Response Assessment in Long-Term Glioblastoma Survivors Using a Multiparametric MRI-Based Prediction Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. MRI Data Acquisition
2.3. Diffusion Tensor Imaging
2.4. Dynamic Susceptibility Contrast-Perfusion Weighted Imaging
2.5. Image Processing
2.6. Radiographic Response Assessment Using Modified RANO Criteria
2.7. Response Assessment and Distinction of TP and PsP Using Histological/Immunohistochemical Analysis
2.8. Data Analysis
- Patient 1
- Patient 2
- Patient 3
- Patient 4
- Patient 5
- Patient 6
3. Discussion
Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Richardson, T.E.; Walker, J.M.; Hambardzumyan, D.; Brem, S.; Hatanpaa, K.J.; Viapiano, M.S.; Pai, B.; Umphlett, M.; Becher, O.J.; Snuderl, M.; et al. Genetic and Epigenetic Instability as an Underlying Driver of Progression and Aggressive Behavior in IDH-Mutant Astrocytoma. Acta Neuropathol. 2024, 148, 5. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.S.; Ning, S.; Eschbacher, J.M.; Gaw, N.; Dueck, A.C.; Smith, K.A.; Nakaji, P.; Plasencia, J.; Ranjbar, S.; Price, S.J.; et al. Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma. PLoS ONE 2015, 10, e0141506. [Google Scholar] [CrossRef] [PubMed]
- Horbinski, C.; Nabors, L.B.; Portnow, J.; Baehring, J.; Bhatia, A.; Bloch, O.; Brem, S.; Butowski, N.; Cannon, D.M.; Chao, S.; et al. NCCN Guidelines® Insights: Central Nervous System Cancers, Version 2.2022. J. Natl. Compr. Cancer Netw. 2023, 21, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Topkan, E.; Topuk, S.; Oymak, E.; Parlak, C.; Pehlivan, B. Pseudoprogression in Patients with Glioblastoma Multiforme after Concurrent Radiotherapy and Temozolomide. Am. J. Clin. Oncol. 2012, 35, 284–289. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Y.; Wu, Z.; Xie, R.; Zeng, F.; Cai, H.; Lui, S.; Song, B.; Chen, L.; Wu, M. Advanced Imaging Techniques for Differentiating Pseudoprogression and Tumor Recurrence After Immunotherapy for Glioblastoma. Front. Immunol. 2021, 12, 790674. [Google Scholar] [CrossRef]
- Ellingson, B.M.; Chung, C.; Pope, W.B.; Boxerman, J.L.; Kaufmann, T.J. Pseudoprogression, Radionecrosis, Inflammation or True Tumor Progression? Challenges Associated with Glioblastoma Response Assessment in an Evolving Therapeutic Landscape. J. Neurooncol. 2017, 134, 495–504. [Google Scholar] [CrossRef]
- Bagley, S.J.; Schwab, R.D.; Nelson, E.; Viaene, A.N.; Binder, Z.A.; Lustig, R.A.; O’Rourke, D.M.; Brem, S.; Desai, A.S.; Nasrallah, M.P. Histopathologic Quantification of Viable Tumor versus Treatment Effect in Surgically Resected Recurrent Glioblastoma. J. Neurooncol. 2019, 141, 421–429. [Google Scholar] [CrossRef]
- Chaskis, C.; Neyns, B.; Michotte, A.; De Ridder, M.; Everaert, H. Pseudoprogression after Radiotherapy with Concurrent Temozolomide for High-Grade Glioma: Clinical Observations and Working Recommendations. Surg. Neurol. 2009, 72, 423–428. [Google Scholar] [CrossRef]
- Thust, S.C.; van den Bent, M.J.; Smits, M. Pseudoprogression of Brain Tumors. J. Magn. Reson. Imaging 2018, 48, 571–589. [Google Scholar] [CrossRef]
- Yadav, V.K.; Mohan, S.; Agarwal, S.; de Godoy, L.L.; Rajan, A.; Nasrallah, M.P.; Bagley, S.J.; Brem, S.; Loevner, L.A.; Poptani, H.; et al. Distinction of Pseudoprogression from True Progression in Glioblastomas Using Machine Learning Based on Multiparametric Magnetic Resonance Imaging and O-Methylguanine-Methyltransferase Promoter Methylation Status. Neurooncol. Adv. 2024, 6, vdae159. [Google Scholar] [CrossRef]
- Sun, Y.-Z.; Yan, L.-F.; Han, Y.; Nan, H.-Y.; Xiao, G.; Tian, Q.; Pu, W.-H.; Li, Z.-Y.; Wei, X.-C.; Wang, W.; et al. Differentiation of Pseudoprogression from True Progressionin Glioblastoma Patients after Standard Treatment: A Machine Learning Strategy Combinedwith Radiomics Features from T-Weighted Contrast-Enhanced Imaging. BMC Med. Imaging 2021, 21, 17. [Google Scholar] [CrossRef] [PubMed]
- Chawla, S.; Bukhari, S.; Afridi, O.M.; Wang, S.; Yadav, S.K.; Akbari, H.; Verma, G.; Nath, K.; Haris, M.; Bagley, S.; et al. Metabolic and Physiologic Magnetic Resonance Imaging in Distinguishing True Progression from Pseudoprogression in Patients with Glioblastoma. NMR Biomed. 2022, 35, e4719. [Google Scholar] [CrossRef] [PubMed]
- Poon, M.T.C.; Sudlow, C.L.M.; Figueroa, J.D.; Brennan, P.M. Longer-Term (≥2 Years) Survival in Patients with Glioblastoma in Population-Based Studies Pre- and Post-2005: A Systematic Review and Meta-Analysis. Sci. Rep. 2020, 10, 11622. [Google Scholar] [CrossRef] [PubMed]
- de Godoy, L.L.; Chawla, S.; Brem, S.; Mohan, S. Taming Glioblastoma in “Real Time”: Integrating Multimodal Advanced Neuroimaging/AI Tools Towards Creating a Robust and Therapy Agnostic Model for Response Assessment in Neuro-Oncology. Clin. Cancer Res. 2023, 29, 2588–2592. [Google Scholar] [CrossRef]
- van Dijken, B.R.J.; van Laar, P.J.; Holtman, G.A.; van der Hoorn, A. Diagnostic Accuracy of Magnetic Resonance Imaging Techniques for Treatment Response Evaluation in Patients with High-Grade Glioma, a Systematic Review and Meta-Analysis. Eur. Radiol. 2017, 27, 4129–4144. [Google Scholar] [CrossRef]
- Wang, S.; Martinez-Lage, M.; Sakai, Y.; Chawla, S.; Kim, S.G.; Alonso-Basanta, M.; Lustig, R.A.; Brem, S.; Mohan, S.; Wolf, R.L.; et al. Differentiating Tumor Progression from Pseudoprogression in Patients with Glioblastomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI. Am. J. Neuroradiol. 2016, 37, 28–36. [Google Scholar] [CrossRef]
- de Godoy, L.L.; Mohan, S.; Wang, S.; Nasrallah, M.P.; Sakai, Y.; O’Rourke, D.M.; Bagley, S.; Desai, A.; Loevner, L.A.; Poptani, H.; et al. Validation of Multiparametric MRI Based Prediction Model in Identification of Pseudoprogression in Glioblastomas. J. Transl. Med. 2023, 21, 287. [Google Scholar] [CrossRef]
- Wang, S.; O’Rourke, D.M.; Chawla, S.; Verma, G.; Nasrallah, M.P.; Morrissette, J.J.D.; Plesa, G.; June, C.H.; Brem, S.; Maloney, E.; et al. Multiparametric Magnetic Resonance Imaging in the Assessment of Anti-EGFRvIII Chimeric Antigen Receptor T Cell Therapy in Patients with Recurrent Glioblastoma. Br. J. Cancer 2019, 120, 54–56. [Google Scholar] [CrossRef]
- de Godoy, L.L.; Chawla, S.; Brem, S.; Wang, S.; O’Rourke, D.M.; Nasrallah, M.P.; Desai, A.; Loevner, L.A.; Liau, L.M.; Mohan, S. Assessment of Treatment Response to Dendritic Cell Vaccine in Patients with Glioblastoma Using a Multiparametric MRI-Based Prediction Model. J. Neurooncol. 2023, 163, 173–183. [Google Scholar] [CrossRef]
- Briceno, N.; Vera, E.; Komlodi-Pasztor, E.; Abdullaev, Z.; Choi, A.; Grajkowska, E.; Kunst, T.; Levine, J.; Lindsley, M.; Fernandez, K.; et al. Long-Term Survivors of Glioblastoma: Tumor Molecular, Clinical, and Imaging Findings. Neurooncol. Adv. 2024, 6, vdae019. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015. Neuro-Oncology 2018, 20, iv1–iv86. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.; Ashley, D.M.; López, G.Y.; Malinzak, M.; Friedman, H.S.; Khasraw, M. Management of Glioblastoma: State of the Art and Future Directions. CA Cancer J. Clin. 2020, 70, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Hertler, C.; Felsberg, J.; Gramatzki, D.; Le Rhun, E.; Clarke, J.; Soffietti, R.; Wick, W.; Chinot, O.; Ducray, F.; Roth, P.; et al. Long-Term Survival with IDH Wildtype Glioblastoma: First Results from the ETERNITY Brain Tumor Funders’ Collaborative Consortium (EORTC 1419). Eur. J Cancer 2023, 189, 112913. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Kim, S.; Chawla, S.; Wolf, R.L.; Zhang, W.-G.; O’Rourke, D.M.; Judy, K.D.; Melhem, E.R.; Poptani, H. Differentiation between Glioblastomas and Solitary Brain Metastases Using Diffusion Tensor Imaging. Neuroimage 2009, 44, 653–660. [Google Scholar] [CrossRef]
- Chawla, S.; Wang, S.; Mohan, S.; Nasrallah, M.; Verma, G.; Brem, S.; O’Rourke, D.M.; Wolf, R.L.; Poptani, H.; Nabavizadeh, S.A. Differentiation of Brain Infection from Necrotic Glioblastoma Using Combined Analysis of Diffusion and Perfusion MRI. J. Magn. Reson. Imaging 2019, 49, 184–194. [Google Scholar] [CrossRef]
- Ellingson, B.M.; Wen, P.Y.; Cloughesy, T.F. Modified Criteria for Radiographic Response Assessment in Glioblastoma Clinical Trials. Neurotherapeutics 2017, 14, 307–320. [Google Scholar] [CrossRef]
- Nasrallah, M.P.; Binder, Z.A.; Oldridge, D.A.; Zhao, J.; Lieberman, D.B.; Roth, J.J.; Watt, C.D.; Sukhadia, S.; Klinman, E.; Daber, R.D.; et al. Molecular Neuropathology in Practice: Clinical Profiling and Integrative Analysis of Molecular Alterations in Glioblastoma. Acad. Pathol. 2019, 6, 2374289519848353. [Google Scholar] [CrossRef]
- Akbari, H.; Rathore, S.; Bakas, S.; Nasrallah, M.P.; Shukla, G.; Mamourian, E.; Rozycki, M.; Bagley, S.J.; Rudie, J.D.; Flanders, A.E.; et al. Histopathology-Validated Machine Learning Radiographic Biomarker for Noninvasive Discrimination between True Progression and Pseudo-Progression in Glioblastoma. Cancer 2020, 126, 2625–2636. [Google Scholar] [CrossRef]
- Molina, D.; Pérez-Beteta, J.; Luque, B.; Arregui, E.; Calvo, M.; Borrás, J.M.; López, C.; Martino, J.; Velasquez, C.; Asenjo, B.; et al. Tumour Heterogeneity in Glioblastoma Assessed by MRI Texture Analysis: A Potential Marker of Survival. Br. J. Radiol. 2016, 89, 20160242. [Google Scholar] [CrossRef]
- Hu, L.S.; Hawkins-Daarud, A.; Wang, L.; Li, J.; Swanson, K.R. Imaging of Intratumoral Heterogeneity in High-Grade Glioma. Cancer Lett. 2020, 477, 97–106. [Google Scholar] [CrossRef]
- Erpolat, O.P.; Akmansu, M.; Goksel, F.; Bora, H.; Yaman, E.; Büyükberber, S. Outcome of Newly Diagnosed Glioblastoma Patients Treated by Radiotherapy plus Concomitant and Adjuvant Temozolomide: A Long-Term Analysis. Tumori J. 2009, 95, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015–2019. Neuro-Oncology 2022, 24, v1–v95. [Google Scholar] [CrossRef] [PubMed]
- Waite, K.A.; Cioffi, G.; Kruchko, C.; Patil, N.; Brat, D.J.; Bruner, J.M.; McLendon, R.E.; Tihan, T.; Ostrom, Q.T.; Barnholtz-Sloan, J.S. Aligning the Central Brain Tumor Registry of the United States (CBTRUS) Histology Groupings with Current Definitions. Neurooncol. Pract. 2022, 9, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Tykocki, T.; Eltayeb, M. Ten-Year Survival in Glioblastoma. A Systematic Review. J. Clin. Neurosci. 2018, 54, 7–13. [Google Scholar] [CrossRef]
- Goldman, D.A.; Hovinga, K.; Reiner, A.S.; Esquenazi, Y.; Tabar, V.; Panageas, K.S. The Relationship between Repeat Resection and Overall Survival in Patients with Glioblastoma: A Time-Dependent Analysis. J. Neurosurg. 2018, 129, 1231–1239. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, R.; Yu, Y.; Liu, J.; Luo, T.; Fan, F. Glioblastoma Treatment Modalities besides Surgery. J. Cancer 2019, 10, 4793–4806. [Google Scholar] [CrossRef]
- Gerstner, E.R.; McNamara, M.B.; Norden, A.D.; Lafrankie, D.; Wen, P.Y. Effect of Adding Temozolomide to Radiation Therapy on the Incidence of Pseudo-Progression. J. Neurooncol. 2009, 94, 97–101. [Google Scholar] [CrossRef]
- da Cruz, L.C.H.; Rodriguez, I.; Domingues, R.C.; Gasparetto, E.L.; Sorensen, A.G. Pseudoprogression and Pseudoresponse: Imaging Challenges in the Assessment of Posttreatment Glioma. Am. J. Neuroradiol. 2011, 32, 1978–1985. [Google Scholar] [CrossRef]
- Kazda, T.; Hardie, J.G.; Pafundi, D.H.; Kaufmann, T.J.; Brinkmann, D.H.; Laack, N.N. Evaluation of RANO Response Criteria Compared to Clinician Evaluation in WHO Grade III Anaplastic Astrocytoma: Implications for Clinical Trial Reporting and Patterns of Failure. J. Neurooncol. 2015, 122, 197–203. [Google Scholar] [CrossRef]
- Prager, A.J.; Martinez, N.; Beal, K.; Omuro, A.; Zhang, Z.; Young, R.J. Diffusion and Perfusion MRI to Differentiate Treatment-Related Changes Including Pseudoprogression from Recurrent Tumors in High-Grade Gliomas with Histopathologic Evidence. Am. J. Neuroradiol. 2015, 36, 877–885. [Google Scholar] [CrossRef]
- Thomas, A.A.; Arevalo-Perez, J.; Kaley, T.; Lyo, J.; Peck, K.K.; Shi, W.; Zhang, Z.; Young, R.J. Dynamic Contrast Enhanced T1 MRI Perfusion Differentiates Pseudoprogression from Recurrent Glioblastoma. J. Neurooncol. 2015, 125, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Hatzoglou, V.; Yang, T.J.; Omuro, A.; Gavrilovic, I.; Ulaner, G.; Rubel, J.; Schneider, T.; Woo, K.M.; Zhang, Z.; Peck, K.K.; et al. A Prospective Trial of Dynamic Contrast-Enhanced MRI Perfusion and Fluorine-18 FDG PET-CT in Differentiating Brain Tumor Progression from Radiation Injury after Cranial Irradiation. Neuro-Oncology 2016, 18, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Baradaran, H.; Delgado, D.; Askin, G.; Christos, P.; John Tsiouris, A.; Gupta, A. MR Perfusion-Weighted Imaging in the Evaluation of High-Grade Gliomas after Treatment: A Systematic Review and Meta-Analysis. Neuro-Oncology 2017, 19, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Zreik, J.; Moinuddin, F.M.; Yolcu, Y.U.; Alvi, M.A.; Chaichana, K.L.; Quinones-Hinojosa, A.; Bydon, M. Improved 3-Year Survival Rates for Glioblastoma Multiforme Are Associated with Trends in Treatment: Analysis of the National Cancer Database from 2004 to 2013. J. Neurooncol. 2020, 148, 69–79. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Cheng, G.; Zhang, J.; Li, X. IDH Mutation and MGMT Promoter Methylation Are Associated with the Pseudoprogression and Improved Prognosis of Glioblastoma Multiforme Patients Who Have Undergone Concurrent and Adjuvant Temozolomide-Based Chemoradiotherapy. Clin. Neurol. Neurosurg. 2016, 151, 31–36. [Google Scholar] [CrossRef]
- Weller, M.; Stupp, R.; Reifenberger, G.; Brandes, A.A.; van den Bent, M.J.; Wick, W.; Hegi, M.E. MGMT Promoter Methylation in Malignant Gliomas: Ready for Personalized Medicine? Nat. Rev. Neurol. 2010, 6, 39–51. [Google Scholar] [CrossRef]
- Brandes, A.A.; Franceschi, E.; Tosoni, A.; Blatt, V.; Pession, A.; Tallini, G.; Bertorelle, R.; Bartolini, S.; Calbucci, F.; Andreoli, A.; et al. MGMT Promoter Methylation Status Can Predict the Incidence and Outcome of Pseudoprogression after Concomitant Radiochemotherapy in Newly Diagnosed Glioblastoma Patients. J. Clin. Oncol. 2008, 26, 2192–2197. [Google Scholar] [CrossRef]
- Jovčevska, I. Genetic Secrets of Long-Term Glioblastoma Survivors. Bosn. J. Basic. Med. Sci. 2019, 19, 116–124. [Google Scholar] [CrossRef]
- Zong, H.; Verhaak, R.G.W.; Canoll, P. The Cellular Origin for Malignant Glioma and Prospects for Clinical Advancements. Expert. Rev. Mol. Diagn. 2012, 12, 383–394. [Google Scholar] [CrossRef]
- Karschnia, P.; Young, J.S.; Dono, A.; Häni, L.; Sciortino, T.; Bruno, F.; Juenger, S.T.; Teske, N.; Morshed, R.A.; Haddad, A.F.; et al. Prognostic Validation of a New Classification System for Extent of Resection in Glioblastoma: A Report of the RANO Resect Group. Neuro-Oncology 2023, 25, 940–954. [Google Scholar] [CrossRef] [PubMed]
- Dunn, G.P.; Rinne, M.L.; Wykosky, J.; Genovese, G.; Quayle, S.N.; Dunn, I.F.; Agarwalla, P.K.; Chheda, M.G.; Campos, B.; Wang, A.; et al. Emerging Insights into the Molecular and Cellular Basis of Glioblastoma. Genes Dev. 2012, 26, 756–784. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Warrington, N.M.; Taylor, S.J.; Whitmire, P.; Carrasco, E.; Singleton, K.W.; Wu, N.; Lathia, J.D.; Berens, M.E.; Kim, A.H.; et al. Sex Differences in GBM Revealed by Analysis of Patient Imaging, Transcriptome, and Survival Data. Sci. Transl. Med. 2019, 11, 473. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Ma, W.; Chen, Y.; Yu, Y.; Zhu, D.; Shi, J.; Zhang, Y. Impact of Gender on the Survival of Patients with Glioblastoma. Biosci. Rep. 2018, 38, BSR20180752. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Jedlicka, A.; Ahuja, N.; Gibbons, M.C.; Baylin, S.B.; Burger, P.C.; Issa, J.P. Concordant Methylation of the ER and N33 Genes in Glioblastoma Multiforme. Oncogene 1998, 16, 3197–3202. [Google Scholar] [CrossRef]
- Barone, T.A.; Gorski, J.W.; Greenberg, S.J.; Plunkett, R.J. Estrogen Increases Survival in an Orthotopic Model of Glioblastoma. J. Neurooncol. 2009, 95, 37–48. [Google Scholar] [CrossRef]
- Yu, X.; Jiang, Y.; Wei, W.; Cong, P.; Ding, Y.; Xiang, L.; Wu, K. Androgen Receptor Signaling Regulates Growth of Glioblastoma Multiforme in Men. Tumour Biol. 2015, 36, 967–972. [Google Scholar] [CrossRef]
- Fan, X.; Li, Y.; Shan, X.; You, G.; Wu, Z.; Li, Z.; Qiao, H.; Jiang, T. Seizures at Presentation Are Correlated with Better Survival Outcomes in Adult Diffuse Glioma: A Systematic Review and Meta-Analysis. Seizure 2018, 59, 16–23. [Google Scholar] [CrossRef]
- Berendsen, S.; Varkila, M.; Kroonen, J.; Seute, T.; Snijders, T.J.; Kauw, F.; Spliet, W.G.M.; Willems, M.; Poulet, C.; Broekman, M.L.; et al. Prognostic Relevance of Epilepsy at Presentation in Glioblastoma Patients. Neuro-Oncology 2016, 18, 700–706. [Google Scholar] [CrossRef]
- Dobran, M.; Nasi, D.; Chiriatti, S.; Gladi, M.; di Somma, L.; Iacoangeli, M.; Scerrati, M. Prognostic Factors in Glioblastoma: Is There a Role for Epilepsy? Neurol. Med. Chir. 2018, 58, 110–115. [Google Scholar] [CrossRef]
- Flanigan, P.M.; Jahangiri, A.; Kuang, R.; Truong, A.; Choi, S.; Chou, A.; Rick, J.W.; Chang, S.M.; Molinaro, A.M.; McDermott, M.W.; et al. Improved Survival with Decreased Wait Time to Surgery in Glioblastoma Patients Presenting with Seizure. Neurosurgery 2017, 81, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Liau, L.M.; Ashkan, K.; Brem, S.; Campian, J.L.; Trusheim, J.E.; Iwamoto, F.M.; Tran, D.D.; Ansstas, G.; Cobbs, C.S.; Heth, J.A.; et al. Association of Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination with Extension of Survival Among Patients with Newly Diagnosed and Recurrent Glioblastoma. JAMA Oncol. 2022, 9, 112–121. [Google Scholar] [CrossRef]
- Everson, R.G.; Hugo, W.; Sun, L.; Antonios, J.; Lee, A.; Ding, L.; Bu, M.; Khattab, S.; Chavez, C.; Billingslea-Yoon, E.; et al. TLR Agonists Polarize Interferon Responses in Conjunction with Dendritic Cell Vaccination in Malignant Glioma: A Randomized Phase II Trial. Nat. Commun. 2024, 15, 3882. [Google Scholar] [CrossRef]
- Stupp, R.; Taillibert, S.; Kanner, A.A.; Kesari, S.; Steinberg, D.M.; Toms, S.A.; Taylor, L.P.; Lieberman, F.; Silvani, A.; Fink, K.L.; et al. Maintenance Therapy with Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma: A Randomized Clinical Trial. JAMA 2015, 314, 2535–2543. [Google Scholar] [CrossRef]
- Stupp, R.; Wong, E.T.; Kanner, A.A.; Steinberg, D.; Engelhard, H.; Heidecke, V.; Kirson, E.D.; Taillibert, S.; Liebermann, F.; Dbalý, V.; et al. NovoTTF-100A versus Physician’s Choice Chemotherapy in Recurrent Glioblastoma: A Randomised Phase III Trial of a Novel Treatment Modality. Eur. J. Cancer 2012, 48, 2192–2202. [Google Scholar] [CrossRef]
- Kesari, S.; Ram, Z. EF-14 Trial Investigators Tumor-Treating Fields plus Chemotherapy versus Chemotherapy Alone for Glioblastoma at First Recurrence: A Post Hoc Analysis of the EF-14 Trial. CNS Oncol. 2017, 6, 185–193. [Google Scholar] [CrossRef]
- Mrugala, M.M.; Engelhard, H.H.; Dinh Tran, D.; Kew, Y.; Cavaliere, R.; Villano, J.L.; Annenelie Bota, D.; Rudnick, J.; Love Sumrall, A.; Zhu, J.-J.; et al. Clinical Practice Experience with NovoTTF-100ATM System for Glioblastoma: The Patient Registry Dataset (PRiDe). Semin. Oncol. 2014, 41 (Suppl. S6), S4–S13. [Google Scholar] [CrossRef]
- Booth, T.C.; Grzeda, M.; Chelliah, A.; Roman, A.; Al Busaidi, A.; Dragos, C.; Shuaib, H.; Luis, A.; Mirchandani, A.; Alparslan, B.; et al. Imaging Biomarkers of Glioblastoma Treatment Response: A Systematic Review and Meta-Analysis of Recent Machine Learning Studies. Front. Oncol. 2022, 12, 799662. [Google Scholar] [CrossRef]
- Fathi Kazerooni, A.; Bagley, S.J.; Akbari, H.; Saxena, S.; Bagheri, S.; Guo, J.; Chawla, S.; Nabavizadeh, A.; Mohan, S.; Bakas, S.; et al. Applications of Radiomics and Radiogenomics in High-Grade Gliomas in the Era of Precision Medicine. Cancers 2021, 13, 5921. [Google Scholar] [CrossRef]
- Kim, J.Y.; Park, J.E.; Jo, Y.; Shim, W.H.; Nam, S.J.; Kim, J.H.; Yoo, R.-E.; Choi, S.H.; Kim, H.S. Incorporating Diffusion- and Perfusion-Weighted MRI into a Radiomics Model Improves Diagnostic Performance for Pseudoprogression in Glioblastoma Patients. Neuro-Oncology 2019, 21, 404–414. [Google Scholar] [CrossRef]
Patient ID | Gender | Age at Initial Diagnosis (Years) | KPS Score | Surgery | MGMT | SOC Treatment Completed | Additional Treatment | OS (Years) |
---|---|---|---|---|---|---|---|---|
1 | F | 50 | 90 | Near total resection | + | yes | Calcium channel antagonist | 12.3 |
2 | F | 56 | 70–100 | Near total resection | + | Yes | Antiangiogenic therapy | 5.1 |
3 | F | 34 | 70–90 | Near total resection | + | Yes | Immunotherapy | 11.1 |
4 | F | 57 | 90–100 | Near total resection | + | Yes | Immunotherapy | 5.2 |
5 | F | 67 | 100 | Complete resection | - | Yes | Tumor-Treating Fields | 6.8 |
6 | F | 63 | 90–100 | Near total resection | + | Yes | Immunotherapy | 5.2 |
Patient ID | DTI-FA | DTI-CL | DSC-rCBVmax | PP-Value TP ≥ 50% PsP < 50% | Histopathology | Modified RANO |
---|---|---|---|---|---|---|
1 | 0.09 | 0.03 | 1.6 | 1% | PsP | |
2 | 0.15 | 0.05 | 7.94 | 99% | TP | |
3 | 0.08 | 0.03 | 2.02 | 1% | PsP | |
4 | 0.21 | 0.09 | 2.02 | 70% | TP | |
5 | 0.35 | 0.14 | 2.0 | 99% | TP | |
6 | 0.07 | 0.04 | 3.08 | 0.1% | PsP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Godoy, L.L.; Rajan, A.; Banihashemi, A.; Patel, T.; Desai, A.; Bagley, S.; Brem, S.; Chawla, S.; Mohan, S. Response Assessment in Long-Term Glioblastoma Survivors Using a Multiparametric MRI-Based Prediction Model. Brain Sci. 2025, 15, 146. https://doi.org/10.3390/brainsci15020146
de Godoy LL, Rajan A, Banihashemi A, Patel T, Desai A, Bagley S, Brem S, Chawla S, Mohan S. Response Assessment in Long-Term Glioblastoma Survivors Using a Multiparametric MRI-Based Prediction Model. Brain Sciences. 2025; 15(2):146. https://doi.org/10.3390/brainsci15020146
Chicago/Turabian Stylede Godoy, Laiz Laura, Archith Rajan, Amir Banihashemi, Thara Patel, Arati Desai, Stephen Bagley, Steven Brem, Sanjeev Chawla, and Suyash Mohan. 2025. "Response Assessment in Long-Term Glioblastoma Survivors Using a Multiparametric MRI-Based Prediction Model" Brain Sciences 15, no. 2: 146. https://doi.org/10.3390/brainsci15020146
APA Stylede Godoy, L. L., Rajan, A., Banihashemi, A., Patel, T., Desai, A., Bagley, S., Brem, S., Chawla, S., & Mohan, S. (2025). Response Assessment in Long-Term Glioblastoma Survivors Using a Multiparametric MRI-Based Prediction Model. Brain Sciences, 15(2), 146. https://doi.org/10.3390/brainsci15020146