Fixel-Based White Matter Correlates of Sentence Comprehension in Post-Stroke Aphasia
Abstract
1. Introduction
(a) Mandarin | |||||||
男人 | 在 | 埋葬 | 女人 | ||||
[nanren | zai | maizang | nüren] | ||||
man | PROG | bury | woman | ||||
‘ The man is burying the woman. ’ | |||||||
(b) Mandarin | |||||||
谁 | 在 | 埋葬 | 女人? | ||||
[shui | zai | maizang | nüren] | ||||
who | PROG | bury | woman | ||||
‘ Who is burying the woman. ’ | |||||||
(c) Mandarin | |||||||
男人 | 埋葬 | 的 | 女人 | 戴着 | 帽子 。 | ||
[nanren | maizang | de | nüren | dai-zhe | maozi] | ||
man | bury | REL | woman | wear-PROG | hat | ||
‘The woman who the man buries is wearing a hat.’ |
(a) Mandarin | |||||||
女人 | 把 | 男人 | 埋葬 了 。 | ||||
[nüren | ba | nanren | maizang-le] | ||||
woman | BA | man | bury-PFV | ||||
‘ The woman buried the man. ’ | |||||||
(b) Mandarin | |||||||
女人 | 被 | 男人 | 埋葬了。 | ||||
[nüren | bei | nanren | maizang-le] | ||||
woman | BEI | man | bury-PFV | ||||
‘ The woman was buried by the man. ’ | |||||||
(c) Mandarin | |||||||
男人 | 在 | 埋葬 | 谁 ? | ||||
[nanren | zai | maizang | shui] | ||||
man | PROG | bury | who | ||||
‘ Who is the man burying? ’ | |||||||
(d) Mandarin | |||||||
埋葬 | 男人 | 的 | 女人 | 戴着 | 帽子 。 | ||
[maizang | nanren | de | nüren | dai-zhe | maozi] | ||
bury | man | REL | woman | wear-PROG | hat | ||
‘The woman who buries the man is wearing a hat.’ |
2. Materials and Methods
2.1. Participants
2.2. Behavioral Data
2.3. Image Acquisition
2.4. Image Preprocessing
2.5. Lesion Segmentation
2.6. Fixel-Based Analyses (FBA)
2.7. Tract Segmentation
2.8. Statistical Analyses
3. Results
3.1. Behavioral Analyses
3.2. Fixel-Based Analyses
Tract * | Number of Significant Fixels in Tract | Number of Total Fixels in Tract | Percentage of Significant Fixels in Tract | Max Effect Size (βNC) † |
---|---|---|---|---|
AF left | 1522 | 22,478 | 6.77% | 0.47 |
SLF III left | 763 | 7873 | 9.69% | 0.47 |
MdLF left | 581 | 23,711 | 2.45% | 0.43 |
SLF II left | 350 | 11,695 | 2.99% | 0.42 |
ICC | 218 | 44,676 | 0.49% | 0.41 |
ST_PAR left | 67 | 27,839 | 0.24% | 0.40 |
ILF left | 43 | 7001 | 0.61% | 0.24 |
IFOF left | 40 | 15,602 | 0.26% | 0.31 |
SCC | 38 | 18,847 | 0.20% | 0.20 |
ST_OCC left | 4 | 11,730 | 0.03% | 0.30 |
ST_POSTC left | 3 | 11,850 | 0.03% | 0.21 |
SLF I left | 2 | 10,757 | 0.02% | 0.19 |
ST_PREC left | 2 | 15,527 | 0.01% | 0.20 |
CST left | 1 | 10,985 | 0.01% | 0.19 |
T_PREC left | 1 | 14,438 | 0.01% | 0.19 |
3.3. Tract-Wise Analyses
4. Discussion
4.1. Behavioral Analysis Results
4.2. Fixel-Based Analysis Results
4.2.1. Dorsal Language Stream Tracts (AF, SLF)
4.2.2. Ventral Language Stream Tracts (IFOF, ILF, MdLF)
4.2.3. Beyond Traditional Dual-Stream Tracts
4.3. Tract-Wise Analysis Results
4.4. Research and Clinical Implications
4.5. Limitations
4.6. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
dMRI | Diffusion magnetic resonance imaging |
fMRI | Functional magnetic resonance imaging |
VLSM | Voxel-based lesion symptom mapping |
CLSM | Connectome-based lesion-symptom mapping |
FBA | Fixel-based analysis |
FOD | Fiber orientation distribution |
FD | Fiber density |
FC | Fiber cross-section |
Log(FC) | Log-transformed fiber cross-section |
FDC | Product of fiber density and cross-section |
MAB | Mandarin version of the Western Aphasia Battery |
AQ | Aphasia quotient |
NLCA | Non-language-based Cognitive Assessment |
NAVS | Northwestern Assessment of Verbs and Sentences |
CALB-AVS | Assessment of Verbs and Sentences from the Chinese Aphasia Language Battery |
EPI | Echo planar imaging |
TR | Time of repetition |
TE | Time of echo |
FOV | Field of view |
TOM | Tract orientation maps |
FWE | Family-wise error |
SIFT | Spherical-deconvolution Informed Filtering of Tractograms |
SLF II | Superior longitudinal fasciculus II |
SLF III | Superior longitudinal fasciculus III |
AF | Arcuate fasciculus |
MdLF | Middle longitudinal fasciculus |
IFOF | Inferior fronto-occipital fasciculus |
ILF | Inferior longitudinal fasciculus |
ICC | Isthmus of the corpus callosum |
SCC | Splenium of corpus callosum |
Appendix A
Number of Overlapping Significant Fixels | Tract 1 * | Number of Significant Fixels in Tract 1 | Percentage of Significant Fixels in Tract 1 that Overlap | Tract 2 * | Number of Significant Fixels in Tract 2 | Percentage of Significant Fixels in Tract 2 that Overlap |
---|---|---|---|---|---|---|
38 | SCC | 38 | 100% | ICC | 218 | 17% |
43 | ILF left | 43 | 100% | MdLF left | 581 | 7% |
579 | MdLF left | 581 | 100% | AF left | 1522 | 38% |
347 | SLF II left | 350 | 99% | AF left | 1522 | 23% |
42 | ILF left | 43 | 98% | AF left | 1522 | 3% |
39 | IFOF left | 40 | 98% | MdLF left | 581 | 7% |
39 | IFOF left | 40 | 98% | AF left | 1522 | 3% |
743 | SLF III left | 763 | 97% | AF left | 1522 | 49% |
180 | ICC | 218 | 83% | AF left | 1522 | 12% |
153 | ICC | 218 | 70% | MdLF left | 581 | 26% |
21 | IFOF left | 40 | 53% | ILF left | 43 | 49% |
156 | SLF II left | 350 | 45% | SLF III left | 763 | 20% |
6 | IFOF left | 40 | 15% | ICC | 218 | 3% |
45 | SLF II left | 350 | 13% | MdLF left | 581 | 8% |
49 | MdLF left | 581 | 8% | SLF III left | 763 | 6% |
1 | SCC | 38 | 3% | IFOF left | 40 | 3% |
1 | ILF left | 43 | 2% | ICC | 218 | 0% |
3 | ICC | 218 | 1% | SLF II left | 350 | 1% |
References
- Friederici, A.D. Language in Our Brain: The Origins of a Uniquely Human Capacity; The MIT Press: Cambridge, MA, USA, 2017; ISBN 978-0-262-34296-4. [Google Scholar]
- Wilson, S.M.; Entrup, J.L.; Schneck, S.M.; Onuscheck, C.F.; Levy, D.F.; Rahman, M.; Willey, E.; Casilio, M.; Yen, M.; Brito, A.C.; et al. Recovery from Aphasia in the First Year after Stroke. Brain 2023, 146, 1021–1039. [Google Scholar] [CrossRef] [PubMed]
- Hagoort, P. MUC (Memory, Unification, Control) and Beyond. Front. Psychol. 2013, 4, 416. [Google Scholar] [CrossRef] [PubMed]
- Thothathiri, M.; Kirkwood, J.; Patra, A.; Krason, A.; Middleton, E.L. Multimodal Measures of Sentence Comprehension in Agrammatism. Cortex 2023, 169, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.L.; Vasishth, S.; Van Dyke, J.A. Computational Principles of Working Memory in Sentence Comprehension. Trends Cogn. Sci. 2006, 10, 447–454. [Google Scholar] [CrossRef]
- Matchin, W.; Brodbeck, C.; Hammerly, C.; Lau, E. The Temporal Dynamics of Structure and Content in Sentence Comprehension: Evidence from fMRI-constrained MEG. Hum. Brain Mapp. 2018, 40, 663–678. [Google Scholar] [CrossRef]
- Liu, H.; Chen, S.A. The Neural Correlates of Spoken Sentence Comprehension in the Chinese Language: An fMRI Study. Psychol. Res. Behav. Manag. 2020, 13, 641–652. [Google Scholar] [CrossRef]
- Uddén, J.; Hultén, A.; Schoffelen, J.-M.; Lam, N.; Harbusch, K.; Van Den Bosch, A.; Kempen, G.; Petersson, K.M.; Hagoort, P. Supramodal Sentence Processing in the Human Brain: fMRI Evidence for the Influence of Syntactic Complexity in More Than 200 Participants. Neurobiol. Lang. 2022, 3, 575–598. [Google Scholar] [CrossRef]
- Pillay, S.B.; Binder, J.R.; Humphries, C.; Gross, W.L.; Book, D.S. Lesion Localization of Speech Comprehension Deficits in Chronic Aphasia. Neurology 2017, 88, 970–975. [Google Scholar] [CrossRef]
- Den Ouden, D.; Malyutina, S.; Basilakos, A.; Bonilha, L.; Gleichgerrcht, E.; Yourganov, G.; Hillis, A.E.; Hickok, G.; Rorden, C.; Fridriksson, J. Cortical and Structural-connectivity Damage Correlated with Impaired Syntactic Processing in Aphasia. Hum. Brain Mapp. 2019, 40, 2153–2173. [Google Scholar] [CrossRef]
- Lukic, S.; Thompson, C.K.; Barbieri, E.; Chiappetta, B.; Bonakdarpour, B.; Kiran, S.; Rapp, B.; Parrish, T.B.; Caplan, D. Common and Distinct Neural Substrates of Sentence Production and Comprehension. Neuroimage 2021, 224, 117374. [Google Scholar] [CrossRef]
- Matchin, W.; Basilakos, A.; Ouden, D.-B.D.; Stark, B.C.; Hickok, G.; Fridriksson, J. Functional Differentiation in the Language Network Revealed by Lesion-Symptom Mapping. Neuroimage 2022, 247, 118778. [Google Scholar] [CrossRef]
- Matchin, W.; Den Ouden, D.-B.; Hickok, G.; Hillis, A.E.; Bonilha, L.; Fridriksson, J. The Wernicke Conundrum Revisited: Evidence from Connectome-Based Lesion-Symptom Mapping. Brain 2022, 145, 3916–3930. [Google Scholar] [CrossRef] [PubMed]
- Matchin, W.; Den Ouden, D.-B.; Basilakos, A.; Stark, B.C.; Fridriksson, J.; Hickok, G. Grammatical Parallelism in Aphasia: A Lesion-Symptom Mapping Study. Neurobiol. Lang. 2023, 4, 550–574. [Google Scholar] [CrossRef] [PubMed]
- Matchin, W.; Mollasaraei, Z.K.; Bonilha, L.; Rorden, C.; Hickok, G.; Den Ouden, D.; Fridriksson, J. Verbal Working Memory and Syntactic Comprehension Segregate into the Dorsal and Ventral Streams, Respectively. Brain Commun. 2024, 6, fcae449. [Google Scholar] [CrossRef] [PubMed]
- Biondo, N.; Ivanova, M.V.; Pracar, A.L.; Baldo, J.; Dronkers, N.F. Mapping Sentence Comprehension and Syntactic Complexity: Evidence from 131 Stroke Survivors. Brain Commun. 2024, 6, fcae379. [Google Scholar] [CrossRef]
- Billot, A.; Thiebaut De Schotten, M.; Parrish, T.B.; Thompson, C.K.; Rapp, B.; Caplan, D.; Kiran, S. Structural Disconnections Associated with Language Impairments in Chronic Post-Stroke Aphasia Using Disconnectome Maps. Cortex 2022, 155, 90–106. [Google Scholar] [CrossRef]
- Geva, S.; Correia, M.M.; Warburton, E.A. Contributions of Bilateral White Matter to Chronic Aphasia Symptoms as Assessed by Diffusion Tensor MRI. Brain Lang. 2015, 150, 117–128. [Google Scholar] [CrossRef]
- Ivanova, M.V.; Isaev, D.Y.; Dragoy, O.V.; Akinina, Y.S.; Petrushevskiy, A.G.; Fedina, O.N.; Shklovsky, V.M.; Dronkers, N.F. Diffusion-Tensor Imaging of Major White Matter Tracts and Their Role in Language Processing in Aphasia. Cortex 2016, 85, 165–181. [Google Scholar] [CrossRef]
- Ivanova, M.V.; Zhong, A.; Turken, A.; Baldo, J.V.; Dronkers, N.F. Functional Contributions of the Arcuate Fasciculus to Language Processing. Front. Hum. Neurosci. 2021, 15, 672665. [Google Scholar] [CrossRef]
- Riccardi, N.; Rorden, C.; Fridriksson, J.; Desai, R.H. Canonical Sentence Processing and the Inferior Frontal Cortex: Is There a Connection? Neurobiol. Lang. 2022, 3, 318–344. [Google Scholar] [CrossRef]
- Friederici, A.D. The Brain Basis of Language Processing: From Structure to Function. Physiol. Rev. 2011, 91, 1357–1392. [Google Scholar] [CrossRef]
- Friederici, A.D. The Cortical Language Circuit: From Auditory Perception to Sentence Comprehension. Trends Cogn. Sci. 2012, 16, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Matchin, W.; Hickok, G. The Cortical Organization of Syntax. Cereb. Cortex 2020, 30, 1481–1498. [Google Scholar] [CrossRef] [PubMed]
- Mesulam, M.-M.; Thompson, C.K.; Weintraub, S.; Rogalski, E.J. The Wernicke Conundrum and the Anatomy of Language Comprehension in Primary Progressive Aphasia. Brain 2015, 138, 2423–2437. [Google Scholar] [CrossRef] [PubMed]
- Friederici, A.D. Hierarchy Processing in Human Neurobiology: How Specific Is It? Philos. Trans. R. Soc. B 2020, 375, 20180391. [Google Scholar] [CrossRef]
- Papoutsi, M.; Stamatakis, E.A.; Griffiths, J.; Marslen-Wilson, W.D.; Tyler, L.K. Is Left Fronto-Temporal Connectivity Essential for Syntax? Effective Connectivity, Tractography and Performance in Left-Hemisphere Damaged Patients. NeuroImage 2011, 58, 656–664. [Google Scholar] [CrossRef]
- Wilson, S.M.; Galantucci, S.; Tartaglia, M.C.; Rising, K.; Patterson, D.K.; Henry, M.L.; Ogar, J.M.; DeLeon, J.; Miller, B.L.; Gorno-Tempini, M.L. Syntactic Processing Depends on Dorsal Language Tracts. Neuron 2011, 72, 397–403. [Google Scholar] [CrossRef]
- Zhang, J.; Zhong, S.; Zhou, L.; Yu, Y.; Tan, X.; Wu, M.; Sun, P.; Zhang, W.; Li, J.; Cheng, R.; et al. Correlations between Dual-Pathway White Matter Alterations and Language Impairment in Patients with Aphasia: A Systematic Review and Meta-Analysis. Neuropsychol. Rev. 2021, 31, 402–418. [Google Scholar] [CrossRef]
- Saur, D.; Schelter, B.; Schnell, S.; Kratochvil, D.; Küpper, H.; Kellmeyer, P.; Kümmerer, D.; Klöppel, S.; Glauche, V.; Lange, R.; et al. Combining Functional and Anatomical Connectivity Reveals Brain Networks for Auditory Language Comprehension. NeuroImage 2010, 49, 3187–3197. [Google Scholar] [CrossRef]
- Shekari, E.; Goudarzi, S.; Shahriari, E.; Joghataei, M.T. Extreme Capsule Is a Bottleneck for Ventral Pathway. IBRO Neurosci. Rep. 2021, 10, 42–50. [Google Scholar] [CrossRef]
- Weiller, C.; Reisert, M.; Peto, I.; Hennig, J.; Makris, N.; Petrides, M.; Rijntjes, M.; Egger, K. The Ventral Pathway of the Human Brain: A Continuous Association Tract System. Neuroimage 2021, 234, 117977. [Google Scholar] [CrossRef]
- Rolheiser, T.; Stamatakis, E.A.; Tyler, L.K. Dynamic Processing in the Human Language System: Synergy between the Arcuate Fascicle and Extreme Capsule. J. Neurosci. 2011, 31, 16949–16957. [Google Scholar] [CrossRef]
- Griffiths, J.D.; Marslen-Wilson, W.D.; Stamatakis, E.A.; Tyler, L.K. Functional Organisation of the Neural Language System: Dorsal and Ventral Pathways Are Critical for Syntax. Cereb. Cortex 2013, 23, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Gajardo-Vidal, A.; Lorca-Puls, D.L.; Hope, T.M.H.; Parker Jones, O.; Seghier, M.L.; Prejawa, S.; Crinion, J.T.; Leff, A.P.; Green, D.W.; Price, C.J. How Right Hemisphere Damage after Stroke Can Impair Speech Comprehension. Brain 2018, 141, 3389–3404. [Google Scholar] [CrossRef] [PubMed]
- Friederici, A.D.; von Cramon, D.Y.; Kotz, S.A. Role of the Corpus Callosum in Speech Comprehension: Interfacing Syntax and Prosody. Neuron 2007, 53, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Sammler, D.; Kotz, S.A.; Eckstein, K.; Ott, D.V.M.; Friederici, A.D. Prosody Meets Syntax: The Role of the Corpus Callosum. Brain 2010, 133, 2643–2655. [Google Scholar] [CrossRef]
- Tournier, J.-D.; Calamante, F.; Connelly, A. Robust Determination of the Fibre Orientation Distribution in Diffusion MRI: Non-Negativity Constrained Super-Resolved Spherical Deconvolution. NeuroImage 2007, 35, 1459–1472. [Google Scholar] [CrossRef]
- Jeurissen, B.; Tournier, J.-D.; Dhollander, T.; Connelly, A.; Sijbers, J. Multi-Tissue Constrained Spherical Deconvolution for Improved Analysis of Multi-Shell Diffusion MRI Data. Neuroimage 2014, 103, 411–426. [Google Scholar] [CrossRef]
- Raffelt, D.; Tournier, J.-D.; Rose, S.; Ridgway, G.R.; Henderson, R.; Crozier, S.; Salvado, O.; Connelly, A. Apparent Fibre Density: A Novel Measure for the Analysis of Diffusion-Weighted Magnetic Resonance Images. Neuroimage 2012, 59, 3976–3994. [Google Scholar] [CrossRef]
- Raffelt, D.A.; Tournier, J.-D.; Smith, R.E.; Vaughan, D.N.; Jackson, G.; Ridgway, G.R.; Connelly, A. Investigating White Matter Fibre Density and Morphology Using Fixel-Based Analysis. Neuroimage 2017, 144, 58–73. [Google Scholar] [CrossRef]
- Huang, C.-T.J.; Li, Y.-H.A.; Li, Y. The Syntax of Chinese; Cambridge Syntax Guides; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0-521-59058-7. [Google Scholar]
- Su, Y.; Lee, S.; Chung, Y. Asyntactic Thematic Role Assignment by Mandarin Aphasics: A Test of the Trace-Deletion Hypothesis and the Double Dependency Hypothesis. Brain Lang. 2007, 101, 1–18. [Google Scholar] [CrossRef]
- Wu, J.-B.; Lyu, Z.-H.; Liu, X.-J.; Li, H.-P.; Wang, Q. Development and Standardization of a New Cognitive Assessment Test Battery for Chinese Aphasic Patients: A Preliminary Study. Chin. Med. J. 2017, 130, 2283–2290. [Google Scholar] [PubMed]
- Peking University Health Science Center (PUHSC) Mandarin Aphasia Battery. Unpublished work. 1988.
- Liao, M.; Thompson, C.K. Rationale for Developing Chinese Aphasia Language Battery. Chin. Sci. J. Hear. Speech Rehabil. 2017, 15, 336–341. [Google Scholar] [CrossRef]
- Cho-Reyes, S.; Thompson, C. Verb and Sentence Production and Comprehension in Aphasia: Northwestern Assessment of Verbs and Sentences (NAVS). Aphasiology 2012, 26, 1250–1277. [Google Scholar] [CrossRef] [PubMed]
- Tournier, J.-D.; Smith, R.; Raffelt, D.; Tabbara, R.; Dhollander, T.; Pietsch, M.; Christiaens, D.; Jeurissen, B.; Yeh, C.-H.; Connelly, A. MRtrix3: A Fast, Flexible and Open Software Framework for Medical Image Processing and Visualisation. NeuroImage 2019, 202, 116137. [Google Scholar] [CrossRef]
- Jenkinson, M.; Beckmann, C.F.; Behrens, T.E.J.; Woolrich, M.W.; Smith, S.M. Fsl. NeuroImage 2012, 62, 782–790. [Google Scholar] [CrossRef]
- Veraart, J.; Novikov, D.S.; Christiaens, D.; Ades-aron, B.; Sijbers, J.; Fieremans, E. Denoising of Diffusion MRI Using Random Matrix Theory. NeuroImage 2016, 142, 394–406. [Google Scholar] [CrossRef]
- Kellner, E.; Dhital, B.; Kiselev, V.G.; Reisert, M. Gibbs-Ringing Artifact Removal Based on Local Subvoxel-Shifts. Magn. Reson. Med. 2016, 76, 1574–1581. [Google Scholar] [CrossRef]
- Andersson, J.L.R.; Skare, S.; Ashburner, J. How to Correct Susceptibility Distortions in Spin-Echo Echo-Planar Images: Application to Diffusion Tensor Imaging. NeuroImage 2003, 20, 870–888. [Google Scholar] [CrossRef]
- Andersson, J.L.R.; Sotiropoulos, S.N. An Integrated Approach to Correction for Off-Resonance Effects and Subject Movement in Diffusion MR Imaging. Neuroimage 2016, 125, 1063–1078. [Google Scholar] [CrossRef]
- Andersson, J.L.R.; Graham, M.S.; Zsoldos, E.; Sotiropoulos, S.N. Incorporating Outlier Detection and Replacement into a Non-Parametric Framework for Movement and Distortion Correction of Diffusion MR Images. NeuroImage 2016, 141, 556–572. [Google Scholar] [CrossRef] [PubMed]
- Andersson, J.L.R.; Graham, M.S.; Drobnjak, I.; Zhang, H.; Filippini, N.; Bastiani, M. Towards a Comprehensive Framework for Movement and Distortion Correction of Diffusion MR Images: Within Volume Movement. Neuroimage 2017, 152, 450–466. [Google Scholar] [CrossRef] [PubMed]
- Andersson, J.L.R.; Graham, M.S.; Drobnjak, I.; Zhang, H.; Campbell, J. Susceptibility-Induced Distortion That Varies Due to Motion: Correction in Diffusion MR without Acquiring Additional Data. NeuroImage 2018, 171, 277–295. [Google Scholar] [CrossRef] [PubMed]
- Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: Improved N3 Bias Correction. IEEE Trans. Med. Imaging 2010, 29, 1310–1320. [Google Scholar] [CrossRef]
- Hoopes, A.; Mora, J.S.; Dalca, A.V.; Fischl, B.; Hoffmann, M. SynthStrip: Skull-Stripping for Any Brain Image. NeuroImage 2022, 260, 119474. [Google Scholar] [CrossRef]
- Pustina, D.; Coslett, H.B.; Turkeltaub, P.E.; Tustison, N.; Schwartz, M.F.; Avants, B. Automated Segmentation of Chronic Stroke Lesions Using LINDA: Lesion Identification with Neighborhood Data Analysis. Hum. Brain Mapp. 2016, 37, 1405–1421. [Google Scholar] [CrossRef]
- Dhollander, T.; Raffelt, D.; Connelly, A. Unsupervised 3-Tissue Response Function Estimation from Single-Shell or Multi-Shell Diffusion MR Data without a Co-Registered T1 Image. In Proceedings of the ISMRM Workshop on Breaking the Barriers of Diffusion MRI, Lisbon, Portugal, 15–16 September 2016; p. 5. [Google Scholar]
- Dhollander, T.; Mito, R.; Raffelt, D.; Connelly, A. Improved White Matter Response Function Estimation for 3-Tissue Constrained Spherical Deconvolution. In Proceedings of the International Society of Magnetic Resonance in Medicine, Montreal, QC, Canada, 11–16 May 2019; Volume 27, p. 555. [Google Scholar]
- Raffelt, D.; Dhollander, T.; Tournier, J.-D.; Tabbara, R.; Smith, R.E.; Pierre, E.; Connelly, A. Bias Field Correction and Intensity Normalisation for Quantitative Analysis of Apparent Fibre Density. In Proceedings of the International Society for Magnetic Resonance in Medicine, Honolulu, HI, USA, 22–27 April 2017; Volume 26, p. 3541. [Google Scholar]
- Raffelt, D.; Tournier, J.-D.; Fripp, J.; Crozier, S.; Connelly, A.; Salvado, O. Symmetric Diffeomorphic Registration of Fibre Orientation Distributions. NeuroImage 2011, 56, 1171–1180. [Google Scholar] [CrossRef]
- Smith, R.E.; Tournier, J.-D.; Calamante, F.; Connelly, A. SIFT: Spherical-Deconvolution Informed Filtering of Tractograms. NeuroImage 2013, 67, 298–312. [Google Scholar] [CrossRef]
- Tournier, J.-D.; Calamante, F.; Connelly, A. Improved Probabilistic Streamlines Tractography by 2nd Order Integration over Fibre Orientation Distributions. In Proceedings of the International Society for Magnetic Resonance in Medicine, Stockholm, Sweden, 1–6 May 2010; p. 1670. [Google Scholar]
- Raffelt, D.A.; Smith, R.E.; Ridgway, G.R.; Tournier, J.-D.; Vaughan, D.N.; Rose, S.; Henderson, R.; Connelly, A. Connectivity-Based Fixel Enhancement: Whole-Brain Statistical Analysis of Diffusion MRI Measures in the Presence of Crossing Fibres. Neuroimage 2015, 117, 40–55. [Google Scholar] [CrossRef]
- Smith, R.; Dimond, D.; Vaughan, D.; Parker, D.; Dhollander, T.; Jackson, G.; Connelly, A. Intrinsic Non-Stationarity Correction for Fixel-Based Analysis. In Proceedings of the OHBM, Rome, Italy, 9–13 June 2019; p. M789. [Google Scholar]
- Wasserthal, J.; Neher, P.; Maier-Hein, K.H. TractSeg—Fast and Accurate White Matter Tract Segmentation. NeuroImage 2018, 183, 239–253. [Google Scholar] [CrossRef]
- Jeurissen, B.; Leemans, A.; Tournier, J.; Jones, D.K.; Sijbers, J. Investigating the Prevalence of Complex Fiber Configurations in White Matter Tissue with Diffusion Magnetic Resonance Imaging. Hum. Brain Mapp. 2013, 34, 2747–2766. [Google Scholar] [CrossRef]
- Wasserthal, J.; Neher, P.F.; Maier-Hein, K.H. Tract Orientation Mapping for Bundle-Specific Tractography. arXiv 2018, arXiv:1806.05580. [Google Scholar] [CrossRef]
- Wassermann, D.; Makris, N.; Rathi, Y.; Shenton, M.; Kikinis, R.; Kubicki, M.; Westin, C.-F. The White Matter Query Language: A Novel Approach for Describing Human White Matter Anatomy. Brain Struct. Funct. 2016, 221, 4705–4721. [Google Scholar] [CrossRef] [PubMed]
- Wasserthal, J.; Neher, P.F.; Hirjak, D.; Maier-Hein, K.H. Combined Tract Segmentation and Orientation Mapping for Bundle-Specific Tractography. Med. Image Anal. 2019, 58, 101559. [Google Scholar] [CrossRef] [PubMed]
- Calamante, F.; Tournier, J.-D.; Jackson, G.D.; Connelly, A. Track-Density Imaging (TDI): Super-Resolution White Matter Imaging Using Whole-Brain Track-Density Mapping. NeuroImage 2010, 53, 1233–1243. [Google Scholar] [CrossRef]
- Smith, R.; Christiaens, D.; Jeurissen, B.; Pietsch, M.; Vaughan, D.; Jackson, G.; Tournier, J. Others On False Positive Control in Fixel-Based Analysis. In Proceedings of the International Society of Magnetic Resonance in Medicine, Vancouver, BC, Canada, 15–20 May 2021; Volume 29, p. 4289. [Google Scholar]
- Mumford, J.A. A Comprehensive Review of Group Level Model Performance in the Presence of Heteroscedasticity: Can a Single Model Control Type I Errors in the Presence of Outliers? NeuroImage 2017, 147, 658–668. [Google Scholar] [CrossRef]
- Ferreira, F. The Misinterpretation of Noncanonical Sentences. Cogn. Psychol. 2003, 47, 164–203. [Google Scholar] [CrossRef]
- Yang, Y.; Arosio, F.; Hu, S. Effects of Animacy and Executive Functions in Mandarin-Speaking Children’s Processing of Relative Clauses: A Self-Paced Listening Task. First Lang. 2025, 01427237251352334. [Google Scholar] [CrossRef]
- Egorova, N.; Dhollander, T.; Khlif, M.S.; Khan, W.; Werden, E.; Brodtmann, A. Pervasive White Matter Fiber Degeneration in Ischemic Stroke. Stroke 2020, 51, 1507–1513. [Google Scholar] [CrossRef]
- Koh, C.-L.; Yeh, C.-H.; Liang, X.; Vidyasagar, R.; Seitz, R.J.; Nilsson, M.; Connelly, A.; Carey, L.M. Structural Connectivity Remote from Lesions Correlates with Somatosensory Outcome Poststroke. Stroke 2021, 52, 2910–2920. [Google Scholar] [CrossRef]
- Yu, Q.; Sun, Y.; Liao, X.; Qian, W.; Ye, T. Integrity of the Left Arcuate Fasciculus Segments Significantly Affects Language Performance in Individuals with Acute/Subacute Post-Stroke Aphasia: A Cross-Sectional Diffusion Tensor Imaging Study. Brain Sci. 2022, 12, 907. [Google Scholar] [CrossRef]
- Cho, M.J.; Jang, S.H. Relationships among Language Ability, the Arcuate Fasciculus and Lesion Volume in Patients with Putaminal Hemorrhage: A Diffusion Tensor Imaging Study. J. Integr. Neurosci. 2021, 20, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Barbeau, E.B.; Descoteaux, M.; Petrides, M. Dissociating the White Matter Tracts Connecting the Temporo-Parietal Cortical Region with Frontal Cortex Using Diffusion Tractography. Sci. Rep. 2020, 10, 8186. [Google Scholar] [CrossRef] [PubMed]
- Janelle, F.; Iorio-Morin, C.; D’amour, S.; Fortin, D. Superior Longitudinal Fasciculus: A Review of the Anatomical Descriptions With Functional Correlates. Front. Neurol. 2022, 13, 794618. [Google Scholar] [CrossRef]
- Martin, R.C.; Ding, J.; Hamilton, A.C.; Schnur, T.T. Working Memory Capacities Neurally Dissociate: Evidence from Acute Stroke. Cereb. Cortex Commun. 2021, 2, tgab005. [Google Scholar] [CrossRef] [PubMed]
- Beber, S.; Capasso, R.; Maffei, C.; Tettamanti, M.; Miceli, G. Distinct Neural Correlates of Morphosyntactic and Thematic Comprehension Processes in Aphasia. Brain Commun. 2025, 7, fcaf093. [Google Scholar] [CrossRef]
- Kamali, A.; Flanders, A.E.; Brody, J.; Hunter, J.V.; Hasan, K.M. Tracing Superior Longitudinal Fasciculus Connectivity in the Human Brain Using High Resolution Diffusion Tensor Tractography. Brain Struct. Funct. 2014, 219, 269–281. [Google Scholar] [CrossRef]
- Hickok, G.; Rogalsky, C. What Does Broca’s Area Activation to Sentences Reflect? J. Cogn. Neurosci. 2011, 23, 2629–2631. [Google Scholar] [CrossRef]
- Van Der Burght, C.L.; Numssen, O.; Schlaak, B.; Goucha, T.; Hartwigsen, G. Differential Contributions of Inferior Frontal Gyrus Subregions to Sentence Processing Guided by Intonation. Hum. Brain Mapp. 2023, 44, 585–598. [Google Scholar] [CrossRef]
- Parlatini, V.; Radua, J.; Dell’Acqua, F.; Leslie, A.; Simmons, A.; Murphy, D.G.; Catani, M.; Thiebaut De Schotten, M. Functional Segregation and Integration within Fronto-Parietal Networks. Neuroimage 2017, 146, 367–375. [Google Scholar] [CrossRef]
- He, Y.; Shao, X.; Liu, C.; Fan, C.; Jefferies, E.; Zhang, M.; Li, X. Diverse Frontoparietal Connectivity Supports Semantic Prediction and Integration in Sentence Comprehension. J. Neurosci. 2025, 45, e1404242024. [Google Scholar] [CrossRef] [PubMed]
- Zekelman, L.R.; Zhang, F.; Makris, N.; He, J.; Chen, Y.; Xue, T.; Liera, D.; Drane, D.L.; Rathi, Y.; Golby, A.J.; et al. White Matter Association Tracts Underlying Language and Theory of Mind: An Investigation of 809 Brains from the Human Connectome Project. Neuroimage 2022, 246, 118739. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Alam, T.R.J.; Cruz Arias, J.; Jefferies, E.; Smallwood, J.; Leemans, A.; Marino Davolos, J. Ventral and Dorsal Aspects of the Inferior Frontal-Occipital Fasciculus Support Verbal Semantic Access and Visually-Guided Behavioural Control. Brain Struct. Funct. 2023, 229, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Shekari, E.; Nozari, N. A Narrative Review of the Anatomy and Function of the White Matter Tracts in Language Production and Comprehension. Front. Hum. Neurosci. 2023, 17, 1139292. [Google Scholar] [CrossRef]
- Shin, J.; Rowley, J.; Chowdhury, R.; Jolicoeur, P.; Klein, D.; Grova, C.; Rosa-Neto, P.; Kobayashi, E. Inferior Longitudinal Fasciculus’ Role in Visual Processing and Language Comprehension: A Combined MEG-DTI Study. Front. Neurosci. 2019, 13, 875. [Google Scholar] [CrossRef]
- Xing, S.; Lacey, E.H.; Skipper-Kallal, L.M.; Zeng, J.; Turkeltaub, P.E. White Matter Correlates of Auditory Comprehension Outcomes in Chronic Post-Stroke Aphasia. Front. Neurol. 2017, 8, 54. [Google Scholar] [CrossRef]
- Luo, C.; Makaretz, S.; Stepanovic, M.; Papadimitriou, G.; Quimby, M.; Palanivelu, S.; Dickerson, B.C.; Makris, N. Middle Longitudinal Fascicle Is Associated with Semantic Processing Deficits in Primary Progressive Aphasia. NeuroImage Clin. 2020, 25, 102115. [Google Scholar] [CrossRef]
- Latini, F.; Trevisi, G.; Fahlström, M.; Jemstedt, M.; Alberius Munkhammar, Å.; Zetterling, M.; Hesselager, G.; Ryttlefors, M. New Insights into the Anatomy, Connectivity and Clinical Implications of the Middle Longitudinal Fasciculus. Front. Neuroanat. 2021, 14, 610324. [Google Scholar] [CrossRef]
- Low, T.A.; Lindland, K.; Kirton, A.; Carlson, H.L.; Harris, A.D.; Goodyear, B.G.; Monchi, O.; Hill, M.D.; Rose, M.L.; Dukelow, S.P. Transcranial Magnetic Stimulation Combined with Multimodality Aphasia Therapy for Chronic Poststroke Aphasia: A Randomized Clinical Trial. Neurology 2025, 104, e213424. [Google Scholar] [CrossRef]
- Wang, C.; Nie, P.; Wang, P.; Wang, Y.; Zang, Y.; Zhang, Y. The Therapeutic Effect of Transcranial Magnetic Stimulation on Post-Stroke Aphasia and the Optimal Treatment Parameters: A Meta-Analysis. Arch. Phys. Med. Rehabil. 2024, 105, 1388–1398. [Google Scholar] [CrossRef]
- Arheix-Parras, S.; Barrios, C.; Python, G.; Cogné, M.; Sibon, I.; Engelhardt, M.; Dehail, P.; Cassoudesalle, H.; Moucheboeuf, G.; Glize, B. A Systematic Review of Repetitive Transcranial Magnetic Stimulation in Aphasia Rehabilitation: Leads for Future Studies. Neurosci. Biobehav. Rev. 2021, 127, 212–241. [Google Scholar] [CrossRef]
- Laakso, I.; Kataja, J.; Matilainen, N.; Roine, T.; Tarnaud, T.; Ugawa, Y. Locating Activation Sites of TMS with Opposite Current Directions Using Probabilistic Modelling and Biophysical Axon Models. Brain Stimul. 2025, 18, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Baldi, S.; Schuhmann, T.; Goossens, L.; Schruers, K.R.J. Individualized, Connectome-Based, Non-Invasive Stimulation of OCD Deep-Brain Targets: A Proof-of-Concept. Neuroimage 2024, 288, 120527. [Google Scholar] [CrossRef] [PubMed]
- Reisch, K.; Böttcher, F.; Tuncer, M.S.; Schneider, H.; Vajkoczy, P.; Picht, T.; Fekonja, L.S. Tractography-Based Navigated TMS Language Mapping Protocol. Front. Oncol. 2022, 12, 1008442. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zheng, W.; Shang, D.; Chen, Y.; Zhong, S.; Ye, J.; Li, L.; Yu, Y.; Zhang, L.; Cheng, R.; et al. Fixel-Based Evidence of Microstructural Damage in Crossing Pathways Improves Language Mapping in Post-Stroke Aphasia. Neuroimage Clin. 2021, 31, 102774. [Google Scholar] [CrossRef]
- Cheng, B.; Petersen, M.; Schulz, R.; Boenstrup, M.; Krawinkel, L.; Gerloff, C.; Thomalla, G. White Matter Degeneration Revealed by Fiber-specific Analysis Relates to Recovery of Hand Function after Stroke. Hum. Brain Mapp. 2021, 42, 5423–5432. [Google Scholar] [CrossRef]
- Vanderlinden, G.; Radwan, A.; Christiaens, D.; Blommaert, J.; Sunaert, S.; Vandenbulcke, M.; Koole, M.; Van Laere, K. Fibre Density and Cross-Section Associate with Hallmark Pathology in Early Alzheimer’s Disease. Alz Res. Ther. 2025, 17, 73. [Google Scholar] [CrossRef]
- Burnett, J.; Cobden, A.L.; Burmester, A.; Akhlaghi, H.; Domínguez, D.J.F.; Caeyenberghs, K. Intraindividual Variability in Daily Cognitive Performance Is Associated with White Matter Organization of the Superior Longitudinal Fasciculus in Healthy Adults. Cortex 2025, 188, 85–100. [Google Scholar] [CrossRef]
- Joyce, K.E.; Hayasaka, S. Development of PowerMap: A Software Package for Statistical Power Calculation in Neuroimaging Studies. Neuroinformatics 2012, 10, 351–365. [Google Scholar] [CrossRef]
- Mumford, J.A.; Nichols, T.E. Power Calculation for Group fMRI Studies Accounting for Arbitrary Design and Temporal Autocorrelation. NeuroImage 2008, 39, 261–268. [Google Scholar] [CrossRef]
- Champely, S.; Ekstrom, C.; Dalgaard, P.; Gill, J.; Weibelzahl, S.; Anandkumar, A.; Ford, C.; Volcic, R.; Rosario, H.D. Pwr: Basic Functions for Power Analysis. R Package Version 1.3-0. 2020. Available online: https://CRAN.R-project.org/package=pwr (accessed on 24 September 2025).
- Boucher, J.; Marcotte, K.; Bedetti, C.; Houzé, B.; Descoteaux, M.; Brisebois, A.; García, A.O.; Rochon, E.; Leonard, C.; Desautels, A.; et al. Longitudinal Evolution of Diffusion Metrics after Left Hemisphere Ischaemic Stroke. Brain Com-mun 2023, 5, fcad313. [Google Scholar] [CrossRef]
Variables | Range, Mean and Standard Deviation |
---|---|
Age (years) | Range 30–79; M = 55.4; SD = 12.6 |
Education (years of formal schooling) | Range 6–19; M = 13.5; SD = 3.9 |
Time post stroke (weeks) | Range 4–20; M = 9.4; SD = 4.7 |
Total score of the NLCA | Range 68–79; M = 73.9; SD = 3.2 |
Aphasia Quotient from the MAB | Range 33.2–92.5; M = 61.5; SD = 19.3 |
Score on the Auditory Word Recognition task of the MAB | Range 24–59; M = 49.2; SD = 10.1 |
Accuracy of the Verb Comprehension Test in the CALB-AVS (%) | Range 25–100; M = 75.9; SD = 20.2 |
Accuracy of canonical sentences in the Sentence Comprehension Test of the CALB-AVS (%) | Range 25–100; M = 72.5; SD = 24.5 |
Accuracy of non-canonical sentences in the Sentence Comprehension Test of the CALB-AVS (%) | Range 18.8–100; M = 66.0; SD = 25.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, D.; Ji, X.; Li, H.; Xu, S.; Yang, Y.; Zhan, J.; Kong, A.P.-H.; Hu, R. Fixel-Based White Matter Correlates of Sentence Comprehension in Post-Stroke Aphasia. Brain Sci. 2025, 15, 1039. https://doi.org/10.3390/brainsci15101039
Fang D, Ji X, Li H, Xu S, Yang Y, Zhan J, Kong AP-H, Hu R. Fixel-Based White Matter Correlates of Sentence Comprehension in Post-Stroke Aphasia. Brain Sciences. 2025; 15(10):1039. https://doi.org/10.3390/brainsci15101039
Chicago/Turabian StyleFang, Dongxiang, Xiangtong Ji, Haozheng Li, Shuqi Xu, Yalan Yang, Jiayun Zhan, Anthony Pak-Hin Kong, and Ruiping Hu. 2025. "Fixel-Based White Matter Correlates of Sentence Comprehension in Post-Stroke Aphasia" Brain Sciences 15, no. 10: 1039. https://doi.org/10.3390/brainsci15101039
APA StyleFang, D., Ji, X., Li, H., Xu, S., Yang, Y., Zhan, J., Kong, A. P.-H., & Hu, R. (2025). Fixel-Based White Matter Correlates of Sentence Comprehension in Post-Stroke Aphasia. Brain Sciences, 15(10), 1039. https://doi.org/10.3390/brainsci15101039