EEG-Based ADHD Classification Using Autoencoder Feature Extraction and ResNet with Double Augmented Attention Mechanism
Abstract
:1. Introduction
- This study introduces a novel method for extracting meaningful features from EEG data using auto-encoders, effectively reducing noise and improving data entry quality for ADHD designation.
- A deep residual network (ResNet) is used for classification, which offers the advantage of being able to control fluid loss and improve model performance on complex EEG datasets.
- The study integrates an advanced dual attention mechanism to selectively prioritize and emphasize the most pertinent features, thereby enhancing the model’s ability to capture critical patterns, dramatically enhancing the model’s sensitivity and accuracy in distinguishing between non-ADHD and ADHD.
2. Literature Review
3. Methodology
3.1. Data Collection
3.2. Data Pre-Processing
3.2.1. Data Inspection and Separation
3.2.2. EEG Data Preparation
3.2.3. Data Conversion
3.2.4. BandPass Filtering
3.2.5. Independent Component Analysis (ICA)
3.3. Train-Test Split
3.4. Feature Extraction Using Autoencoder
3.5. Autoencoder Structure
3.6. Reptile Search Algorithm
Algorithm 1 Reptile Search Algorithm (RSA) |
1: Input:Population size N, maximum iterations T, search spacebounds LB, UB 2: Initialize population P = {X1, X2, …, XN} randomly within [LB,UB] 3: Initialize bestsolution Xbest and its fitness fbest 4: for each individual Xi inpopulation P do 5: Calculate fitness fi = f(Xi) 6: if fi < fbest then 7: Update Xbest = Xi 8: Update fbest = fi 9: end if 10: end for 11: for iteration t = 1 to T do 12: for each individual Xi in population P do 13: Generate a movement vector Vi based on reptile-inspired strategies 14: Update position Xnew = Xi + Vi 15: Apply boundary constraints on Xnew to keep with in [LB,UB] 16: Calculate fitness fnew = fi(Xinew) 17: if fnew < fi then 18: Accept The New Position Xi = Xinew 19: Update fitness fi = finew 20: end if 21: if fi < fbest then 22: Update Xbest = Xi 23: Update fbest = fi 24: end if 25: end for 26: Optionally: Apply reptile-specific strategies like warm-up or local search 27: end for 28: Output: Best solution Xbest and its fitness fbest |
3.6.1. Initialization
3.6.2. Encircling Phase (Exploration)
3.7. Feature Selection Using Reptile Search Algorithm
3.8. Model Building
3.9. Model Evaluation
ResNet
3.10. Performance Metrics
4. Results and Discussion
5. Conclusions and Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Furman, L. What is attention-deficit hyperactivity disorder (ADHD)? J. Child Neurol. 2005, 20, 994–1002. [Google Scholar] [CrossRef] [PubMed]
- Faiz, Z.; Iqbal, T.; Azeem, A.; Siddique, M.; Warraich, W.Y. A Comparative Study between Online and Traditional Counseling for Students with Attention Deficit Hyperactivity Disorder (ADHD): School Psychologists Perspective in the Obsequies of Pandemic COVID-19. Linguist. Antverp. 2021, 3, 5763–5777. [Google Scholar]
- Antoniou, E.; Rigas, N.; Orovou, E.; Papatrechas, A. ADHD and the Importance of Comorbid Disorders in the Psychosocial Development of Children and Adolescents. J. Biosci. Med. 2021, 9, 1. [Google Scholar] [CrossRef]
- Rocco, I.; Corso, B.; Bonati, M.; Minicuci, N. Time of onset and/or diagnosis of ADHD in European children: A systematic review. BMC Psychiatry 2021, 21, 575. [Google Scholar] [CrossRef]
- Öztekin, I.; Finlayson, M.A.; Graziano, P.A.; Dick, A.S. Is there any incremental benefit to conducting neuroimaging and neurocognitive assessments in the diagnosis of ADHD in young children? A machine learning investigation. Dev. Cogn. Neurosci. 2021, 49, 100966. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, K.I.; Geyer, E.R. ADHD: Overdiagnosed and overtreated, or misdiagnosed and mistreated. Cleve. Clin. J. Med. 2017, 84, 873. [Google Scholar]
- Johnson, J.; Morris, S.; George, S. Misdiagnosis and missed diagnosis of adult attention-deficit hyperactivity disorder. BJPsych Adv. 2021, 27, 60–61. [Google Scholar] [CrossRef]
- Garcia-Argibay, M.; Pandya, E.; Ahnemark, E.; Werner-Kiechle, T.; Andersson, L.M.; Larsson, H.; Du Rietz, E. Healthcare utilization and costs of psychiatric and somatic comorbidities associated with newly diagnosed adult ADHD. Acta Psychiatr. Scand. 2021, 144, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Du Rietz, E.; Jangmo, A.; Kuja-Halkola, R.; Chang, Z.; D’Onofrio, B.M.; Ahnemark, E.; Werner-Kiechle, T.; Larsson, H. Trajectories of healthcare utilization and costs of psychiatric and somatic multimorbidity in adults with childhood ADHD: A prospective register-based study. J. Child Psychol. Psychiatry 2020, 61, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Tai, A.M.; Albuquerque, A.; Carmona, N.E.; Subramanieapillai, M.; Cha, D.S.; Sheko, M.; Lee, Y.; Mansur, R.; McIntyre, R.S. Machine learning and big data: Implications for disease modeling and therapeutic discovery in psychiatry. Artif. Intell. Med. 2019, 99, 101704. [Google Scholar] [CrossRef]
- Zhang-James, Y.; Razavi, A.S.; Hoogman, M.; Franke, B.; Faraone, S.V. Machine learning and MRI-based diagnostic models for ADHD: Are we there yet? J. Atten. Disord. 2023, 27, 335–353. [Google Scholar] [CrossRef] [PubMed]
- Barnett, E.J.; Onete, D.G.; Salekin, A.; Faraone, S.V. Genomic machine learning meta-regression: Insights on associations of study features with reported model performance. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 1581–1586. [Google Scholar] [CrossRef] [PubMed]
- Quinn, T.P.; Hess, J.L.; Marshe, V.S.; Barnett, M.M.; Hauschild, A.C.; Maciukiewicz, M.; Elsheikh, S.S.; Emanuel, S.; Trakadis, Y.J.; Breen, M.S.; et al. Signal from Noise: Using Machine Learning to Distil Knowledge from Data in Biological Psychiatry; OSF: Charlottesville, VA, USA, 2022. [Google Scholar]
- Bellec, P.; Chu, C.; Chouinard-Decorte, F.; Benhajali, Y.; Margulies, D.S.; Craddock, R.C. The neuro bureau ADHD-200 preprocessed repository. Neuroimage 2017, 144, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Tzimourta, K.D.; Tsilimbaris, A.; Tzioukalia, K.; Tzallas, A.T.; Tsipouras, M.G.; Astrakas, L.G.; Giannakeas, N. EEG-based automatic sleep stage classification. Biomed. J. 2018, 1, 6. [Google Scholar]
- Craik, A.; He, Y.; Contreras-Vidal, J.L. Deep learning for electroencephalogram (EEG) classification tasks: A review. J. Neural Eng. 2019, 16, 031001. [Google Scholar] [CrossRef]
- Chen, M.; Li, H.; Wang, J.; Dillman, J.R.; Parikh, N.A.; He, L. A multichannel deep neural network model analyzing multiscale functional brain connectome data for attention deficit hyperactivity disorder detection. Radiol. Artif. Intell. 2019, 2, e190012. [Google Scholar] [CrossRef]
- Dubreuil-Vall, L.; Ruffini, G.; Camprodon, J.A. Deep Learning Convolutional Neural Networks Discriminate Adult ADHD from Healthy Individuals on the Basis of Event-Related Spectral EEG. Front. Neurosci. 2020, 14, 251. [Google Scholar] [CrossRef] [PubMed]
- Tosun, M. Effects of spectral features of EEG signals recorded with different channels and recording statuses on ADHD classification with deep learning. Phys. Eng. Sci. Med. 2021, 44, 693–702. [Google Scholar] [CrossRef]
- Lee, W.; Lee, S.; Lee, D.; Jun, K.; Ahn, D.H.; Kim, M.S. Deep Learning-Based ADHD and ADHD-RISK Classification Technology through the Recognition of Children’s Abnormal Behaviors during the Robot-Led ADHD Screening Game. Sensors 2022, 23, 278. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hong, D.; Wu, Q. Attention deficit hyperactivity disorder classification based on deep learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 20, 1581–1586. [Google Scholar] [CrossRef] [PubMed]
- Qiang, N.; Dong, Q.; Liang, H.; Ge, B.; Zhang, S.; Zhang, C.; Gao, J.; Sun, Y. A novel ADHD classification method based on resting state temporal templates (RSTT) using spatiotemporal attention auto-encoder. Neural Comput. Appl. 2022, 34, 7815–7833. [Google Scholar] [CrossRef]
- Shin, J.; Konnai, S.; Maniruzzaman, M.; Hasan, M.A.; Hirooka, K.; Megumi, A.; Yasumura, A. Identifying ADHD for children with coexisting ASD from fNIRs signals using a deep learning approach. IEEE Access 2023, 11, 82794–82801. [Google Scholar] [CrossRef]
- Esas, M.Y.; Latifoğlu, F. Detection of ADHD from EEG signals using new hybrid decomposition and deep learning techniques. J. Neural Eng. 2023, 20, 036028. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Argibay, M.; Zhang-James, Y.; Cortese, S.; Lichtenstein, P.; Larsson, H.; Faraone, S.V. Predicting childhood and adolescent attention-deficit/hyperactivity disorder onset: A nationwide deep learning approach. Mol. Psychiatry 2023, 28, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Lee, D.; Lee, S.; Jun, K.; Kim, M.S. Deep-learning-based ADHD classification using children’s skeleton data acquired through the ADHD screening game. Sensors 2023, 23, 246. [Google Scholar] [CrossRef]
- Nasrabadi, A.M.; Allahverdy, A.; Samavati, M.; Mohammadi, M.R. EEG data for ADHD/control children. IEEE Dataport. 2020. [Google Scholar] [CrossRef]
- Kunang, Y.N.; Nurmaini, S.; Stiawan, D.; Zarkasi, A. Automatic features extraction using autoencoder in intrusion detection system. In Proceedings of the 2018 International Conference on Electrical Engineering and Computer Science (ICECOS), Pangkal, Indonesia, 2–4 October 2018; pp. 219–224. [Google Scholar]
- Sivasubramanian, A.; Devisetty, M.; Bhavukam, P. Feature Extraction and Anomaly Detection Using Different Autoencoders for Modeling Intrusion Detection Systems. Arab. J. Sci. Eng. 2024, 49, 13061–13073. [Google Scholar] [CrossRef]
- Meng, Q.; Catchpoole, D.; Skillicom, D.; Kennedy, P.J. Relational autoencoder for feature extraction. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 364–371. [Google Scholar]
- Abualigah, L.; Elaziz, M.A.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [Google Scholar] [CrossRef]
- Al-Shourbaji, I.; Helian, N.; Sun, Y.; Alshathri, S.; Elaziz, M.A. Boosting Ant Colony Optimization with Reptile Search Algorithm for Churn Prediction. Mathematics 2022, 10, 1031. [Google Scholar] [CrossRef]
Author | Year | Dataset | Model, Validation Method | Accuracy | Recall | Precision | F1 Score | ROC_AUC |
---|---|---|---|---|---|---|---|---|
Chen M et al. [17] | 2019 | 977 participants | mcDN Hold-out | - | - | - | - | 0.82 |
Dubreuil-Vall L. et al. [18] | 2020 | 40 participants, comprising 20 healthy adults (10 males and 10 females) and 20 adults with ADHD (10 males and 10 females) | CNN, LPOCV | 88% | - | - | - | - |
Tosun et al. [19] | 2021 | EEG Data | LSTM, No | 92.15% | - | - | - | - |
Zhou et al. [20] | 2022 | Children of 6–16 years | CNN, No | 97.7% | - | - | - | - |
Donglin Wang et al. [21] | 2022 | - | CNN No | 69% | - | - | - | - |
Niang Qiang [22] | 2022 | - | Spatiotemperal atttention autoencoder No | 72.5% | - | - | - | - |
Jungpil [23] | 2023 | 156 samples from ADHD children with coexisting ADD and 180 samples of TD children | CNN LOOCV | 94% | 89.7% | 97.8% | 91.3% | 0.938 |
Mustafa Yasin Esas et al. [24] | 2023 | EEG data obtained from children aged 7 to 12 years, comprising 61 individuals diagnosed with ADHD and 60 age-matched controls without ADHD | CNN CV | 87% | - | - | - | - |
Miguel Garcia Argibay et al. [25] | 2023 | 238,696 individuals residing in Sweden during the period from 1995 to 1999 | DNN No | 69% | 71.6% | 65.0% | - | 0.75 |
Wonjun Lee et al. [26] | 2023 | Screen video game | LSTM GRU RNN No | 97.82% 96.81% 96.81% | - | - | - | - |
Model | Specificity | Sensitivity |
---|---|---|
ResNet with Double Augmented Attention Mechanism | 0.99 | 0.99 |
Adaboost | 0.89 | 0.89 |
Random forest | 0.92 | 0.92 |
Model | False Positive | False Negative | Misclassification |
---|---|---|---|
ResNet with Double Augmented Attention Mechanism | 49 | 9 | 0.58% |
Adaboost | 520 | 502 | 10.22% |
Random forest | 386 | 378 | 7.64% |
Model | Accuracy | Precision | Recall | F1-Score | p-Value |
---|---|---|---|---|---|
ResNet with double Augmented Attention | 0.9942 | 0.9903 | 0.9982 | 0.9942 | 0.0005 |
AdaBoost | 0.8978 | 0.8978 | 0.8976 | 0.8967 | 0.08 |
Random Forest | 0.9236 | 0.9236 | 0.9236 | 0.92 | 0.06 |
N | Mean | Std. Deviation | 95% Confidence Interval for Mean | |||
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Accuracy | ResNet with double Augmented Attention | 20 | 0.9946 | 0.00597 | 0.9918 | 0.9974 |
AdaBoost | 20 | 0.8972 | 0.00473 | 0.8950 | 0.8995 | |
Random Forest | 20 | 0.9230 | 0.00485 | 0.9207 | 0.9253 | |
Total | 60 | 0.9383 | 0.04186 | 0.9275 | 0.9491 | |
Precision | ResNet with double Augmented Attention | 20 | 0.9895 | 0.00444 | 0.9874 | 0.9916 |
AdaBoost | 20 | 0.8968 | 0.00593 | 0.8940 | 0.8996 | |
Random Forest | 20 | 0.9238 | 0.00459 | 0.9216 | 0.9259 | |
Total | 60 | 0.9367 | 0.03958 | 0.9265 | 0.9469 | |
Recall | ResNet with double Augmented Attention | 20 | 0.9977 | 0.00643 | 0.9947 | 1.0007 |
AdaBoost | 20 | 0.8959 | 0.00431 | 0.8939 | 0.8979 | |
Random Forest | 20 | 0.9211 | 0.00449 | 0.9190 | 0.9232 | |
Total | 60 | 0.9382 | 0.04396 | 0.9269 | 0.9496 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bansal, J.; Gangwar, G.; Aljaidi, M.; Alkoradees, A.; Singh, G. EEG-Based ADHD Classification Using Autoencoder Feature Extraction and ResNet with Double Augmented Attention Mechanism. Brain Sci. 2025, 15, 95. https://doi.org/10.3390/brainsci15010095
Bansal J, Gangwar G, Aljaidi M, Alkoradees A, Singh G. EEG-Based ADHD Classification Using Autoencoder Feature Extraction and ResNet with Double Augmented Attention Mechanism. Brain Sciences. 2025; 15(1):95. https://doi.org/10.3390/brainsci15010095
Chicago/Turabian StyleBansal, Jayoti, Gaurav Gangwar, Mohammad Aljaidi, Ali Alkoradees, and Gagandeep Singh. 2025. "EEG-Based ADHD Classification Using Autoencoder Feature Extraction and ResNet with Double Augmented Attention Mechanism" Brain Sciences 15, no. 1: 95. https://doi.org/10.3390/brainsci15010095
APA StyleBansal, J., Gangwar, G., Aljaidi, M., Alkoradees, A., & Singh, G. (2025). EEG-Based ADHD Classification Using Autoencoder Feature Extraction and ResNet with Double Augmented Attention Mechanism. Brain Sciences, 15(1), 95. https://doi.org/10.3390/brainsci15010095