Sex-Related Differences in Lifestyle Factors Affecting Multiple Sclerosis Susceptibility and Disease Progression
Abstract
1. Introduction
2. Sex-Related Differences in Lifestyle Factors Affecting Susceptibility
2.1. Smoking and Other Inhalant Irritants
2.2. Obesity
2.3. Vitamin D Deficiency and UVR Exposure
2.4. EBV Infection
2.5. Hormonal, Gender-Related and Occupational Factors
3. Sex-Related Differences in Lifestyle Factors Affecting Disease Progression
3.1. Hormonal Exposure
3.2. Smoking and Air Pollution
3.3. Obesity
3.4. Vitamin D and Sun Exposure
3.5. Microbiota and Diet
3.6. Education
4. Implications for MS Diagnosis, Monitoring, and Treatment
4.1. Diagnosis
4.2. Monitoring
4.3. Treatment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ART | Assisted reproductive technologies |
| BMI | body mass index |
| CIS | clinically isolated syndrome |
| DMTs | disease-modifying therapies |
| EAE | experimental autoimmune encephalomyelitis |
| EBNA | Epstein–Barr nuclear antigen |
| EBV | Epstein–Barr Virus |
| EDSS | Expanded Disability Status Scale |
| GAHT | gender-affirming hormone therapy |
| GnRH | gonadotropin-releasing hormone |
| HRT | hormonal replacement therapy |
| IM | infectious mononucleosis |
| IVF | in vitro fertilization |
| MS | Multiple Sclerosis |
| MSSS | Multiple sclerosis severity score |
| OC | oral contraceptives |
| PIRA | progression independent of relapse activity |
| RRMS | relapsing-remitting MS |
| SCFA | short-chain fatty-acid |
| SPMS | secondary progressive MS |
| Tregs | regulatory T cells |
| UVR | ultraviolet radiation |
| 25(OH)D | 25-hydroxyvitamin D |
References
- Wallin, M.T.; Culpepper, W.J.; Nichols, E.; Bhutta, Z.A.; Gebrehiwot, T.T.; Hay, S.I.; Khalil, I.A.; Krohn, K.J.; Liang, X.; Naghavi, M.; et al. Global, Regional, and National Burden of Multiple Sclerosis 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 269–285. [Google Scholar] [CrossRef]
- Safiri, S.; Ghaffari Jolfayi, A.; Mousavi, S.E.; Nejadghaderi, S.A.; Sullman, M.J.M.; Kolahi, A.-A. Global Burden of Multiple Sclerosis and Its Attributable Risk Factors, 1990–2019. Front. Neurol. 2024, 15, 1448377. [Google Scholar] [CrossRef] [PubMed]
- Koch-Henriksen, N.; Magyari, M. Apparent Changes in the Epidemiology and Severity of Multiple Sclerosis. Nat. Rev. Neurol. 2021, 17, 676–688. [Google Scholar] [CrossRef]
- Khan, G.; Hashim, M.J. Epidemiology of Multiple Sclerosis: Global, Regional, National and Sub-National-Level Estimates and Future Projections. J. Epidemiol. Glob. Health 2025, 15, 21. [Google Scholar] [CrossRef] [PubMed]
- Koch-Henriksen, N.; Thygesen, L.C.; Stenager, E.; Laursen, B.; Magyari, M. Incidence of MS Has Increased Markedly over Six Decades in Denmark Particularly with Late Onset and in Women. Neurology 2018, 90, e1954–e1963. [Google Scholar] [CrossRef] [PubMed]
- Rotstein, D.L.; Chen, H.; Wilton, A.S.; Kwong, J.C.; Marrie, R.A.; Gozdyra, P.; Krysko, K.M.; Kopp, A.; Copes, R.; Tu, K. Temporal Trends in Multiple Sclerosis Prevalence and Incidence in a Large Population. Neurology 2018, 90, e1435–e1441. [Google Scholar] [CrossRef]
- Voskuhl, R.R. The Effect of Sex on Multiple Sclerosis Risk and Disease Progression. Mult. Scler. J. 2020, 26, 554–560. [Google Scholar] [CrossRef]
- Voskuhl, R.R.; Gold, S.M. Sex-Related Factors in Multiple Sclerosis Susceptibility and Progression. Nat. Rev. Neurol. 2012, 8, 255–263. [Google Scholar] [CrossRef]
- Krysko, K.M.; Rutatangwa, A.; Graves, J.; Lazar, A.; Waubant, E. Association Between Breastfeeding and Postpartum Multiple Sclerosis Relapses: A Systematic Review and Meta-Analysis. JAMA Neurol. 2020, 77, 327. [Google Scholar] [CrossRef]
- Krysko, K.M.; Graves, J.S.; Dobson, R.; Altintas, A.; Amato, M.P.; Bernard, J.; Bonavita, S.; Bove, R.; Cavalla, P.; Clerico, M.; et al. Sex Effects across the Lifespan in Women with Multiple Sclerosis. Ther. Adv. Neurol. Disord. 2020, 13, 1756286420936166. [Google Scholar] [CrossRef]
- Gouider, R.; Souissi, A.; Mrabet, S.; Gharbi, A.; Abida, Y.; Kacem, I.; Gargouri-Berrechid, A. Environmental Factors Related to Multiple Sclerosis Progression. J. Neurol. Sci. 2024, 464, 123161. [Google Scholar] [CrossRef]
- Guan, S.-Y.; Zheng, J.-X.; Feng, X.-Y.; Zhang, S.-X.; Xu, S.-Z.; Wang, P.; Pan, H.-F. Global Burden Due to Modifiable Risk Factors for Autoimmune Diseases, 1990–2021: Temporal Trends and Socio-Demographic Inequalities. Autoimmun. Rev. 2024, 23, 103674. [Google Scholar] [CrossRef]
- Guo, J.; Olsson, T.; Hillert, J.; Alfredsson, L.; Hedström, A.K. Education, Lifestyle Risk Factors, and Treatment Choices and Multiple Sclerosis Progression. JAMA Netw. Open 2025, 8, e2520142. [Google Scholar] [CrossRef]
- Lorefice, L.; Lugaresi, A. Women and Multiple Sclerosis: From Gender Medicine to Precision Medicine. Mult. Scler. Relat. Disord. 2025, 96, 106348. [Google Scholar] [CrossRef] [PubMed]
- Correale, J.; Balbuena Aguirre, M.E.; Farez, M.F. Sex-Specific Environmental Influences Affecting MS Development. Clin. Immunol. 2013, 149, 176–181. [Google Scholar] [CrossRef]
- Buongiorno, M.; Tur, C.; Giraldo, D.M.; Cullell, N.; Krupinski, J.; Lanzillo, R.; Sánchez-Benavides, G. Sleep and Risk of Multiple Sclerosis: Bridging the Gap Between Inflammation and Neurodegeneration via Glymphatic Failure. Brain Sci. 2025, 15, 766. [Google Scholar] [CrossRef] [PubMed]
- Nashold, F.E.; Spach, K.M.; Spanier, J.A.; Hayes, C.E. Estrogen Controls Vitamin D3-Mediated Resistance to Experimental Autoimmune Encephalomyelitis by Controlling Vitamin D3 Metabolism and Receptor Expression. J. Immunol. 2009, 183, 3672–3681. [Google Scholar] [CrossRef]
- Krementsov, D.N.; Asarian, L.; Fang, Q.; McGill, M.M.; Teuscher, C. Sex-Specific Gene-by-Vitamin D Interactions Regulate Susceptibility to Central Nervous System Autoimmunity. Front. Immunol. 2018, 9, 1622. [Google Scholar] [CrossRef]
- Keane, J.T.; Afrasiabi, A.; Schibeci, S.D.; Fewings, N.; Parnell, G.P.; Swaminathan, S.; Booth, D.R. Gender and the Sex Hormone Estradiol Affect Multiple Sclerosis Risk Gene Expression in Epstein-Barr Virus-Infected B Cells. Front. Immunol. 2021, 12, 732694. [Google Scholar] [CrossRef]
- Mechelli, R.; Umeton, R.; Bellucci, G.; Bigi, R.; Rinaldi, V.; Angelini, D.F.; Guerrera, G.; Pignalosa, F.C.; Ilari, S.; Patrone, M.; et al. A Disease-Specific Convergence of Host and Epstein–Barr Virus Genetics in Multiple Sclerosis. Proc. Natl. Acad. Sci. USA 2025, 122, e2418783122. [Google Scholar] [CrossRef]
- Alonso, A.; Cook, S.D.; Maghzi, A.-H.; Divani, A.A. A Case–Control Study of Risk Factors for Multiple Sclerosis in Iran. Mult. Scler. J. 2011, 17, 550–555. [Google Scholar] [CrossRef]
- Palacios, N.; Alonso, A.; BrØnnum-Hansen, H.; Ascherio, A. Smoking and Increased Risk of Multiple Sclerosis: Parallel Trends in the Sex Ratio Reinforce the Evidence. Ann. Epidemiol. 2011, 21, 536–542. [Google Scholar] [CrossRef]
- Sundström, P.; Nyström, L.; Hallmans, G. Smoke Exposure Increases the Risk for Multiple Sclerosis. Eur. J. Neurol. 2008, 15, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Ashtari, F.; Birjandi, M.S.; Adibi, I.; Feizi, A.; Ghalamkari, A.; Toghianifar, N. Relation Between Smoking and Disability Progression in Iranian Multiple Sclerosis Patients: A Case-Control Study. Int. J. Prev. Med. 2025, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Mikaeloff, Y.; Caridade, G.; Tardieu, M.; Suissa, S.; on behalf of the KIDSEP study group. Parental Smoking at Home and the Risk of Childhood-Onset Multiple Sclerosis in Children. Brain 2007, 130, 2589–2595. [Google Scholar] [CrossRef] [PubMed]
- Langer-Gould, A.; Brara, S.M.; Beaber, B.E.; Koebnick, C. Childhood Obesity and Risk of Pediatric Multiple Sclerosis and Clinically Isolated Syndrome. Neurology 2013, 80, 548–552. [Google Scholar] [CrossRef]
- Munger, K.L.; Bentzen, J.; Laursen, B.; Stenager, E.; Koch-Henriksen, N.; Sørensen, T.I.; Baker, J.L. Childhood Body Mass Index and Multiple Sclerosis Risk: A Long-Term Cohort Study. Mult. Scler. J. 2013, 19, 1323–1329. [Google Scholar] [CrossRef]
- Huppke, B.; Ellenberger, D.; Hummel, H.; Stark, W.; Röbl, M.; Gärtner, J.; Huppke, P. Association of Obesity With Multiple Sclerosis Risk and Response to First-Line Disease Modifying Drugs in Children. JAMA Neurol. 2019, 76, 1157. [Google Scholar] [CrossRef]
- Chitnis, T.; Graves, J.; Weinstock-Guttman, B.; Belman, A.; Olsen, C.; Misra, M.; Aaen, G.; Benson, L.; Candee, M.; Gorman, M.; et al. Distinct Effects of Obesity and Puberty on Risk and Age at Onset of Pediatric MS. Ann. Clin. Transl. Neurol. 2016, 3, 897–907. [Google Scholar] [CrossRef]
- Munger, K.L.; Chitnis, T.; Ascherio, A. Body Size and Risk of MS in Two Cohorts of US Women. Neurology 2009, 73, 1543–1550. [Google Scholar] [CrossRef]
- Gunnarsson, M.; Udumyan, R.; Bahmanyar, S.; Nilsagård, Y.; Montgomery, S. Characteristics in Childhood and Adolescence Associated with Future Multiple Sclerosis Risk in Men: Cohort Study. Eur. J. Neurol. 2015, 22, 1131–1137. [Google Scholar] [CrossRef]
- Kragt, J.; Van Amerongen, B.; Killestein, J.; Dijkstra, C.; Uitdehaag, B.; Polman, C.; Lips, P. Higher Levels of 25-Hydroxyvitamin D Are Associated with a Lower Incidence of Multiple Sclerosis Only in Women. Mult. Scler. J. 2009, 15, 9–15. [Google Scholar] [CrossRef]
- Orton, S.-M.; Wald, L.; Confavreux, C.; Vukusic, S.; Krohn, J.P.; Ramagopalan, S.V.; Herrera, B.M.; Sadovnick, A.D.; Ebers, G.C. Association of UV Radiation with Multiple Sclerosis Prevalence and Sex Ratio in France. Neurology 2011, 76, 425–431. [Google Scholar] [CrossRef]
- Endriz, J.; Ho, P.P.; Steinman, L. Time Correlation between Mononucleosis and Initial Symptoms of MS. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e308. [Google Scholar] [CrossRef]
- Ramagopalan, S.V.; Valdar, W.; Criscuoli, M.; DeLuca, G.C.; Dyment, D.A.; Orton, S.-M.; Yee, I.M.; Ebers, G.C.; Sadovnick, A.D.; for the Canadian Collaborative Study Group. Age of Puberty and the Risk of Multiple Sclerosis: A Population Based Study. Eur. J. Neurol. 2009, 16, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Sloka, J.S.; Pryse-Phillips, W.E.; Stefanelli, M. The Relation between Menarche and the Age of First Symptoms in a Multiple Sclerosis Cohort. Mult. Scler. J. 2006, 12, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Hernán, M.A.; Hohol, M.J.; Olek, M.J.; Spiegelman, D.; Ascherio, A. Oral Contraceptives and the Incidence of Multiple Sclerosis. Neurology 2000, 55, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Nova, A.; Di Caprio, G.; Baldrighi, G.N.; Galdiolo, D.; Bernardinelli, L.; Fazia, T. Investigating the Influence of Oral Contraceptive Pill Use on Multiple Sclerosis Risk Using UK Biobank Data. Fertil. Steril. 2024, 122, 1094–1104. [Google Scholar] [CrossRef]
- Zhang, Q.; Noyce, A.J.; Robson, J.; Giovannoni, G.; Marshall, C.R.; Dobson, R. No Association between Oral Contraceptive Exposure and Subsequent MS: A Population-Based Nested Case–Control Study in Primary Care. Mult. Scler. J. 2024, 30, 1221–1226. [Google Scholar] [CrossRef]
- Alonso, Á.; Jick, S.S.; Olek, M.J.; Ascherio, A.; Jick, H.; Hernán, M.A. Recent Use of Oral Contraceptives and the Risk of Multiple Sclerosis. Arch. Neurol. 2005, 62, 1362. [Google Scholar] [CrossRef]
- Hellwig, K.; Chen, L.H.; Stancyzk, F.Z.; Langer-Gould, A.M. Oral Contraceptives and Multiple Sclerosis/Clinically Isolated Syndrome Susceptibility. PLoS ONE 2016, 11, e0149094. [Google Scholar] [CrossRef] [PubMed]
- Degelman, M.L.; Herman, K.M. Smoking and Multiple Sclerosis: A Systematic Review and Meta-Analysis Using the Bradford Hill Criteria for Causation. Mult. Scler. Relat. Disord. 2017, 17, 207–216. [Google Scholar] [CrossRef]
- Arneth, B. Multiple Sclerosis and Smoking. Am. J. Med. 2020, 133, 783–788. [Google Scholar] [CrossRef]
- Sopori, M. Effects of Cigarette Smoke on the Immune System. Nat. Rev. Immunol. 2002, 2, 372–377. [Google Scholar] [CrossRef]
- Giovannoni, G.; Hawkes, C.H.; Lechner-Scott, J.; Levy, M.; Pohl, D. Air Pollution and Multiple Sclerosis Risk. Mult. Scler. Relat. Disord. 2021, 48, 102797. [Google Scholar] [CrossRef] [PubMed]
- Nizri, E.; Irony-Tur-Sinai, M.; Lory, O.; Orr-Urtreger, A.; Lavi, E.; Brenner, T. Activation of the Cholinergic Anti-Inflammatory System by Nicotine Attenuates Neuroinflammation via Suppression of Th1 and Th17 Responses. J. Immunol. 2009, 183, 6681–6688. [Google Scholar] [CrossRef]
- Hedström, A.; Hillert, J.; Olsson, T.; Alfredsson, L. Nicotine Might Have a Protective Effect in the Etiology of Multiple Sclerosis. Mult. Scler. J. 2013, 19, 1009–1013. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, R.; Li, Z.; Wang, Y.; Gao, C.; Lv, X.; Song, Y.; Li, B. The Risk of Smoking on Multiple Sclerosis: A Meta-Analysis Based on 20,626 Cases from Case-Control and Cohort Studies. PeerJ 2016, 4, e1797. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex Differences in Immune Responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Taneja, V. Sex Hormones Determine Immune Response. Front. Immunol. 2018, 9, 1931. [Google Scholar] [CrossRef]
- Hensiek, A.E. HLA-DR 15 Is Associated with Female Sex and Younger Age at Diagnosis in Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2002, 72, 184–187. [Google Scholar] [CrossRef]
- Irizar, H.; Muñoz-Culla, M.; Zuriarrain, O.; Goyenechea, E.; Castillo-Triviño, T.; Prada, A.; Saenz-Cuesta, M.; De Juan, D.; Lopez De Munain, A.; Olascoaga, J.; et al. HLA-DRB1*15:01 and Multiple Sclerosis: A Female Association? Mult. Scler. J. 2012, 18, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Hedström, A.K.; Sundqvist, E.; Bäärnhielm, M.; Nordin, N.; Hillert, J.; Kockum, I.; Olsson, T.; Alfredsson, L. Smoking and Two Human Leukocyte Antigen Genes Interact to Increase the Risk for Multiple Sclerosis. Brain 2011, 134, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Marabita, F.; Almgren, M.; Sjöholm, L.K.; Kular, L.; Liu, Y.; James, T.; Kiss, N.B.; Feinberg, A.P.; Olsson, T.; Kockum, I.; et al. Smoking Induces DNA Methylation Changes in Multiple Sclerosis Patients with Exposure-Response Relationship. Sci. Rep. 2017, 7, 14589. [Google Scholar] [CrossRef]
- Michnovicz, J.J.; Hershcopf, R.J.; Naganuma, H.; Bradlow, H.L.; Fishman, J. Increased 2-Hydroxylation of Estradiol as a Possible Mechanism for the Anti-Estrogenic Effect of Cigarette Smoking. N. Engl. J. Med. 1986, 315, 1305–1309. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, X.; Liang, J.; Liao, M.; Zhang, H.; Qin, X.; Mo, L.; Lv, W.; Mo, Z. Cigarette Smoking Has a Positive and Independent Effect on Testosterone Levels. Hormones 2013, 12, 567–577. [Google Scholar] [CrossRef]
- Gianfrancesco, M.; Barcellos, L. Obesity and Multiple Sclerosis Susceptibility: A Review. J. Neurol. Neuromed. 2016, 1, 1–5. [Google Scholar] [CrossRef]
- Olsson, T.; Barcellos, L.F.; Alfredsson, L. Interactions between Genetic, Lifestyle and Environmental Risk Factors for Multiple Sclerosis. Nat. Rev. Neurol. 2017, 13, 25–36. [Google Scholar] [CrossRef]
- Castro, K.; Ntranos, A.; Amatruda, M.; Petracca, M.; Kosa, P.; Chen, E.Y.; Morstein, J.; Trauner, D.; Watson, C.T.; Kiebish, M.A.; et al. Body Mass Index in Multiple Sclerosis Modulates Ceramide-Induced DNA Methylation and Disease Course. EBioMedicine 2019, 43, 392–410. [Google Scholar] [CrossRef]
- Stampanoni Bassi, M.; Iezzi, E.; Buttari, F.; Gilio, L.; Simonelli, I.; Carbone, F.; Micillo, T.; De Rosa, V.; Sica, F.; Furlan, R.; et al. Obesity Worsens Central Inflammation and Disability in Multiple Sclerosis. Mult. Scler. J. 2020, 26, 1237–1246. [Google Scholar] [CrossRef]
- Matarese, G.; Carrieri, P.B.; La Cava, A.; Perna, F.; Sanna, V.; De Rosa, V.; Aufiero, D.; Fontana, S.; Zappacosta, S. Leptin Increase in Multiple Sclerosis Associates with Reduced Number of CD4+ CD25+ Regulatory T Cells. Proc. Natl. Acad. Sci. USA 2005, 102, 5150–5155. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Barrea, L.; Somma, C.D.; Laudisio, D.; Salzano, C.; Pugliese, G.; De Alteriis, G.; Colao, A.; Savastano, S. Sex Differences of Vitamin D Status across BMI Classes: An Observational Prospective Cohort Study. Nutrients 2019, 11, 3034. [Google Scholar] [CrossRef]
- Cordeiro, B.; Ahn, J.J.; Gawde, S.; Ucciferri, C.; Alvarez-Sanchez, N.; Revelo, X.S.; Stickle, N.; Massey, K.; Brooks, D.G.; Guthridge, J.M.; et al. Obesity Intensifies Sex-Specific Interferon Signaling to Selectively Worsen Central Nervous System Autoimmunity in Females. Cell Metab. 2024, 36, 2298–2314.e11. [Google Scholar] [CrossRef]
- Hedström, A.K.; Lima Bomfim, I.; Hillert, J.; Olsson, T.; Alfredsson, L. Obesity Interacts with Infectious Mononucleosis in Risk of Multiple Sclerosis. Eur. J. Neurol. 2015, 22, 578. [Google Scholar] [CrossRef]
- Hedström, A.K.; Lima Bomfim, I.; Barcellos, L.; Gianfrancesco, M.; Schaefer, C.; Kockum, I.; Olsson, T.; Alfredsson, L. Interaction between Adolescent Obesity and HLA Risk Genes in the Etiology of Multiple Sclerosis. Neurology 2014, 82, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Munger, K.L.; Levin, L.I.; Hollis, B.W.; Howard, N.S.; Ascherio, A. Serum 25-Hydroxyvitamin D Levels and Risk of Multiple Sclerosis. JAMA 2006, 296, 2832. [Google Scholar] [CrossRef]
- Langer-Gould, A.; Lucas, R.; Xiang, A.; Chen, L.; Wu, J.; Gonzalez, E.; Haraszti, S.; Smith, J.; Quach, H.; Barcellos, L. MS Sunshine Study: Sun Exposure But Not Vitamin D Is Associated with Multiple Sclerosis Risk in Blacks and Hispanics. Nutrients 2018, 10, 268. [Google Scholar] [CrossRef]
- Bäärnhielm, M.; Olsson, T.; Alfredsson, L. Fatty Fish Intake Is Associated with Decreased Occurrence of Multiple Sclerosis. Mult. Scler. J. 2014, 20, 726–732. [Google Scholar] [CrossRef]
- Irving, A.A.; Marling, S.J.; Seeman, J.; Plum, L.A.; DeLuca, H.F. UV Light Suppression of EAE (a Mouse Model of Multiple Sclerosis) Is Independent of Vitamin D and Its Receptor. Proc. Natl. Acad. Sci. USA 2019, 116, 22552–22555. [Google Scholar] [CrossRef]
- Smolders, J.; Thewissen, M.; Peelen, E.; Menheere, P.; Cohen Tervaert, J.W.; Damoiseaux, J.; Hupperts, R. Vitamin D Status Is Positively Correlated with Regulatory T Cell Function in Patients with Multiple Sclerosis. PLoS ONE 2009, 4, e6635. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.-H.; Cha, H.-R.; Lee, D.-S.; Seo, K.Y.; Kweon, M.-N. 1,25-Dihydroxyvitamin D3 Inhibits the Differentiation and Migration of TH17 Cells to Protect against Experimental Autoimmune Encephalomyelitis. PLoS ONE 2010, 5, e12925. [Google Scholar] [CrossRef]
- Dankers, W.; Colin, E.M.; Van Hamburg, J.P.; Lubberts, E. Vitamin D in Autoimmunity: Molecular Mechanisms and Therapeutic Potential. Front. Immunol. 2017, 7, 697. [Google Scholar] [CrossRef]
- Trend, S.; Leffler, J.; Cooper, M.N.; Byrne, S.N.; Kermode, A.G.; French, M.A.; Hart, P.H. Narrowband UVB Phototherapy Reduces TNF Production by B-cell Subsets Stimulated via TLR7 from Individuals with Early Multiple Sclerosis. Clin. Transl. Immunol. 2020, 9, e1197. [Google Scholar] [CrossRef]
- Spach, K.M.; Hayes, C.E. Vitamin D3 Confers Protection from Autoimmune Encephalomyelitis Only in Female Mice. J. Immunol. 2005, 175, 4119–4126. [Google Scholar] [CrossRef]
- Correale, J.; Ysrraelit, M.C.; Gaitán, M.I. Gender Differences in 1,25 Dihydroxyvitamin D3 Immunomodulatory Effects in Multiple Sclerosis Patients and Healthy Subjects. J. Immunol. 2010, 185, 4948–4958. [Google Scholar] [CrossRef]
- Spanier, J.A.; Nashold, F.E.; Mayne, C.G.; Nelson, C.D.; Hayes, C.E. Vitamin D and Estrogen Synergy in Vdr-Expressing CD4+ T Cells Is Essential to Induce Helios+FoxP3+ T Cells and Prevent Autoimmune Demyelinating Disease. J. Neuroimmunol. 2015, 286, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Trojano, M.; Lucchese, G.; Graziano, G.; Taylor, B.V.; Simpson, S.; Lepore, V.; Grand’Maison, F.; Duquette, P.; Izquierdo, G.; Grammond, P.; et al. Geographical Variations in Sex Ratio Trends over Time in Multiple Sclerosis. PLoS ONE 2012, 7, e48078. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, P.; Cherbuin, N.; Barcellos, L.F.; Roalstad, S.; Casper, C.; Hart, J.; Aaen, G.S.; Krupp, L.; Benson, L.; Gorman, M.; et al. Association Between Time Spent Outdoors and Risk of Multiple Sclerosis. Neurology 2022, 98, e267–e278. [Google Scholar] [CrossRef]
- Leffler, J.; Trend, S.; Gorman, S.; Hart, P.H. Sex-Specific Environmental Impacts on Initiation and Progression of Multiple Sclerosis. Front. Neurol. 2022, 13, 835162. [Google Scholar] [CrossRef]
- Serafini, B.; Rosicarelli, B.; Franciotta, D.; Magliozzi, R.; Reynolds, R.; Cinque, P.; Andreoni, L.; Trivedi, P.; Salvetti, M.; Faggioni, A.; et al. Dysregulated Epstein-Barr Virus Infection in the Multiple Sclerosis Brain. J. Exp. Med. 2007, 204, 2899–2912. [Google Scholar] [CrossRef] [PubMed]
- Lassmann, H.; Niedobitek, G.; Aloisi, F.; Middeldorp, J.M.; the NeuroproMiSe EBV Working Group. Epstein-Barr Virus in the Multiple Sclerosis Brain: A Controversial Issue--Report on a Focused Workshop Held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain 2011, 134, 2772–2786. [Google Scholar] [CrossRef] [PubMed]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal Analysis Reveals High Prevalence of Epstein-Barr Virus Associated with Multiple Sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Rostgaard, K.; Balfour, H.H.; Jarrett, R.; Erikstrup, C.; Pedersen, O.; Ullum, H.; Nielsen, L.P.; Voldstedlund, M.; Hjalgrim, H. Primary Epstein-Barr Virus Infection with and without Infectious Mononucleosis. PLoS ONE 2019, 14, e0226436. [Google Scholar] [CrossRef]
- Xu, Y.; Hiyoshi, A.; Smith, K.A.; Piehl, F.; Olsson, T.; Fall, K.; Montgomery, S. Association of Infectious Mononucleosis in Childhood and Adolescence With Risk for a Subsequent Multiple Sclerosis Diagnosis Among Siblings. JAMA Netw. Open 2021, 4, e2124932. [Google Scholar] [CrossRef]
- Rostgaard, K.; Nielsen, N.M.; Melbye, M.; Frisch, M.; Hjalgrim, H. Siblings Reduce Multiple Sclerosis Risk by Preventing Delayed Primary Epstein–Barr Virus Infection. Brain 2023, 146, 1993–2002. [Google Scholar] [CrossRef]
- Jackson, S.S.; Francis, J.; Pfeiffer, R.M.; Proietti, C.; Coghill, A.E.; Yu, K.J.; Sarathkumara, Y.D.; Hsu, W.-L.; Argirion, I.; Wang, C.-P.; et al. Sex Differences in Anti–Epstein-Barr Virus Antibody Responses. J. Infect. Dis. 2025, jiaf067. [Google Scholar] [CrossRef]
- Wagner, H.-J.; Hornef, M.; Teichert, H.-M.; Kirchner, H. Sex Difference in the Serostatus of Adults to the Epstein-Barr Virus. Immunobiology 1994, 190, 424–429. [Google Scholar] [CrossRef]
- Nielsen, T.; Rostgaard, K.; Askling, J.; Steffensen, R.; Oturai, A.; Jersild, C.; Koch-Henriksen, N.; Sørensen, P.; Hjalgrim, H. Effects of Infectious Mononucleosis and HLA-DRB1*15 in Multiple Sclerosis. Mult. Scler. J. 2009, 15, 431–436. [Google Scholar] [CrossRef]
- Ziaei, A.; Solomon, O.; Casper, T.C.; Waltz, M.; Weinstock-Guttman, B.; Aaen, G.; Wheeler, Y.; Graves, J.; Benson, L.; Gorman, M.; et al. Gene–Environment Interactions: Epstein–Barr Virus Infection and Risk of Pediatric-Onset Multiple Sclerosis. Mult. Scler. J. 2024, 30, 308–315. [Google Scholar] [CrossRef]
- Zhukovsky, C.; Bind, M.-A.; Boström, I.; Landtblom, A.-M. Air Pollution as a Contributing Factor of Relapses and Cases of Multiplesclerosis. Health Risk Anal. 2020, 3, 169–175. [Google Scholar] [CrossRef]
- Avila, M.; Bansal, A.; Culberson, J.; Peiris, A.N. The Role of Sex Hormones in Multiple Sclerosis. Eur. Neurol. 2018, 80, 93–99. [Google Scholar] [CrossRef]
- D’hooghe, M.B.; D’Hooghe, T.; De Keyser, J. Female Gender and Reproductive Factors Affecting Risk, Relapses and Progression in Multiple Sclerosis. Gynecol. Obstet. Investig. 2013, 75, 73–84. [Google Scholar] [CrossRef]
- Rankin, K.; Bove, R. Caring for Women with Multiple Sclerosis Across the Lifespan. Curr. Neurol. Neurosci. Rep. 2018, 18, 36. [Google Scholar] [CrossRef]
- Chitnis, T. Role of Puberty in Multiple Sclerosis Risk and Course. Clin. Immunol. 2013, 149, 192–200. [Google Scholar] [CrossRef]
- Salpietro, V.; Polizzi, A.; Recca, G.; Ruggieri, M. The Role of Puberty and Adolescence in the Pathobiology of Pediatric Multiple Sclerosis. Mult. Scler. Demyelinating Disord. 2018, 3, 2. [Google Scholar] [CrossRef]
- Bove, R.; Chua, A.S.; Xia, Z.; Chibnik, L.; De Jager, P.L.; Chitnis, T. Complex Relation of HLA-DRB1*1501, Age at Menarche, and Age at Multiple Sclerosis Onset. Neurol. Genet. 2016, 2, e88. [Google Scholar] [CrossRef] [PubMed]
- Bove, R.; Chitnis, T. The Role of Gender and Sex Hormones in Determining the Onset and Outcome of Multiple Sclerosis. Mult. Scler. J. 2014, 20, 520–526. [Google Scholar] [CrossRef]
- Kotzamani, D.; Panou, T.; Mastorodemos, V.; Tzagournissakis, M.; Nikolakaki, H.; Spanaki, C.; Plaitakis, A. Rising Incidence of Multiple Sclerosis in Females Associated with Urbanization. Neurology 2012, 78, 1728–1735. [Google Scholar] [CrossRef]
- Vitturi, B.K.; Montecucco, A.; Rahmani, A.; Dini, G.; Durando, P. Occupational Risk Factors for Multiple Sclerosis: A Systematic Review with Meta-Analysis. Front. Public Health 2023, 11, 1285103. [Google Scholar] [CrossRef]
- Graves, J.S.; Chitnis, T.; Weinstock-Guttman, B.; Rubin, J.; Zelikovitch, A.S.; Nourbakhsh, B.; Simmons, T.; Waltz, M.; Casper, T.C.; Waubant, E.; et al. Maternal and Perinatal Exposures Are Associated with Risk for Pediatric-Onset Multiple Sclerosis. Pediatrics 2017, 139, e20162838. [Google Scholar] [CrossRef]
- Tremlett, H.; Zhao, Y.; Joseph, J.; Devonshire, V.; the UBCMS Clinic Neurologists. Relapses in Multiple Sclerosis Are Age- and Time-Dependent. J. Neurol. Neurosurg. Psychiatry 2008, 79, 1368–1374. [Google Scholar] [CrossRef]
- Weatherby, S.J.M.; Mann, C.L.A.; Davies, M.B.; Fryer, A.A.; Haq, N.; Strange, R.C.; Hawkins, C.P. A Pilot Study of the Relationship between Gadolinium-Enhancing Lesions, Gender Effect and Polymorphisms of Antioxidant Enzymes in Multiple Sclerosis. J. Neurol. 2000, 247, 467–470. [Google Scholar] [CrossRef]
- Kalincik, T.; Vivek, V.; Jokubaitis, V.; Lechner-Scott, J.; Trojano, M.; Izquierdo, G.; Lugaresi, A.; Grand’Maison, F.; Hupperts, R.; Oreja-Guevara, C.; et al. Sex as a Determinant of Relapse Incidence and Progressive Course of Multiple Sclerosis. Brain 2013, 136, 3609–3617. [Google Scholar] [CrossRef] [PubMed]
- Airas, L. Hormonal and Gender-Related Immune Changes in Multiple Sclerosis. Acta Neurol. Scand. 2015, 132, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Ramien, C.; Taenzer, A.; Lupu, A.; Heckmann, N.; Engler, J.B.; Patas, K.; Friese, M.A.; Gold, S.M. Sex Effects on Inflammatory and Neurodegenerative Processes in Multiple Sclerosis. Neurosci. Biobehav. Rev. 2016, 67, 137–146. [Google Scholar] [CrossRef]
- Pozzilli, C.; Falaschi, P.; Mainero, C.; Martocchia, A.; D’Urso, R.; Proietti, A.; Frontoni, M.; Bastianello, S.; Filippi, M. MRI in Multiple Sclerosis during the Menstrual Cycle: Relationship with Sex Hormone Patterns. Neurology 1999, 53, 622. [Google Scholar] [CrossRef] [PubMed]
- Pozzilli, C.; Tomassini, V.; Marinelli, F.; Paolillo, A.; Gasperini, C.; Bastianello, S. ‘Gender Gap’ in Multiple Sclerosis: Magnetic Resonance Imaging Evidence. Eur. J. Neurol. 2003, 10, 95–97. [Google Scholar] [CrossRef]
- Barkhof, F.; Held, U.; Simon, J.H.; Daumer, M.; Fazekas, F.; Filippi, M.; Frank, J.A.; Kappos, L.; Li, D.; Menzler, S.; et al. Predicting Gadolinium Enhancement Status in MS Patients Eligible for Randomized Clinical Trials. Neurology 2005, 65, 1447–1454. [Google Scholar] [CrossRef]
- Antulov, R.; Weinstock-Guttman, B.; Cox, J.; Hussein, S.; Durfee, J.; Caiola, C.; Dwyer, M.; Bergsland, N.; Abdelrahman, N.; Stosic, M.; et al. Gender-Related Differences in MS: A Study of Conventional and Nonconventional MRI Measures. Mult. Scler. J. 2009, 15, 345–354. [Google Scholar] [CrossRef]
- Tomassini, V. Sex Hormones Modulate Brain Damage in Multiple Sclerosis: MRI Evidence. J. Neurol. Neurosurg. Psychiatry 2005, 76, 272–275. [Google Scholar] [CrossRef]
- Gottwald, N.S.; Asseyer, S.; Chien, C.; Brasanac, J.; Nauman, A.T.; Rust, R.; Schmitz-Hübsch, T.; Bellmann-Strobl, J.; Ruprecht, K.; Paul, F.; et al. Impact of Sex on Clinical Outcome in Early Multiple Sclerosis. Mult. Scler. Relat. Disord. 2024, 88, 105749. [Google Scholar] [CrossRef]
- Ribbons, K.A.; McElduff, P.; Boz, C.; Trojano, M.; Izquierdo, G.; Duquette, P.; Girard, M.; Grand’Maison, F.; Hupperts, R.; Grammond, P.; et al. Male Sex Is Independently Associated with Faster Disability Accumulation in Relapse-Onset MS but Not in Primary Progressive MS. PLoS ONE 2015, 10, e0122686. [Google Scholar] [CrossRef]
- Schoonheim, M.M.; Popescu, V.; Rueda Lopes, F.C.; Wiebenga, O.T.; Vrenken, H.; Douw, L.; Polman, C.H.; Geurts, J.J.G.; Barkhof, F. Subcortical Atrophy and Cognition: Sex Effects in Multiple Sclerosis. Neurology 2012, 79, 1754–1761. [Google Scholar] [CrossRef]
- Du, S.; Itoh, N.; Askarinam, S.; Hill, H.; Arnold, A.P.; Voskuhl, R.R. XY Sex Chromosome Complement, Compared with XX, in the CNS Confers Greater Neurodegeneration during Experimental Autoimmune Encephalomyelitis. Proc. Natl. Acad. Sci. USA 2014, 111, 2806–2811. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cofield, S.; Cutter, G.; Krieger, S.; Wolinsky, J.S.; Lublin, F. Predictors of Disease Activity and Worsening in Relapsing-Remitting Multiple Sclerosis. Neurol. Clin. Pract. 2022, 12, e58–e65. [Google Scholar] [CrossRef] [PubMed]
- Dolezal, O.; Gabelic, T.; Horakova, D.; Bergsland, N.; Dwyer, M.G.; Seidl, Z.; Krasensky, J.; Ramasamy, D.P.; Vaneckova, M.; Havrdova, E.; et al. Development of Gray Matter Atrophy in Relapsing–Remitting Multiple Sclerosis Is Not Gender Dependent: Results of a 5-Year Follow-up Study. Clin. Neurol. Neurosurg. 2013, 115, S42–S48. [Google Scholar] [CrossRef] [PubMed]
- Klistorner, A.; Wang, C.; Yiannikas, C.; Graham, S.L.; Parratt, J.; Barnett, M.H. Progressive Injury in Chronic Multiple Sclerosis Lesions Is Gender-Specific: A DTI Study. PLoS ONE 2016, 11, e0149245. [Google Scholar] [CrossRef]
- Klistorner, A.; Wang, C.; Yiannikas, C.; Parratt, J.; Dwyer, M.; Barton, J.; Graham, S.L.; You, Y.; Liu, S.; Barnett, M.H. Evidence of Progressive Tissue Loss in the Core of Chronic MS Lesions: A Longitudinal DTI Study. NeuroImage Clin. 2018, 17, 1028–1035. [Google Scholar] [CrossRef]
- Eshaghi, A.; Young, A.L.; Wijeratne, P.A.; Prados, F.; Arnold, D.L.; Narayanan, S.; Guttmann, C.R.G.; Barkhof, F.; Alexander, D.C.; Thompson, A.J.; et al. Identifying Multiple Sclerosis Subtypes Using Unsupervised Machine Learning and MRI Data. Nat. Commun. 2021, 12, 2078. [Google Scholar] [CrossRef]
- Bardy-Lagarde, M.; Asbelaoui, N.; Schumacher, M.; Ghoumari, A.M. Estradiol Promotes Myelin Repair in the Spinal Cord of Female Mice in a CXCR4 Chemokine Receptor-Independent Manner. Int. J. Mol. Sci. 2025, 26, 4752. [Google Scholar] [CrossRef]
- Bodhankar, S.; Wang, C.; Vandenbark, A.A.; Offner, H. Estrogen-induced Protection against Experimental Autoimmune Encephalomyelitis Is Abrogated in the Absence of B Cells. Eur. J. Immunol. 2011, 41, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Asbelaoui, N.; Abi-Ghanem, C.; Schlecht-Louf, G.; Oukil, H.; Degerny, C.; The Netherlands Brain Bank; Schumacher, M.; Ghoumari, A.M. Interplay between Androgen and CXCR4 Chemokine Signaling in Myelin Repair. Acta Neuropathol. Commun. 2024, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Ziehn, M.O.; Avedisian, A.A.; Dervin, S.M.; Umeda, E.A.; O’Dell, T.J.; Voskuhl, R.R. Therapeutic Testosterone Administration Preserves Excitatory Synaptic Transmission in the Hippocampus during Autoimmune Demyelinating Disease. J. Neurosci. 2012, 32, 12312–12324. [Google Scholar] [CrossRef]
- El-Etr, M.; Rame, M.; Boucher, C.; Ghoumari, A.M.; Kumar, N.; Liere, P.; Pianos, A.; Schumacher, M.; Sitruk-Ware, R. Progesterone and Nestorone Promote Myelin Regeneration in Chronic Demyelinating Lesions of Corpus Callosum and Cerebral Cortex: Progesterone Receptor and Myelin Repair. Glia 2015, 63, 104–117. [Google Scholar] [CrossRef]
- Kim, S.; Liva, S.M.; Dalal, M.A.; Verity, M.A.; Voskuhl, R.R. Estriol Ameliorates Autoimmune Demyelinating Disease: Implications for Multiple Sclerosis. Neurology 1999, 52, 1230. [Google Scholar] [CrossRef]
- Haindl, M.T.; Üçal, M.; Tafrali, C.; Wonisch, W.; Erdogan, C.; Nowakowska, M.; Adzemovic, M.Z.; Enzinger, C.; Khalil, M.; Hochmeister, S. Sex Differences under Vitamin D Supplementation in an Animal Model of Progressive Multiple Sclerosis. Nutrients 2024, 16, 554. [Google Scholar] [CrossRef]
- Benedek, G.; Zhang, J.; Nguyen, H.; Kent, G.; Seifert, H.A.; Davin, S.; Stauffer, P.; Vandenbark, A.A.; Karstens, L.; Asquith, M.; et al. Estrogen Protection against EAE Modulates the Microbiota and Mucosal-Associated Regulatory Cells. J. Neuroimmunol. 2017, 310, 51–59. [Google Scholar] [CrossRef]
- Confavreux, C.; Hutchinson, M.; Hours, M.M.; Cortinovis-Tourniaire, P.; Moreau, T. Rate of Pregnancy-Related Relapse in Multiple Sclerosis. N. Engl. J. Med. 1998, 339, 285–291. [Google Scholar] [CrossRef]
- Hellwig, K.; Haghikia, A.; Rockhoff, M.; Gold, R. Multiple Sclerosis and Pregnancy: Experience from a Nationwide Database in Germany. Ther. Adv. Neurol. Disord. 2012, 5, 247–253. [Google Scholar] [CrossRef]
- Korn-Lubetzki, I.; Kahana, E.; Cooper, G.; Abramsky, O. Activity of Multiple Sclerosis during Pregnancy and Puerperium. Ann. Neurol. 1984, 16, 229–231. [Google Scholar] [CrossRef] [PubMed]
- Jalkanen, A.; Alanen, A.; Airas, L.; Finnish Multiple Sclerosis and Pregnancy Study Group. Pregnancy Outcome in Women with Multiple Sclerosis: Results from a Prospective Nationwide Study in Finland. Mult. Scler. J. 2010, 16, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Paavilainen, T.; Kurki, T.; Parkkola, R.; Färkkilä, M.; Salonen, O.; Dastidar, P.; Elovaara, I.; Airas, L. Magnetic Resonance Imaging of the Brain Used to Detect Early Post-partum Activation of Multiple Sclerosis. Eur. J. Neurol. 2007, 14, 1216–1221. [Google Scholar] [CrossRef]
- Van Walderveen, M.A.A.; Tas, M.W.; Barkhof, F.; Polman, C.H.; Frequin, S.T.F.M.; Hommes, O.R.; Valk, J. Magnetic Resonance Evaluation of Disease Activity during Pregnancy in Multiple Sclerosis. Neurology 1994, 44, 327. [Google Scholar] [CrossRef]
- Ramagopalan, S.; Yee, I.; Byrnes, J.; Guimond, C.; Ebers, G.; Sadovnick, D. Term Pregnancies and the Clinical Characteristics of Multiple Sclerosis: A Population Based Study. J. Neurol. Neurosurg. Psychiatry 2012, 83, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Karp, I.; Manganas, A.; Sylvestre, M.-P.; Ho, A.; Roger, E.; Duquette, P. Does Pregnancy Alter the Long-Term Course of Multiple Sclerosis? Ann. Epidemiol. 2014, 24, 504–508.e2. [Google Scholar] [CrossRef]
- Jokubaitis, V.G.; Spelman, T.; Kalincik, T.; Lorscheider, J.; Havrdova, E.; Horakova, D.; Duquette, P.; Girard, M.; Prat, A.; Izquierdo, G.; et al. Predictors of Long-term Disability Accrual in Relapse-onset Multiple Sclerosis. Ann. Neurol. 2016, 80, 89–100. [Google Scholar] [CrossRef]
- Zuluaga, M.I.; Otero-Romero, S.; Rovira, A.; Perez-Hoyos, S.; Arrambide, G.; Negrotto, L.; Galán, I.; Río, J.; Comabella, M.; Nos, C.; et al. Menarche, Pregnancies, and Breastfeeding Do Not Modify Long-Term Prognosis in Multiple Sclerosis. Neurology 2019, 92, e1507–e1516. [Google Scholar] [CrossRef]
- D’hooghe, M.B.; Haentjens, P.; Nagels, G.; D’Hooghe, T.; Keyser, J. Menarche, Oral Contraceptives, Pregnancy and Progression of Disability in Relapsing Onset and Progressive Onset Multiple Sclerosis. J. Neurol. 2012, 259, 855–861. [Google Scholar] [CrossRef]
- Zeydan, B.; Atkinson, E.J.; Weis, D.M.; Smith, C.Y.; Gazzuola Rocca, L.; Rocca, W.A.; Keegan, B.M.; Weinshenker, B.G.; Kantarci, K.; Kantarci, O.H. Reproductive History and Progressive Multiple Sclerosis Risk in Women. Brain Commun. 2020, 2, fcaa185. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, K.; Rockhoff, M.; Herbstritt, S.; Borisow, N.; Haghikia, A.; Elias-Hamp, B.; Menck, S.; Gold, R.; Langer-Gould, A. Exclusive Breastfeeding and the Effect on Postpartum Multiple Sclerosis Relapses. JAMA Neurol. 2015, 72, 1132. [Google Scholar] [CrossRef]
- Langer-Gould, A.; Smith, J.B.; Albers, K.B.; Xiang, A.H.; Wu, J.; Kerezsi, E.H.; McClearnen, K.; Gonzales, E.G.; Leimpeter, A.D.; Van Den Eeden, S.K. Pregnancy-Related Relapses and Breastfeeding in a Contemporary Multiple Sclerosis Cohort. Neurology 2020, 94, e1939–e1949. [Google Scholar] [CrossRef] [PubMed]
- Gulick, E.E.; Halper, J. Influence of Infant Feeding Method on Postpartum Relapse of Mothers With MS. Int. J. MS Care 2002, 4, 183–191. [Google Scholar] [CrossRef]
- Haas, J.; Hommes, O.R. A Dose Comparison Study of IVIG in Postpartum Relapsing-Remitting Multiple Sclerosis. Mult. Scler. J. 2007, 13, 900–908. [Google Scholar] [CrossRef]
- Haben, S.; Ciplea, A.I.; Tokic, M.; Timmesfeld, N.; Thiel, S.; Gold, R.; Langer-Gould, A.M.; Hellwig, K. Early Postpartum Treatment Strategies and Early Postpartum Relapses in Women with Active Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2024, 95, 151–157. [Google Scholar] [CrossRef]
- Langer-Gould, A. Exclusive Breastfeeding and the Risk of Postpartum Relapses in Women With Multiple Sclerosis. Arch. Neurol. 2009, 66, 958. [Google Scholar] [CrossRef]
- Portaccio, E.; Ghezzi, A.; Hakiki, B.; Sturchio, A.; Martinelli, V.; Moiola, L.; Patti, F.; Mancardi, G.L.; Solaro, C.; Tola, M.R.; et al. Postpartum Relapses Increase the Risk of Disability Progression in Multiple Sclerosis: The Role of Disease Modifying Drugs. J. Neurol. Neurosurg. Psychiatry 2014, 85, 845–850. [Google Scholar] [CrossRef]
- Achiron, A.; Kishner, I.; Dolev, M.; Stern, Y.; Dulitzky, M.; Schiff, E.; Achiron, R. Effect of Intravenous Immunoglobulin Treatment on Pregnancy and Postpartum-Related Relapses in Multiple Sclerosis. J. Neurol. 2004, 251, 1133–1137. [Google Scholar] [CrossRef]
- Airas, L.; Jalkanen, A.; Alanen, A.; Pirttilä, T.; Marttila, R.J. Breast-Feeding, Postpartum and Prepregnancy Disease Activity in Multiple Sclerosis. Neurology 2010, 75, 474–476. [Google Scholar] [CrossRef]
- Benoit, A.; Durand-Dubief, F.; Amato, M.-P.; Portaccio, E.; Casey, R.; Roggerone, S.; Androdias, G.; Gignoux, L.; Ionescu, I.; Marrosu, M.-G.; et al. History of Multiple Sclerosis in 2 Successive Pregnancies: A French and Italian Cohort. Neurology 2016, 87, 1360–1367. [Google Scholar] [CrossRef]
- De Las Heras, V.; De Andrés, C.; Téllez, N.; Tintoré, M.; EMPATIE Study Group. Pregnancy in Multiple Sclerosis Patients Treated with Immunomodulators Prior to or during Part of the Pregnancy: A Descriptive Study in the Spanish Population. Mult. Scler. J. 2007, 13, 981–984. [Google Scholar] [CrossRef] [PubMed]
- Jesus-Ribeiro, J.; Correia, I.; Martins, A.I.; Fonseca, M.; Marques, I.; Batista, S.; Nunes, C.; Macário, C.; Almeida, M.C.; Sousa, L. Pregnancy in Multiple Sclerosis: A Portuguese Cohort Study. Mult. Scler. Relat. Disord. 2017, 17, 63–68. [Google Scholar] [CrossRef]
- Runia, T.F.; Neuteboom, R.F.; De Groot, C.J.M.; De Rijke, Y.B.; Hintzen, R.Q. The Influence of Vitamin D on Postpartum Relapse and Quality of Life in Pregnant Multiple Sclerosis Patients. Eur. J. Neurol. 2015, 22, 479–484. [Google Scholar] [CrossRef]
- Lorefice, L.; Fronza, M.; Fenu, G.; Frau, J.; Coghe, G.; D’Alterio, M.N.; Barracciu, M.A.; Murgia, F.; Angioni, S.; Cocco, E. Effects of Pregnancy and Breastfeeding on Clinical Outcomes and MRI Measurements of Women with Multiple Sclerosis: An Exploratory Real-World Cohort Study. Neurol. Ther. 2022, 11, 39–49. [Google Scholar] [CrossRef]
- Graves, J.S.; Henry, R.G.; Cree, B.A.C.; Lambert-Messerlian, G.; Greenblatt, R.M.; Waubant, E.; Cedars, M.I.; Zhu, A.; University of California, San Francisco MS-EPIC Team; Bacchetti, P.; et al. Ovarian Aging Is Associated with Gray Matter Volume and Disability in Women with MS. Neurology 2018, 90, e254–e260. [Google Scholar] [CrossRef]
- Bove, R.; Healy, B.C.; Musallam, A.; Glanz, B.I.; De Jager, P.L.; Chitnis, T. Exploration of Changes in Disability after Menopause in a Longitudinal Multiple Sclerosis Cohort. Mult. Scler. J. 2016, 22, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Lorefice, L.; Fenu, G.; Fronza, M.; Murgia, F.; Frau, J.; Coghe, G.; Barracciu, M.A.; Atzori, L.; Angioni, S.; Cocco, E. Menopausal Transition in Multiple Sclerosis: Relationship with Disease Activity and Brain Volume Measurements. Front. Neurol. 2023, 14, 1251667. [Google Scholar] [CrossRef] [PubMed]
- Otero-Romero, S.; Midaglia, L.; Carbonell-Mirabent, P.; Zuluaga, M.; Galán, I.; Río, J.; Arrambide, G.; Rodríguez-Barranco, M.; Vidal-Jordana, A.; Castillo, J.; et al. Menopause Does Not Modify Disability Trajectories in a Longitudinal Cohort of Women with Clinically Isolated Syndrome and Multiple Sclerosis Followed from Disease Onset. Eur. J. Neurol. 2022, 29, 1075–1081. [Google Scholar] [CrossRef]
- Simonsen, C.S.; Flemmen, H.Ø.; Broch, L.; Myklebust, H.; Berg-Hansen, P.; Brunborg, C.; Celius, E.G. The Influence of Menopause on Multiple Sclerosis. Eur. J. Neurol. 2025, 32, e16566. [Google Scholar] [CrossRef] [PubMed]
- Baroncini, D.; Annovazzi, P.O.; De Rossi, N.; Mallucci, G.; Torri Clerici, V.; Tonietti, S.; Mantero, V.; Ferrò, M.T.; Messina, M.J.; Barcella, V.; et al. Impact of Natural Menopause on Multiple Sclerosis: A Multicentre Study. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1201–1206. [Google Scholar] [CrossRef]
- Silverman, H.E.; Bostrom, A.; Nylander, A.N.; Akula, A.; Lazar, A.A.; Gomez, R.; Santaniello, A.; Renschen, A.; Harms, M.M.; Cooper, T.P.; et al. Association of Menopause with Functional Outcomes and Disease Biomarkers in Women with Multiple Sclerosis. Neurology 2025, 104, e210228. [Google Scholar] [CrossRef]
- Ladeira, F.; Salavisa, M.; Caetano, A.; Barbosa, R.; Sá, F.; Correia, A.S. The Influence of Menopause in Multiple Sclerosis Course: A Longitudinal Cohort Study. Eur. Neurol. 2018, 80, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Juutinen, L.; Ahinko, K.; Tinkanen, H.; Rosti-Otajärvi, E.; Sumelahti, M.-L. Menopausal Symptoms and Hormone Therapy in Women with Multiple Sclerosis: A Baseline-Controlled Study. Mult. Scler. Relat. Disord. 2022, 67, 104098. [Google Scholar] [CrossRef] [PubMed]
- Bove, R.; White, C.C.; Fitzgerald, K.C.; Chitnis, T.; Chibnik, L.; Ascherio, A.; Munger, K.L. Hormone Therapy Use and Physical Quality of Life in Postmenopausal Women with Multiple Sclerosis. Neurology 2016, 87, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
- Juutinen, L.; Ahinko, K.; Hagman, S.; Basnyat, P.; Jääskeläinen, O.; Herukka, S.-K.; Sumelahti, M.-L. The Association of Menopausal Hormone Levels with Progression-Related Biomarkers in Multiple Sclerosis. Mult. Scler. Relat. Disord. 2024, 85, 105517. [Google Scholar] [CrossRef]
- Kopp, T.I.; Lidegaard, Ø.; Magyari, M. Hormone Therapy and Disease Activity in Danish Women with Multiple Sclerosis: A Population-based Cohort Study. Eur. J. Neurol. 2022, 29, 1753–1762. [Google Scholar] [CrossRef]
- Laplaud, D.-A.; Leray, E.; Barrière, P.; Wiertlewski, S.; Moreau, T. Increase in Multiple Sclerosis Relapse Rate Following in Vitro Fertilization. Neurology 2006, 66, 1280–1281. [Google Scholar] [CrossRef]
- Hellwig, K.; Beste, C.; Brune, N.; Haghikia, A.; Müller, T.; Schimrigk, S.; Gold, R. Increased MS Relapse Rate during Assisted Reproduction Technique. J. Neurol. 2008, 255, 592–593. [Google Scholar] [CrossRef]
- Hellwig, K.; Schimrigk, S.; Beste, C.; Müller, T.; Gold, R. Increase in Relapse Rate during Assisted Reproduction Technique in Patients with Multiple Sclerosis. Eur. Neurol. 2009, 61, 65–68. [Google Scholar] [CrossRef]
- Michel, L.; Foucher, Y.; Vukusic, S.; Confavreux, C.; De Sèze, J.; Brassat, D.; Clanet, M.; Clavelou, P.; Ouallet, J.-C.; Brochet, B.; et al. Increased Risk of Multiple Sclerosis Relapse after in Vitro Fertilisation. J. Neurol. Neurosurg. Psychiatry 2012, 83, 796–802. [Google Scholar] [CrossRef]
- Mainguy, M.; Casey, R.; Vukusic, S.; Lebrun-Frenay, C.; Berger, E.; Kerbrat, A.; Al Khedr, A.; Bourre, B.; Ciron, J.; Clavelou, P.; et al. Assessing the Risk of Relapse After In Vitro Fertilization in Women With Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2025, 12, e200371. [Google Scholar] [CrossRef]
- Graham, E.L.; Bakkensen, J.B.; Anderson, A.; Lancki, N.; Davidson, A.; Perez Giraldo, G.; Jungheim, E.S.; Vanderhoff, A.C.; Ostrem, B.; Mok-Lin, E.; et al. Inflammatory Activity After Diverse Fertility Treatments: A Multicenter Analysis in the Modern Multiple Sclerosis Treatment Era. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200106. [Google Scholar] [CrossRef]
- Mainguy, M.; Tillaut, H.; Degremont, A.; Le Page, E.; Mainguy, C.; Duros, S.; Polard, E.; Leray, E. Assessing the Risk of Relapse Requiring Corticosteroids After In Vitro Fertilization in Women With Multiple Sclerosis. Neurology 2022, 99, e1916–e1925. [Google Scholar] [CrossRef]
- Vukusic, S.; Ionescu, I.; Cornu, C.; Bossard, N.; Durand-Dubief, F.; Cotton, F.; Durelli, L.; Marignier, R.; Gignoux, L.; Laplaud, D.-A.; et al. Oral Nomegestrol Acetate and Transdermal 17-Beta-Estradiol for Preventing Post-Partum Relapses in Multiple Sclerosis: The POPARTMUS Study. Mult. Scler. J. 2021, 27, 1458–1463. [Google Scholar] [CrossRef]
- Sicotte, N.L.; Liva, S.M.; Klutch, R.; Pfeiffer, P.; Bouvier, S.; Odesa, S.; Wu, T.C.J.; Voskuhl, R.R. Treatment of Multiple Sclerosis with the Pregnancy Hormone Estriol. Ann. Neurol. 2002, 52, 421–428. [Google Scholar] [CrossRef]
- Otero-Romero, S.; Carbonell-Mirabent, P.; Midaglia, L.; Zuluaga, M.; Galán, I.; Cobo-Calvo, A.; Rio, J.; Arrambide, G.; Vidal-Jordana, A.; Castillo, J.; et al. Oral Contraceptives Do Not Modify the Risk of a Second Attack and Disability Accrual in a Prospective Cohort of Women with a Clinically Isolated Syndrome and Early Multiple Sclerosis. Mult. Scler. J. 2022, 28, 950–957. [Google Scholar] [CrossRef]
- Sena, A.; Couderc, R.; Vasconcelos, J.C.; Ferret-Sena, V.; Pedrosa, R. Oral Contraceptive Use and Clinical Outcomes in Patients with Multiple Sclerosis. J. Neurol. Sci. 2012, 317, 47–51. [Google Scholar] [CrossRef]
- Voskuhl, R.R.; Wang, H.; Wu, T.C.J.; Sicotte, N.L.; Nakamura, K.; Kurth, F.; Itoh, N.; Bardens, J.; Bernard, J.T.; Corboy, J.R.; et al. Estriol Combined with Glatiramer Acetate for Women with Relapsing-Remitting Multiple Sclerosis: A Randomised, Placebo-Controlled, Phase 2 Trial. Lancet Neurol. 2016, 15, 35–46. [Google Scholar] [CrossRef]
- Giordano, A.; Giliberti, A.; Clarelli, F.; Misra, K.; Mascia, E.; Sorosina, M.; Visentin, G.; Margoni, M.; Moiola, L.; Rocca, M.A.; et al. Sex Hormone-Related Factors and the Risk of PIRA in Women with Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2025, 96, 686–689. [Google Scholar] [CrossRef]
- Gava, G.; Bartolomei, I.; Costantino, A.; Berra, M.; Venturoli, S.; Salvi, F.; Meriggiola, M.C. Long-Term Influence of Combined Oral Contraceptive Use on the Clinical Course of Relapsing–Remitting Multiple Sclerosis. Fertil. Steril. 2014, 102, 116–122. [Google Scholar] [CrossRef]
- Pozzilli, C.; De Giglio, L.; Barletta, V.T.; Marinelli, F.; Angelis, F.D.; Gallo, V.; Pagano, V.A.; Marini, S.; Piattella, M.C.; Tomassini, V.; et al. Oral Contraceptives Combined with Interferon β in Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2015, 2, e120. [Google Scholar] [CrossRef]
- Chen, C.S.; Krishnakumar, T.; Rowles, W.; Anderson, A.; Zhao, C.; Do, L.; Bove, R. Comparison of MS Inflammatory Activity in Women Using Continuous versus Cyclic Combined Oral Contraceptives. Mult. Scler. Relat. Disord. 2020, 41, 101970. [Google Scholar] [CrossRef]
- Ferret-Sena, V.; Ramos, C.; Cascais, M.J.; Capela, C.; Sena, A. Oral Contraceptives Interact with Adiposity-Associated Markers in Patients with Multiple Sclerosis. J. Clin. Med. 2024, 13, 464. [Google Scholar] [CrossRef]
- Bove, R.; Musallam, A.; Healy, B.; Raghavan, K.; Glanz, B.; Bakshi, R.; Weiner, H.; De Jager, P.; Miller, K.; Chitnis, T. Low Testosterone Is Associated with Disability in Men with Multiple Sclerosis. Mult. Scler. J. 2014, 20, 1584–1592. [Google Scholar] [CrossRef]
- Gold, S.M.; Chalifoux, S.; Giesser, B.S.; Voskuhl, R.R. Immune Modulation and Increased Neurotrophic Factor Production in Multiple Sclerosis Patients Treated with Testosterone. J. Neuroinflamm. 2008, 5, 32. [Google Scholar] [CrossRef]
- Sicotte, N.L.; Giesser, B.S.; Tandon, V.; Klutch, R.; Steiner, B.; Drain, A.E.; Shattuck, D.W.; Hull, L.; Wang, H.-J.; Elashoff, R.M.; et al. Testosterone Treatment in Multiple Sclerosis: A Pilot Study. Arch. Neurol. 2007, 64, 683. [Google Scholar] [CrossRef]
- Kurth, F.; Luders, E.; Sicotte, N.L.; Gaser, C.; Giesser, B.S.; Swerdloff, R.S.; Montag, M.J.; Voskuhl, R.R.; Mackenzie-Graham, A. Neuroprotective Effects of Testosterone Treatment in Men with Multiple Sclerosis. NeuroImage Clin. 2014, 4, 454–460. [Google Scholar] [CrossRef]
- Neyal, N.; Nathoo, N.; Cathcart-Rake, E.J.; Kantarci, O.H.; Zeydan, B. Gender-Affirming Interventions and Prognosis in Multiple Sclerosis. Mult. Scler. J. 2025, 13524585251341174. [Google Scholar] [CrossRef]
- Hedström, A.K.; Ryner, M.; Fink, K.; Fogdell-Hahn, A.; Alfredsson, L.; Olsson, T.; Hillert, J. Smoking and Risk of Treatment-Induced Neutralizing Antibodies to Interferon β-1a. Mult. Scler. J. 2014, 20, 445–450. [Google Scholar] [CrossRef]
- Diniz, F.R.; Gonçalves, F.L.T.; Zilli Vieira, C.L.; Piacenti-Silva, M. Impacts of Air Pollution and Thermal Discomfort in Hospitalizations for Multiple Sclerosis in Sao Paulo, Brazil. Sclerosis 2023, 1, 113–123. [Google Scholar] [CrossRef]
- Bove, R.; Musallam, A.; Xia, Z.; Baruch, N.; Messina, S.; Healy, B.C.; Chitnis, T. Longitudinal BMI Trajectories in Multiple Sclerosis: Sex Differences in Association with Disease Severity. Mult. Scler. Relat. Disord. 2016, 8, 136–140. [Google Scholar] [CrossRef]
- Conway, D.S.; Toljan, K.; Harris, K.A.; Galioto, R.; Briggs, F.B.; Hersh, C.M. Body Mass Index Trends over Four Years in Persons with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2025, 93, 106218. [Google Scholar] [CrossRef]
- Lefort, M.; Dejardin, O.; Berger, E.; Camdessanché, J.-P.; Ciron, J.; Clavelou, P.; De Sèze, J.; Debouverie, M.; Heinzlef, O.; Labauge, P.; et al. Association between Education Level and Disability Progression in Patients with Multiple Sclerosis in France. Mult. Scler. J. 2025, 31, 59–68. [Google Scholar] [CrossRef]
- Nesbitt, C.; Van Der Walt, A.; Butzkueven, H.; Cheung, A.S.; Jokubaitis, V.G. Exploring the Role of Sex Hormones and Gender Diversity in Multiple Sclerosis. Nat. Rev. Neurol. 2025, 21, 48–62. [Google Scholar] [CrossRef]
- Voskuhl, R. All Women with Multiple Sclerosis Should Start Hormone Replacement Therapy at Menopause Unless Contraindicated: Yes. Mult. Scler. J. 2024, 30, 1107–1109. [Google Scholar] [CrossRef]
- Miller, D.H.; Fazekas, F.; Montalban, X.; Reingold, S.C.; Trojano, M. Pregnancy, Sex and Hormonal Factors in Multiple Sclerosis. Mult. Scler. J. 2014, 20, 527–536. [Google Scholar] [CrossRef]
- McCombe, P.A.; Greer, J.M. Female Reproductive Issues in Multiple Sclerosis. Mult. Scler. J. 2013, 19, 392–402. [Google Scholar] [CrossRef]
- Bove, R.; Alwan, S.; Friedman, J.M.; Hellwig, K.; Houtchens, M.; Koren, G.; Lu, E.; McElrath, T.F.; Smyth, P.; Tremlett, H.; et al. Management of Multiple Sclerosis During Pregnancy and the Reproductive Years: A Systematic Review. Obstet. Gynecol. 2014, 124, 1157–1168. [Google Scholar] [CrossRef]
- Langer-Gould, A.; Gupta, R.; Huang, S.; Hagan, A.; Atkuri, K.; Leimpeter, A.D.; Albers, K.B.; Greenwood, E.; Van Den Eeden, S.K.; Steinman, L.; et al. Interferon-γ–Producing T Cells, Pregnancy, and Postpartum Relapses of Multiple Sclerosis. Arch. Neurol. 2010, 67, 51–57. [Google Scholar] [CrossRef]
- Bridge, F.; Butzkueven, H.; Van Der Walt, A.; Jokubaitis, V.G. The Impact of Menopause on Multiple Sclerosis. Autoimmun. Rev. 2023, 22, 103363. [Google Scholar] [CrossRef]
- Petheram, K.; Dobson, R. All Women with Multiple Sclerosis Should Start Hormone Replacement Therapy at Menopause Unless Contraindicated: Commentary. Mult. Scler. J. 2024, 30, 1111–1112. [Google Scholar] [CrossRef]
- Magyari, M. All Women with Multiple Sclerosis Should Start Hormone Replacement Therapy at Menopause Unless Contraindicated: No. Mult. Scler. J. 2024, 30, 1109–1111. [Google Scholar] [CrossRef]
- Koch, M.; Van Harten, A.; Uyttenboogaart, M.; De Keyser, J. Cigarette Smoking and Progression in Multiple Sclerosis. Neurology 2007, 69, 1515–1520. [Google Scholar] [CrossRef]
- Manouchehrinia, A.; Tench, C.R.; Maxted, J.; Bibani, R.H.; Britton, J.; Constantinescu, C.S. Tobacco Smoking and Disability Progression in Multiple Sclerosis: United Kingdom Cohort Study. Brain 2013, 136, 2298–2304. [Google Scholar] [CrossRef]
- Zivadinov, R.; Weinstock-Guttman, B.; Hashmi, K.; Abdelrahman, N.; Stosic, M.; Dwyer, M.; Hussein, S.; Durfee, J.; Ramanathan, M. Smoking Is Associated with Increased Lesion Volumes and Brain Atrophy in Multiple Sclerosis. Neurology 2009, 73, 504–510. [Google Scholar] [CrossRef]
- Hernán, M.A.; Jick, S.S.; Logroscino, G.; Olek, M.J.; Ascherio, A.; Jick, H. Cigarette Smoking and the Progression of Multiple Sclerosis. Brain 2005, 128, 1461–1465. [Google Scholar] [CrossRef]
- Di Pauli, F.; Reindl, M.; Ehling, R.; Schautzer, F.; Gneiss, C.; Lutterotti, A.; O’Reilly, E.; Munger, K.; Deisenhammer, F.; Ascherio, A.; et al. Smoking Is a Risk Factor for Early Conversion to Clinically Definite Multiple Sclerosis. Mult. Scler. J. 2008, 14, 1026–1030. [Google Scholar] [CrossRef]
- Pittas, F.; Ponsonby, A.-L.; Mei, I.A.F.; Taylor, B.V.; Blizzard, L.; Groom, P.; Ukoumunne, O.C.; Dwyer, T. Smoking Is Associated with Progressive Disease Course and Increased Progression in Clinical Disability in a Prospective Cohort of People with Multiple Sclerosis. J. Neurol. 2009, 256, 577–585. [Google Scholar] [CrossRef]
- Healy, B.C.; Ali, E.N.; Guttmann, C.R.G.; Chitnis, T.; Glanz, B.I.; Buckle, G.; Houtchens, M.; Stazzone, L.; Moodie, J.; Berger, A.M.; et al. Smoking and Disease Progression in Multiple Sclerosis. Arch. Neurol. 2009, 66, 858–864. [Google Scholar] [CrossRef]
- Ramanujam, R.; Hedström, A.-K.; Manouchehrinia, A.; Alfredsson, L.; Olsson, T.; Bottai, M.; Hillert, J. Effect of Smoking Cessation on Multiple Sclerosis Prognosis. JAMA Neurol. 2015, 72, 1117. [Google Scholar] [CrossRef]
- Hedström, A.; Alfredsson, L.; Lundkvist Ryner, M.; Fogdell-Hahn, A.; Hillert, J.; Olsson, T. Smokers Run Increased Risk of Developing Anti-Natalizumab Antibodies. Mult. Scler. J. 2014, 20, 1081–1085. [Google Scholar] [CrossRef]
- Alewel, D.I.; Kodavanti, U.P. Neuroendocrine Contribution to Sex-Related Variations in Adverse Air Pollution Health Effects. J. Toxicol. Environ. Health Part B 2024, 27, 287–314. [Google Scholar] [CrossRef]
- Wu, J.; Alfredsson, L.; Olsson, T.; Hillert, J.A.; Hedström, A.K. Obesity Affects Disease Activity and Progression, Cognitive Functioning, and Quality of Life in People With Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2025, 12, e200334. [Google Scholar] [CrossRef]
- Mowry, E.M.; Azevedo, C.J.; McCulloch, C.E.; Okuda, D.T.; Lincoln, R.R.; Waubant, E.; Hauser, S.L.; Pelletier, D. Body Mass Index, but Not Vitamin D Status, Is Associated with Brain Volume Change in MS. Neurology 2018, 91, e2256–e2264. [Google Scholar] [CrossRef]
- Manuel Escobar, J.; Cortese, M.; Edan, G.; Freedman, M.S.; Hartung, H.-P.; Montalbán, X.; Sandbrink, R.; Radü, E.-W.; Barkhof, F.; Wicklein, E.-M.; et al. Body Mass Index as a Predictor of MS Activity and Progression among Participants in BENEFIT. Mult. Scler. J. 2022, 28, 1277–1285. [Google Scholar] [CrossRef]
- Eva, J.; Olsson, T.; Alfredsson, L.; Hedström, A.K. Smoking and Obesity Interact to Adversely Affect Disease Progression and Cognitive Performance in Multiple Sclerosis. Eur. J. Neurol. 2025, 32, e70058. [Google Scholar] [CrossRef]
- Cantorna, M.T.; Hayes, C.E.; DeLuca, H.F. 1,25-Dihydroxyvitamin D3 Reversibly Blocks the Progression of Relapsing Encephalomyelitis, a Model of Multiple Sclerosis. Proc. Natl. Acad. Sci. USA 1996, 93, 7861–7864. [Google Scholar] [CrossRef] [PubMed]
- Makkawi, S.; Aljabri, A.; Bin Lajdam, G.; Albakistani, A.; Aljohani, A.; Labban, S.; Felemban, R. Effect of Seasonal Variation on Relapse Rate in Patients With Relapsing-Remitting Multiple Sclerosis in Saudi Arabia. Front. Neurol. 2022, 13, 862120. [Google Scholar] [CrossRef] [PubMed]
- Cassard, S.D.; Fitzgerald, K.C.; Qian, P.; Emrich, S.A.; Azevedo, C.J.; Goodman, A.D.; Sugar, E.A.; Pelletier, D.; Waubant, E.; Mowry, E.M. High-Dose Vitamin D3 Supplementation in Relapsing-Remitting Multiple Sclerosis: A Randomised Clinical Trial. eClinicalMedicine 2023, 59, 101957. [Google Scholar] [CrossRef]
- Mahler, J.V.; Solti, M.; Apóstolos-Pereira, S.L.; Adoni, T.; Silva, G.D.; Callegaro, D. Vitamin D3 as an Add-on Treatment for Multiple Sclerosis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Mult. Scler. Relat. Disord. 2024, 82, 105433. [Google Scholar] [CrossRef]
- Thouvenot, E.; Laplaud, D.; Lebrun-Frenay, C.; Derache, N.; Le Page, E.; Maillart, E.; Froment-Tilikete, C.; Castelnovo, G.; Casez, O.; Coustans, M.; et al. High-Dose Vitamin D in Clinically Isolated Syndrome Typical of Multiple Sclerosis: The D-Lay MS Randomized Clinical Trial. JAMA 2025, 333, 1413. [Google Scholar] [CrossRef] [PubMed]
- Giordano, A.; Clarelli, F.; Pignolet, B.; Mascia, E.; Sorosina, M.; Misra, K.; Ferrè, L.; Bucciarelli, F.; Manouchehrinia, A.; Moiola, L.; et al. Vitamin D Affects the Risk of Disease Activity in Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2025, 96, 170–176. [Google Scholar] [CrossRef]
- Butzkueven, H.; Ponsonby, A.-L.; Stein, M.S.; Lucas, R.M.; Mason, D.; Broadley, S.; Kilpatrick, T.; Lechner-Scott, J.; Barnett, M.; Carroll, W.; et al. Vitamin D Did Not Reduce Multiple Sclerosis Disease Activity after a Clinically Isolated Syndrome. Brain 2024, 147, 1206–1215. [Google Scholar] [CrossRef]
- Serag, I.; Abouzid, M.; Alsaadany, K.R.; Hendawy, M.; Ali, H.T.; Yaseen, Y.; Moawad, M.H.E.D. Role of Vitamin D as Adjuvant Therapy on Multiple Sclerosis: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. Eur. J. Med. Res. 2025, 30, 736. [Google Scholar] [CrossRef]
- Haghmorad, D.; Soltanmohammadi, A.; Jadid Tavaf, M.; Zargarani, S.; Yazdanpanah, E.; Shadab, A.; Yousefi, B. The Protective Role of Interaction between Vitamin D, Sex Hormones and Calcium in Multiple Sclerosis. Int. J. Neurosci. 2024, 134, 735–753. [Google Scholar] [CrossRef] [PubMed]
- Nitzan, Z.; Staun-Ram, E.; Volkowich, A.; Miller, A. Multiple Sclerosis-Associated Gut Microbiome in the Israeli Diverse Populations: Associations with Ethnicity, Gender, Disability Status, Vitamin D Levels, and Mediterranean Diet. Int. J. Mol. Sci. 2023, 24, 15024. [Google Scholar] [CrossRef]
- Montgomery, T.L.; Wang, Q.; Mirza, A.; Dwyer, D.; Wu, Q.; Dowling, C.A.; Martens, J.W.S.; Yang, J.; Krementsov, D.N.; Mao-Draayer, Y. Identification of Commensal Gut Microbiota Signatures as Predictors of Clinical Severity and Disease Progression in Multiple Sclerosis. Sci. Rep. 2024, 14, 15292. [Google Scholar] [CrossRef] [PubMed]
- Schwerdtfeger, L.A.; Montini, F.; Lanser, T.B.; Ekwudo, M.N.; Zurawski, J.; Tauhid, S.; Glanz, B.I.; Chu, R.; Bakshi, R.; Chitnis, T.; et al. Gut Microbiota and Metabolites Are Linked to Disease Progression in Multiple Sclerosis. Cell Rep. Med. 2025, 6, 102055. [Google Scholar] [CrossRef]
- Fitzgerald, K.C.; Tyry, T.; Salter, A.; Cofield, S.S.; Cutter, G.; Fox, R.; Marrie, R.A. Diet Quality Is Associated with Disability and Symptom Severity in Multiple Sclerosis. Neurology 2018, 90, e1–e11. [Google Scholar] [CrossRef]
- Simpson-Yap, S.; Neate, S.L.; Nag, N.; Probst, Y.C.; Yu, M.; Jelinek, G.A.; Reece, J.C. Longitudinal Associations between Quality of Diet and Disability over 7.5 Years in an International Sample of People with Multiple Sclerosis. Eur. J. Neurol. 2023, 30, 3200–3211. [Google Scholar] [CrossRef] [PubMed]
- Katz Sand, I.; Levy, S.; Fitzgerald, K.; Sorets, T.; Sumowski, J.F. Mediterranean Diet Is Linked to Less Objective Disability in Multiple Sclerosis. Mult. Scler. J. 2023, 29, 248–260. [Google Scholar] [CrossRef]
- Felicetti, F.; Tommasin, S.; Petracca, M.; De Giglio, L.; Gurreri, F.; Ianniello, A.; Nistri, R.; Pozzilli, C.; Ruggieri, S. Eating Hubs in Multiple Sclerosis: Exploring the Relationship Between Mediterranean Diet and Disability Status in Italy. Front. Nutr. 2022, 9, 882426. [Google Scholar] [CrossRef] [PubMed]
- Felicetti, F.; Ruggieri, S.; Ruotolo, I.; Livi, C.; Sellitto, G.; D’Ambrosi, G.; Nistri, R.; Ianniello, A.; Borriello, G.; Pozzilli, C.; et al. Improvement of Measured and Perceived Disability in Overweight Patients with Multiple Sclerosis Trough Different Patterns of Mediterranean Hypocaloric Diet. Mult. Scler. Relat. Disord. 2025, 94, 106271. [Google Scholar] [CrossRef]
- Johansson, E.; Guo, J.; Wu, J.; Olsson, T.; Alfredsson, L.; Hedström, A.K. Impact of Fish Consumption on Disability Progression in Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2025, 96, 893–899. [Google Scholar] [CrossRef]
- Kazemimiraki, M.; Moazamian, E.; Mokhtari, M.J.; Gholamzad, M. The Role of Lactic Acid Bacteria in Improving Behavioral Deficits, Serum Levels of Vitamin D3, B12 and Reducing Oxidative Stress and Demyelination in a Cuprizone-Induced Demyelination Model of Rat. NeuroMolecular Med. 2025, 27, 14. [Google Scholar] [CrossRef]
- Kim, Y.S.; Unno, T.; Kim, B.-Y.; Park, M.-S. Sex Differences in Gut Microbiota. World J. Mens Health 2020, 38, 48. [Google Scholar] [CrossRef]
- Harding, K.E.; Wardle, M.; Carruthers, R.; Robertson, N.; Zhu, F.; Kingwell, E.; Tremlett, H. Socioeconomic Status and Disability Progression in Multiple Sclerosis: A Multinational Study. Neurology 2019, 92, e1497–e1506. [Google Scholar] [CrossRef]
- He, A.; Manouchehrinia, A.; Glaser, A.; Ciccarelli, O.; Butzkueven, H.; Hillert, J.; McKay, K.A. Premorbid Sociodemographic Status and Multiple Sclerosis Outcomes in a Universal Health Care Context. JAMA Netw. Open 2023, 6, e2334675. [Google Scholar] [CrossRef]
- International Multiple Sclerosis Genetics Consortium; Harroud, A.; Stridh, P.; McCauley, J.L.; Saarela, J.; Van Den Bosch, A.M.R.; Engelenburg, H.J.; Beecham, A.H.; Alfredsson, L.; Alikhani, K.; et al. Locus for Severity Implicates CNS Resilience in Progression of Multiple Sclerosis. Nature 2023, 619, 323–331. [Google Scholar] [CrossRef]
- Flemmen, H.Ø.; Simonsen, C.S.; Broch, L.; Brunborg, C.; Berg-Hansen, P.; Moen, S.M.; Kersten, H.; Celius, E.G. Maternal Education Has Significant Influence on Progression in Multiple Sclerosis. Mult. Scler. Relat. Disord. 2021, 53, 103052. [Google Scholar] [CrossRef] [PubMed]
- Sumowski, J.F.; Leavitt, V.M. Cognitive Reserve in Multiple Sclerosis. Mult. Scler. J. 2013, 19, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, C.E.; Quaranto, B.R.; Healy, B.C.; Benedict, R.H.; Vollmer, T.L. Cognitive Reserve and Symptom Experience in Multiple Sclerosis: A Buffer to Disability Progression Over Time? Arch. Phys. Med. Rehabil. 2013, 94, 1971–1981.e1. [Google Scholar] [CrossRef]
- Voskuhl, R.R.; Palaszynski, K. Sex Hormones in Experimental Autoimmune Encephalomyelitis: Implications for Multiple Sclerosis. Neuroscientist 2001, 7, 258–270. [Google Scholar] [CrossRef]
- Bodhankar, S. PD-1 Interaction with PD-L1 but Not PD-L2 on B-Cells Mediates Protective Effects of Estrogen against EAE. J. Clin. Cell. Immunol. 2013, 4, 143. [Google Scholar] [CrossRef] [PubMed]
- Habib, P.; Dreymueller, D.; Ludwig, A.; Beyer, C.; Dang, J. Sex Steroid Hormone-Mediated Functional Regulation of Microglia-like BV-2 Cells during Hypoxia. J. Steroid Biochem. Mol. Biol. 2013, 138, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Vukusic, S.; Ionescu, I.; El-Etr, M.; Schumacher, M.; Baulieu, E.E.; Cornu, C.; Confavreux, C. The Prevention of Post-Partum Relapses with Progestin and Estradiol in Multiple Sclerosis (POPART’MUS) Trial: Rationale, Objectives and State of Advancement. J. Neurol. Sci. 2009, 286, 114–118. [Google Scholar] [CrossRef]
- Soldan, S.S.; Retuerto, A.I.A.; Sicotte, N.L.; Voskuhl, R.R. Immune Modulation in Multiple Sclerosis Patients Treated with the Pregnancy Hormone Estriol. J. Immunol. 2003, 171, 6267–6274. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Loo, K.K.; Palaszynski, K.; Ashouri, J.; Lubahn, D.B.; Voskuhl, R.R. Estrogen Receptor α Mediates Estrogen’s Immune Protection in Autoimmune Disease. J. Immunol. 2003, 171, 6936–6940. [Google Scholar] [CrossRef]
- Spence, R.D.; Voskuhl, R.R. Neuroprotective Effects of Estrogens and Androgens in CNS Inflammation and Neurodegeneration. Front. Neuroendocrinol. 2012, 33, 105–115. [Google Scholar] [CrossRef]
- Tiwari-Woodruff, S.; Voskuhl, R.R. Neuroprotective and Anti-Inflammatory Effects of Estrogen Receptor Ligand Treatment in Mice. J. Neurol. Sci. 2009, 286, 81–85. [Google Scholar] [CrossRef]
- Wang, C.; Dehghani, B.; Li, Y.; Kaler, L.J.; Proctor, T.; Vandenbark, A.A.; Offner, H. Membrane Estrogen Receptor Regulates Experimental Autoimmune Encephalomyelitis through Up-Regulation of Programmed Death 1. J. Immunol. 2009, 182, 3294–3303. [Google Scholar] [CrossRef]
- Itoh, N.; Kim, R.; Peng, M.; DiFilippo, E.; Johnsonbaugh, H.; MacKenzie-Graham, A.; Voskuhl, R.R. Bedside to Bench to Bedside Research: Estrogen Receptor Beta Ligand as a Candidate Neuroprotective Treatment for Multiple Sclerosis. J. Neuroimmunol. 2017, 304, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Zenclussen, A.C. Adaptive Immune Responses During Pregnancy. Am. J. Reprod. Immunol. 2013, 69, 291–303. [Google Scholar] [CrossRef] [PubMed]
- De León-Nava, M.A.; Nava, K.; Soldevila, G.; López-Griego, L.; Chávez-Ríos, J.R.; Vargas-Villavicencio, J.A.; Morales-Montor, J. Immune Sexual Dimorphism: Effect of Gonadal Steroids on the Expression of Cytokines, Sex Steroid Receptors, and Lymphocyte Proliferation. J. Steroid Biochem. Mol. Biol. 2009, 113, 57–64. [Google Scholar] [CrossRef]
- Garay, L.; Gonzalez Giqueaux, P.; Guennoun, R.; Schumacher, M.; Gonzalez Deniselle, M.C.; De Nicola, A.F. Progesterone Treatment Modulates mRNA OF Neurosteroidogenic Enzymes in a Murine Model of Multiple Sclerosis. J. Steroid Biochem. Mol. Biol. 2017, 165, 421–429. [Google Scholar] [CrossRef]
- Garay, L.; Deniselle, M.C.G.; Lima, A.; Roig, P.; De Nicola, A.F. Effects of Progesterone in the Spinal Cord of a Mouse Model of Multiple Sclerosis. J. Steroid Biochem. Mol. Biol. 2007, 107, 228–237. [Google Scholar] [CrossRef]
- Garay, L.; Deniselle, M.C.G.; Meyer, M.; Costa, J.J.L.; Lima, A.; Roig, P.; DeNicola, A.F. Protective Effects of Progesterone Administration on Axonal Pathology in Mice with Experimental Autoimmune Encephalomyelitis. Brain Res. 2009, 1283, 177–185. [Google Scholar] [CrossRef]
- Drew, P.D.; Chavis, J.A.; Bhatt, R. Sex Steroid Regulation of Microglial Cell Activation: Relevance to Multiple Sclerosis. Ann. N. Y. Acad. Sci. 2003, 1007, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.; Ghoumari, A.M.; Bielecki, B.; Steibel, J.; Boehm, N.; Liere, P.; Macklin, W.B.; Kumar, N.; Habert, R.; Mhaouty-Kodja, S.; et al. The Neural Androgen Receptor: A Therapeutic Target for Myelin Repair in Chronic Demyelination. Brain 2013, 136, 132–146. [Google Scholar] [CrossRef]
- Metzger-Peter, K.; Kremer, L.D.; Edan, G.; Loureiro De Sousa, P.; Lamy, J.; Bagnard, D.; Mensah-Nyagan, A.-G.; Tricard, T.; Mathey, G.; Debouverie, M.; et al. The TOTEM RRMS (Testosterone Treatment on Neuroprotection and Myelin Repair in Relapsing Remitting Multiple Sclerosis) Trial: Study Protocol for a Randomized, Double-Blind, Placebo-Controlled Trial. Trials 2020, 21, 591. [Google Scholar] [CrossRef]
- Fragoso, Y.D. Glatiramer Acetate to Treat Multiple Sclerosis during Pregnancy and Lactation: A Safety Evaluation. Expert Opin. Drug Saf. 2014, 13, 1743–1748. [Google Scholar] [CrossRef]
- Ciplea, A.I.; Kurzeja, A.; Thiel, S.; Haben, S.; Alexander, J.; Adamus, E.; Hellwig, K. Eighteen-Month Safety Analysis of Offspring Breastfed by Mothers Receiving Glatiramer Acetate Therapy for Relapsing Multiple Sclerosis—COBRA Study. Mult. Scler. J. 2022, 28, 1641–1650. [Google Scholar] [CrossRef]
- Kaplan, S.; Zeygarnik, M.; Stern, T.; Hellwig, K. Pregnancy and Fetal Outcomes Following Maternal Exposure to Glatiramer Acetate in All Three Trimesters of Pregnancy. Eur. J. Neurol. 2023, 30, 3890–3895. [Google Scholar] [CrossRef]
- Graber, M.; Panchaud, A.; Legardeur, H.; Derfuss, T.; Friedli, C.; Gobbi, C.; Zecca, C.; Granziera, C.; Jelcic, I.; Hammer, H.N.; et al. Recommendations for the Treatment of Multiple Sclerosis in Family Planning, Pregnancy and Lactation in Switzerland: Immunotherapy. Clin. Transl. Neurosci. 2024, 8, 26. [Google Scholar] [CrossRef]
- Valero-López, G.; Millán-Pascual, J.; Iniesta-Martínez, F.; Delgado-Marín, J.L.; Jimenez-Veiga, J.; Tejero-Martín, A.B.; León-Hernández, A.; Zamarro-Parra, J.; Morales-Ortiz, A.; Meca-Lallana, J.E. Treatment with Natalizumab during Pregnancy in Multiple Sclerosis: The Experience of Implementing a Clinical Practice Protocol (NAP-30). Mult. Scler. Relat. Disord. 2022, 66, 104038. [Google Scholar] [CrossRef]
- Landi, D.; Bovis, F.; Grimaldi, A.; Annovazzi, P.O.; Bertolotto, A.; Bianchi, A.; Borriello, G.; Brescia Morra, V.; Bucello, S.; Buscarinu, M.C.; et al. Exposure to Natalizumab throughout Pregnancy: Effectiveness and Safety in an Italian Cohort of Women with Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2022, 93, 1306–1316. [Google Scholar] [CrossRef]
- Haghikia, A.; Langer-Gould, A.; Rellensmann, G.; Schneider, H.; Tenenbaum, T.; Elias-Hamp, B.; Menck, S.; Zimmermann, J.; Herbstritt, S.; Marziniak, M.; et al. Natalizumab Use During the Third Trimester of Pregnancy. JAMA Neurol. 2014, 71, 891. [Google Scholar] [CrossRef] [PubMed]
- Vukusic, S.; Bove, R.; Dobson, R.; McElrath, T.; Oreja-Guevara, C.; Pietrasanta, C.; Lin, C.-J.; Ferreira, G.; Craveiro, L.; Zecevic, D.; et al. Pregnancy and Infant Outcomes in Women With Multiple Sclerosis Treated With Ocrelizumab. Neurol. Neuroimmunol. Neuroinflamm. 2025, 12, e200349. [Google Scholar] [CrossRef]
- Chey, S.Y.; Kermode, A.G. Pregnancy Outcome Following Exposure to Ocrelizumab in Multiple Sclerosis. Mult. Scler. J.-Exp. Transl. Clin. 2022, 8, 20552173221085737. [Google Scholar] [CrossRef] [PubMed]
- Bove, R.; Pietrasanta, C.; Oreja-Guevara, C.; Hellwig, K.; Dobson, R.; Vukusic, S.; Lin, C.-J.; Alvarez, D.G.P.; Zecevic, D.; Ferreira, G.; et al. Pregnancy and Infant Outcomes in Females Receiving Ocrelizumab for the Treatment of Multiple Sclerosis: Analysis of over 3000 Pregnancies to Date (S7.004). Neurology 2024, 102, 5126. [Google Scholar] [CrossRef]
- Bove, R.; Hellwig, K.; Pasquarelli, N.; Borriello, F.; Dobson, R.; Oreja-Guevara, C.; Lin, C.-J.; Zecevic, D.; Craveiro, L.; McElrath, T.; et al. Ocrelizumab during Pregnancy and Lactation: Rationale and Design of the MINORE and SOPRANINO Studies in Women with MS and Their Infants. Mult. Scler. Relat. Disord. 2022, 64, 103963. [Google Scholar] [CrossRef]
- Landi, D.; Bartolomeo, S.; Bovis, F.; Amato, M.P.; Bonavita, S.; Borriello, G.; Buccafusca, M.; Bucello, S.; Cavalla, P.; Cellerino, M.; et al. Maternal and Fetal Outcomes in an Italian Multicentric Cohort of Women with Multiple Sclerosis Exposed to Dimethyl Fumarate during Pregnancy. Mult. Scler. J. 2024, 30, 1503–1513. [Google Scholar] [CrossRef]
- Platzbecker, K.; Wentzell, N.; Kollhorst, B.; Haug, U. Fingolimod, Teriflunomide and Cladribine for the Treatment of Multiple Sclerosis in Women of Childbearing Age: Description of Drug Utilization and Exposed Pregnancies in Germany. Mult. Scler. Relat. Disord. 2022, 67, 104184. [Google Scholar] [CrossRef]
- Dubinsky, M.C.; Charles, L.; Selmaj, K.W.; Comi, G.; Krakovich, A.; Rosen, M.; Van Der Woude, C.J.; Mahadevan, U. Pregnancy Outcomes in the Ozanimod Clinical Development Program in Patients with Ulcerative Colitis, Crohn’s Disease, and Relapsing Multiple Sclerosis. Inflamm. Bowel Dis. 2024, 30, 2512–2515. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, G.; Francis, G.; Koren, G.; Heining, P.; Zhang, X.; Cohen, J.A.; Kappos, L.; Collins, W. Pregnancy Outcomes in the Clinical Development Program of Fingolimod in Multiple Sclerosis. Neurology 2014, 82, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Iyer, P.; Dobson, R. Multiple Sclerosis in Pregnancy: A Commentary on Disease Modification and Symptomatic Drug Therapies. Neurol. Ther. 2023, 12, 1–10. [Google Scholar] [CrossRef]
- Einsiedler, M.; Zecca, C.; Hofer, L.; Benkert, P.; Axfors, C.; Bedussi, F.; Ceschi, A.; Disanto, G.; Müller, J.; Oechtering, J.; et al. Treatment Strategies and Disease Activity During Pregnancy and Postpartum: Real-World Data from the Swiss Multiple Sclerosis Cohort. Neurol. Clin. Pract. 2025, 15, e200499. [Google Scholar] [CrossRef] [PubMed]
- Oreja-Guevara, C.; Tintoré, M.; Meca, V.; Prieto, J.M.; Meca, J.; Mendibe, M.; Rodríguez-Antigüedad, A. Family Planning in Fertile-Age Patients With Multiple Sclerosis (MS) (ConPlanEM Study): Delphi Consensus Statements. Cureus 2023, 15, e44056. [Google Scholar] [CrossRef] [PubMed]
- Tettey, P.; Simpson, S.; Taylor, B.V.; Van Der Mei, I.A.F. Vascular Comorbidities in the Onset and Progression of Multiple Sclerosis. J. Neurol. Sci. 2014, 347, 23–33. [Google Scholar] [CrossRef]
- Magyari, M.; Sorensen, P.S. Comorbidity in Multiple Sclerosis. Front. Neurol. 2020, 11, 851. [Google Scholar] [CrossRef]
- Marrie, R.A.; Cohen, J.; Stuve, O.; Trojano, M.; Sørensen, P.S.; Reingold, S.; Cutter, G.; Reider, N. A Systematic Review of the Incidence and Prevalence of Comorbidity in Multiple Sclerosis: Overview. Mult. Scler. J. 2015, 21, 263–281. [Google Scholar] [CrossRef]
- Petruzzo, M.; Reia, A.; Maniscalco, G.T.; Luiso, F.; Lanzillo, R.; Russo, C.V.; Carotenuto, A.; Allegorico, L.; Palladino, R.; Brescia Morra, V.; et al. The Framingham Cardiovascular Risk Score and 5-year Progression of Multiple Sclerosis. Eur. J. Neurol. 2021, 28, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Binzer, S.; McKay, K.A.; Brenner, P.; Hillert, J.; Manouchehrinia, A. Disability Worsening among Persons with Multiple Sclerosis and Depression: A Swedish Cohort Study. Neurology 2019, 93, e2216–e2223. [Google Scholar] [CrossRef] [PubMed]
- McKay, K.A.; Tremlett, H.; Fisk, J.D.; Zhang, T.; Patten, S.B.; Kastrukoff, L.; Campbell, T.; Marrie, R.A.; For the CIHR Team in the Epidemiology and Impact of Comorbidity on Multiple Sclerosis. Psychiatric Comorbidity Is Associated with Disability Progression in Multiple Sclerosis. Neurology 2018, 90, e1316–e1323. [Google Scholar] [CrossRef] [PubMed]
- Bruce, J.M.; Hancock, L.M.; Arnett, P.; Lynch, S. Treatment Adherence in Multiple Sclerosis: Association with Emotional Status, Personality, and Cognition. J. Behav. Med. 2010, 33, 219–227. [Google Scholar] [CrossRef]
| Risk Factor | Model/Cell Number | Sex-Specific Effect | Reference |
|---|---|---|---|
| Vitamin D | B10.PL-H2uH2-T18a/SnJ, C57BL/6 mice | VitD3 protects only intact females; no effect in males/ovariectomized unless E2 given. Synergy: VitD3 ↑ E2 synthesis, E2 ↑ VitD receptor in CNS → explains female bias in MS. | Nashold 2009 [17] |
| Consomic mice (B6 vs. PWD) | High VitD protective only in female B6, not in males or resistant PWD. Effect via sex- and genotype-specific suppression of pro-inflammatory CD4+ T cell programs. Suggests gene–sex interactions. | Krementsov 2018 [18] | |
| EBV | 464 EBV+ B cells (GEUVADIS dataset) | Estradiol treatment alters MS-risk gene expression, proliferation, EBV DNA load and EBNA2 expression in a sex-dependent way. | Keane 2021 [19] |
| 69 EBV-infected B cells from 13 RRMS | Host genetic susceptibility and EBV genetic variability converge on shared, sex-dependent mechanisms relevant to MS pathogenesis. | Mechelli 2025 [20] |
| Risk Factor | Study Population | Sex-Specific Effect | Reference(s) |
|---|---|---|---|
| Smoking | 394 MS, 394 HC | ↑ MS risk in women (OR 6.48, 95% CI 1.46–28.78), not in men (OR 0.72). | Alonso 2011 [21] |
| Birth cohorts, multi-country | MS sex ratio correlates with smoking sex ratio (r = 0.16, p = 0.002). | Palacios 2011 [22] | |
| 109 MS, 218 HC | ↑ Cotinine is linked to MS risk mainly in women (OR 3.9, 95% CI 1.3–12). | Sundström 2008 [23] | |
| 356 MS | Men smoke more cigarettes than women (p = 0.024) and have longer duration before onset (9.2 vs. 4.5 yrs, p = 0.002). | Ashtari 2025 [24] | |
| Passive smoking | 129 MS, 1038 HC | Parental smoking ↑ MS risk (RR 2.12, 95% CI 1.43–3.15); no sex effect. | Mikaeloff 2007 [25] |
| Obesity (pediatric/adolescence) | 75 MS/CIS [26]; 774 MS [27]; 453 MS [28]; 254 MS 420 HC [29]; | Higher BMI ↑ MS risk only in girls (p = 0.005) [26], in both sexes, but more in girls [28]; ↑ BMI z-score (7–13 years) ↑ risk in girls (HR 1.18–1.20); weaker in boys [27]; ↑ postpubertal BMI ↑ MS risk in girls OR 1.60 and boys OR 1.43. Earlier puberty → earlier MS onset (girls: p = 0.031; boys: p < 0.001) [29]. | Langer-Gould 2013 [26]; Munger 2013 [27]; Huppke 2019 [28]; Chitnis 2016 [29] |
| Obesity (women) | 593 MS | Obesity at 18 years doubles MS risk (RR 2.25, 95% CI 1.50–3.37, p < 0.001). | Munger 2009 [30] |
| Obesity (men) | 628 MS, 6187 HC | No association of BMI or parental occupation with MS risk in men. | Gunnarsson 2015 [31] |
| Vitamin D | 103 MS, 110 HC | Each +10 nmol/L 25(OH)D ↓ MS odds in women by 19% (OR 0.81, 95% CI 0.69–0.95). | Kragt 2009 [32] |
| UVR | 2667 MS | Prevalence inversely correlated with UVR: stronger in females (r = −0.76, p < 0.001) vs. males (r = −0.46, p = 0.032). | Orton 2011 [33] |
| EBV | 259 IM/MS | IM→MS delay shorter in males/high EBNA1, longer in females/low EBNA1 (shortening beyond puberty). | Endriz 2017 [34] |
| Puberty | 5493 MS, 1759 HC | No association between puberty timing and MS risk in males. In females, earlier puberty increases MS risk (RR = 0.9 per year later, p = 0.00017). No effect on age at onset. | Ramagopalan 2009 [35] |
| 150 MS | Earlier menarche associates with earlier MS onset: age at first symptoms increases by 1.16 years for each year delay in menarche (R2 = 0.69, p = 0.04). | Sloka 2006 [36] | |
| Oral contraceptive | 315 MS/238371 [37]; 1131 MS/181058 [38], 891MS/3564 HC [39] | No association with MS risk [37,38,39]; in nulliparous women, longer or earlier OC use ↑ MS risk 2–3x [38] | Hernán 2000 [37]; Nova 2024 [38]; Zhang 2024 [39] |
| 106 MS | MS incidence is 40% lower in OC users versus nonusers (OR 0.6, 95% CI 0.4–1.0) | Alonso 2005 [40] | |
| 400 MS/CIS, 3904 HC | OC use ↑ MS/CIS risk (OR = 1.52, 95% CI = 1.21–1.91; p < 0.001) | Hellwig 2016 [41] |
| Risk Factor | Model | Sex-Specific Effect | Reference |
|---|---|---|---|
| Hormonal exposure | Wild-type and transgenic mice [120], or B-cell-deficient mice [121], ARNesCre mice [122], castrated male C57BL/6 mice [123], Female C57Bl/6 mice [124] Female SJL/J, male C57BL10/J mice [125] | E2 and progesterone enhance astrocyte numbers and promote remyelination [120,124]. E2 protective effects are lost in B-cell-deficient mice (no reduction in disease severity) [121]. Testosterone is required for spontaneous remyelination in male mice, depending on CXCR4 signaling [122] and preserves excitatory synaptic transmission in the hippocampus [123]. Estriol, but not progesterone treatment, reduces the severity of EAE [125]. | Bardy- Lagarde 2025 [120], Bodhankar 2011 [121], Asbelaoui 2024 [122], Ziehn 2012 [123], El-Etr 2016 [124], Kim 1999 [125] |
| Obesity | C57BL/6J, SJL/J, and db/db mice | Obesity promoted stronger Th1 inflammation and worsened EAE severity in females, linked to IFN-α/γ–STAT1 signaling in CD4+ T cells. | Cordeiro 2024 [63] |
| Vitamin D | Dark Agouti rats (46 females, 50 males) | Females had higher antioxidant defenses, myelin preservation, and delayed disease peak; however, vitamin D supplementation conferred greater benefit in males due to lower baseline antioxidant capacity. | Haindl 2024 [126] |
| Gut microbiota | Female C57BL/6 mice | Pregnancy-level estrogen reshaped gut microbiota, prevented EAE-related changes, and enriched immune-regulatory bacteria, suggesting hormone–microbiota cross-talk in neuroprotection. | Benedek 2017 [127] |
| Risk Factor | Study Population | Sex-Specific Effect | Reference |
|---|---|---|---|
| Pregnancy | 254 MS [128], 355 pregnancies [129], 338 MS [130], 61 MS [131], 28 MS [132], 2 MS [133], 2105 MS [134], 677 [135], 2466 MS [136], 501 MS [137], 973 MS [138], 137 MS, 396 HC [139] | Relapse rates drop up to 70% in late pregnancy [128,129,130,131], with frequent post-partum clinical/radiological rebound [128,129,130,131,132,133]. Pregnancy may slow disability progression [134,135,136,137,138], with parous women reaching milestones later, with a pregnancy-dose effect [139]. | Confavreux 1998 [128], Hellwig 2012 [129], Korn-Lubetzki 1984 [130], Jalkanen 2010 [131], Paavilainen 2007 [132], Van Walderveen 1994 [133], Ramagopalan 2012 [134], Karp 2014 [135], Jokubaitis 2016 [136], Zuluaga 2019 [137], D’hooghe 2012 [138], Zeydan 2020 [139] |
| Breastfeeding | 254 MS [128], 201 MS [140], 375 MS [141], 140 MS [142], 173 MS [143], 867 MS [144], 32 MS, 29 HC [145], 350 pregnancies [146], 108 MS [147], 61 MS [148], 93 MS [149], MS [150], 97 MS [151], 43 MS, 21 HC [152], 210 MS [153] | Breastfeeding, especially exclusive, reduces postpartum relapse risk [140,141,142,143,145,153]; non-exclusive breastfeeding compared to exclusive breastfeeding associates with higher relapse risk [140] Breastfeeding does not associates with relapses [128,146,147,148,149,150,151,152], early post-partum treatment with natalizumab/fingolimod reduces relapses compared with exclusive breastfeeding [144]. | Confavreux 1998 [128], Hellwig 2015 [140], Langer-Gould 2020 [141], Gulick 2002 [142], Haas 2007 [143], Haben 2024 [144], Langer-Gould 2009 [145], Portaccio 2014 [146], Achiron 2004 [147], Airas 2010 [148], Benoit 2016 [149], De Las Heras 2007 [150], Jesus-Ribeiro 2017 [151], Runia 2015 [152], Lorefice 2022 [153] |
| Menopause | 412 MS [154] 724 MS [155], 147 MS [156], 75 MS [157], 559 MS [158], 148 MS [159], 184 MS [160], 37 MS [161] | Menopause associates with reduced ARR [156,161], increased disability progression [155,159], greater atrophy [154,156], greater MSFC worsening [154,160] and rapid increase in sNfL [160]. Disability progression remains stable after menopause [157,158,161]. | Graves 2018 [154], Bove 2016 [155], Lorefice 2023 [156], Otero-Romero 2022 [157], Simonsen 2025 [158], Baroncini 2019 [159], Silverman 2025 [160], Ladeira 2018 [161] |
| Hormonal replacement therapy | 14 MS, 13 HC [162], 248 MS [163], 16 MS, 15 HC [164], 3325 MS [165] | HRT improves quality of life [163]. HRT does not associate with disability accrual (trend toward higher risk with longer use) [165]; it does not change sGFAP or sNfL levels [164] nor MRI activity [162]. | Juutinen 2022 [162], Bove 2016 [163], Juutinen 2024 [164], Kopp 2022 [165] |
| Assisted reproductive technologies | 3 MS/1 CIS [166], 6 MS [167], 23 MS [168], 36 MS [169], 115 MS [170], 65 MS [171], 225 MS [172] | GnRH agonists may increase relapse/MRI activity [166,167,168,169]. No increased relapse risk with either GnRH agonists or antagonists [170,171,172]. | Laplaud 2006 [166], Hellwig 2008, 2009 [167,168], Michel 2012 [169], Mainguy 2025, 2022 [170,172], Graham 2023 [171] |
| Oral contraceptives | 973 MS [138], 202 MS [173], 12 MS [174], 495 MS [175], 132 MS [176], 164 MS [177], 1210 MS [178], 174 MS [179], 150 MS [180], 46 MS [181], 62 MS [182] | OC associate with higher risk of reaching disability milestones [138]. No efficacy in preventing postpartum relapses [173]. OC do not negatively affect long-term prognosis [174,175,176]. OC delay PIRA [178] and associate with lower disability [176,179,182], MRI activity [180] or relapses [177]. Continuous OCs show a trend towards less inflammatory activity on MRI relative to cyclic OCs [181]. | D’hooghe 2012 [138], Vukusic 2021 [173], Sicotte 2002 [174], Otero-Romero 2022 [175], Sena 2012 [176], Voskuhl 2016 [177], Giordano 2025 [178], Gava 2014 [179], Pozzilli 2015 [180], Chen 2020 [181], Ferret-Sena 2024 [182] |
| Testosterone | 96 MS men [183] 10 MS men [184,185,186] | Testosterone levels in men negatively associate with clinical and cognitive outcomes [183]. Testosterone therapy slows gray matter [186] and brain atrophy rate and improve cognition [185] via immune modulation and increased neurotrophic factors [184]. | Bove 2014 [183], Sicotte 2007 [185], Gold 2008 [184], Kurth 2014 [186] |
| Gender-affirming hormone therapy | 17 TGD-MS | In transgender individuals with MS, GAHT increases clinical and radiological activity | Neyal 2025 [187] |
| Smoking | 695 MS | Smoking ↑ risk of NAbs to IFNβ-1a (OR 1.9, p = 0.002); no sex differences. | Hedström 2014 [188] |
| Air pollutants | 2490 MS hospitalizations | Exposure to an increase of 1 µg/m3 in SO2 concentration associates with a hospitalization risk increase +10% in females, +7.5% in males. PM10 and NO associate with ↑ risk only in females. | Diniz 2023 [189] |
| Obesity | 1037 MS | Higher BMI was associated with higher cross-sectional EDSS in women, but with lower EDSS in men (p = 0.003, N = 758). | Bove 2016 [190] |
| 924 MS | Education protective from weight gain (OR 0.88); rapid weight gain (≥2 kg/m2/year) more frequent in females than males (OR 1.84); disability not associated with annualized BMI increases. | Conway 2025 [191] | |
| Education | 11,586 MS | Higher education ↓ risk of EDSS 4 in RRMS at 5 years in both sexes; stronger effect in women (HR 0.39–0.74) vs. men (HR 0.29–0.63). | Lefort 2025 [192] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbuti, E.; Piervincenzi, C.; Ruggieri, S.; Petracca, M. Sex-Related Differences in Lifestyle Factors Affecting Multiple Sclerosis Susceptibility and Disease Progression. Brain Sci. 2025, 15, 1097. https://doi.org/10.3390/brainsci15101097
Barbuti E, Piervincenzi C, Ruggieri S, Petracca M. Sex-Related Differences in Lifestyle Factors Affecting Multiple Sclerosis Susceptibility and Disease Progression. Brain Sciences. 2025; 15(10):1097. https://doi.org/10.3390/brainsci15101097
Chicago/Turabian StyleBarbuti, Elena, Claudia Piervincenzi, Serena Ruggieri, and Maria Petracca. 2025. "Sex-Related Differences in Lifestyle Factors Affecting Multiple Sclerosis Susceptibility and Disease Progression" Brain Sciences 15, no. 10: 1097. https://doi.org/10.3390/brainsci15101097
APA StyleBarbuti, E., Piervincenzi, C., Ruggieri, S., & Petracca, M. (2025). Sex-Related Differences in Lifestyle Factors Affecting Multiple Sclerosis Susceptibility and Disease Progression. Brain Sciences, 15(10), 1097. https://doi.org/10.3390/brainsci15101097

