (2.5) * | 2.7 (3.1) * | 1.0 (1.5) * |
MSQoL fatigue | - | 45.6 (20.8) | 34.2 (16.4) † | 55.5 (19.4) |
MSQoL mental | - | 69.5 (21.5) | 58.4 (22.4) † | 79.9 (14.8) |
MSQoL physical | - | 59.9 (16.2) | 52.1 (14.3) † | 67.3 (14.5) |
SF-36 mental | 55.3 (5.2) | 48.4 (11.1) * | 42.1 (11.1) *† | 54.2 (7.5) |
SF-36 physical | 51.4 (7.0) | 38.3 (9.2) * | 35.0 (7.9) * | 41.4 (9.6) * |
Cerebellar Region | Control vs. MS Faller | Control vs. MS Non-Faller | MS Faller vs. MS Non-Faller | MS Faller vs. All Non-Faller (MS + Control) |
---|---|---|---|---|
Corpus Medullare | 0.013 | 0.222 | 0.027 | 0.008 |
Lobules I–III | 0.024 | 0.361 | 0.163 | 0.030 |
Lobule IV | 0.701 | 0.813 | 0.401 | 0.522 |
Lobule V | 0.012 | 0.107 | 0.401 | 0.035 |
Lobule VI | 0.009 | 0.868 | 0.041 | 0.007 |
Crus I | 0.046 | 0.962 | 0.163 | 0.047 |
Crus II | 0.612 | 0.831 | 0.338 | 0.437 |
Lobule VIIB | 0.194 | 0.687 | 0.423 | 0.210 |
Lobule VIIIA | 0.496 | 0.148 | 0.470 | 0.878 |
Lobule VIIIB | 0.379 | 0.180 | 0.495 | 0.765 |
Lobule IX | 0.194 | 0.059 | 0.770 | 0.447 |
Lobule X | 0.970 | 0.594 | 0.599 | 0.831 |
Vermis VI | 0.701 | 0.906 | 0.999 | 0.791 |
Vermis VII | 0.310 | 0.209 | 0.520 | 0.676 |
Vermis VIII | 0.240 | 0.803 | 0.119 | 0.135 |
Vermis IX | 0.235 | 0.470 | 0.033 | 0.082 |
Vermis X | 0.032 | 0.868 | 0.017 | 0.012 |
Motor Lobules (I–V, VIIIA–B) | 0.328 | 0.924 | 0.423 | 0.302 |
Cognitive Lobules (VI, VIIB, Crus I–II) | 0.022 | 0.758 | 0.007 | 0.006 |
Lobules I–III | Lobule IV | Lobule V | Lobule VI | Crus I | Crus II | Lobule VIIB | Lobule VIIIA | Lobule VIIIB | Lobule IX | Lobule X | Motor Lobules | Cognitive Lobules | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Motor Measures | |||||||||||||
TUG | −0.304 0.019 | 0.027 0.839 | −0.158 0.233 | −0.227 0.084 | −0.353 0.006 | −0.207 0.115 | 0.094 0.480 | 0.070 0.597 | 0.108 0.414 | −0.291 0.025 | 0.039 0.768 | 0.034 0.799 | −0.289 0.026 |
T25FW | −0.370 0.004 | 0.038 0.776 | −0.125 0.345 | −0.264 0.044 | −0.302 0.020 | −0.243 0.063 | −0.009 0.943 | −0.070 0.596 | 0.082 0.539 | −0.294 0.024 | 0.066 0.618 | −0.094 0.480 | −0.333 0.010 |
Walk Velocity | 0.266 0.040 | −0.029 0.827 | 0.076 0.564 | 0.419 <0.001 | 0.341 0.008 | 0.294 0.023 | 0.073 0.579 | 0.084 0.524 | −0.102 0.439 | 0.293 0.023 | 0.005 0.968 | 0.067 0.611 | 0.428 <0.001 |
2MWT | 0.249 0.067 | 0.031 0.823 | 0.113 0.412 | 0.263 0.052 | 0.337 0.012 | 0.179 0.190 | −0.109 0.427 | −0.089 0.520 | −0.193 0.159 | 0.300 0.026 | −0.068 0.621 | −0.033 0.814 | 0.284 0.036 |
Summed Strength | 0.445 <0.001 | −0.023 0.863 | 0.227 0.081 | 0.283 0.028 | 0.335 0.009 | 0.195 0.135 | 0.071 0.591 | 0.178 0.175 | 0.224 0.086 | 0.277 0.032 | 0.226 0.083 | 0.247 0.057 | 0.330 0.010 |
SSST | −0.361 0.006 | −0.005 0.969 | −0.161 0.233 | −0.353 0.007 | −0.367 0.005 | −0.262 0.049 | 0.000 0.998 | 0.118 0.381 | −0.023 0.866 | −0.281 0.034 | −0.020 0.883 | 0.016 0.908 | −0.406 0.002 |
Balance | 0.297 0.021 | −0.046 0.727 | 0.309 0.016 | 0.213 0.103 | 0.322 0.012 | 0.111 0.397 | 0.053 0.689 | −0.144 0.272 | 0.091 0.489 | 0.156 0.235 | −0.023 0.861 | 0.040 0.759 | 0.254 0.051 |
Vibration Sensation | −0.366 0.004 | 0.119 0.367 | −0.250 0.054 | −0.121 0.357 | −0.125 0.343 | −0.022 0.868 | 0.004 0.978 | 0.040 0.762 | −0.092 0.485 | −0.139 0.291 | −0.004 0.977 | −0.045 0.736 | −0.065 0.622 |
Cognitive Measure | |||||||||||||
SDMT | 0.343 0.008 | 0.066 0.622 | 0.247 0.059 | 0.431 <0.001 | 0.310 0.017 | 0.236 0.072 | 0.134 0.312 | −0.047 0.723 | 0.072 0.588 | 0.181 0.171 | 0.087 0.513 | 0.121 0.361 | 0.411 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takla, T.N.; Feldpausch, J.; Edwards, E.M.; Han, S.; Calabresi, P.A.; Prince, J.; Zackowski, K.M.; Fritz, N.E. Cerebellar Volume Measures Differentiate Multiple Sclerosis Fallers from Non-Fallers. Brain Sci. 2025, 15, 77. https://doi.org/10.3390/brainsci15010077
Takla TN, Feldpausch J, Edwards EM, Han S, Calabresi PA, Prince J, Zackowski KM, Fritz NE. Cerebellar Volume Measures Differentiate Multiple Sclerosis Fallers from Non-Fallers. Brain Sciences. 2025; 15(1):77. https://doi.org/10.3390/brainsci15010077
Chicago/Turabian StyleTakla, Taylor N., Jennie Feldpausch, Erin M. Edwards, Shuo Han, Peter A. Calabresi, Jerry Prince, Kathleen M. Zackowski, and Nora E. Fritz. 2025. "Cerebellar Volume Measures Differentiate Multiple Sclerosis Fallers from Non-Fallers" Brain Sciences 15, no. 1: 77. https://doi.org/10.3390/brainsci15010077
APA StyleTakla, T. N., Feldpausch, J., Edwards, E. M., Han, S., Calabresi, P. A., Prince, J., Zackowski, K. M., & Fritz, N. E. (2025). Cerebellar Volume Measures Differentiate Multiple Sclerosis Fallers from Non-Fallers. Brain Sciences, 15(1), 77. https://doi.org/10.3390/brainsci15010077