Corticolimbic Structural Deficits in Violent Patients with Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Assessments
2.3. Neuroimaging Acquisition Parameters
2.4. Image Preprocessing and Gray Matter Volume Analysis
2.5. Statistical Analyses
3. Results
3.1. Participant Demographics
3.2. Gray Matter Volume (GMV) Analyses
3.3. Cortical Thickness (CT) Analyses
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACC | Anterior cingulate cortex |
CT | Cortical thickness |
dlPFC | Dorsolateral prefrontal cortex |
FDR | False discovery rate |
fMRI | Functional magnetic resonance imaging |
GMV | Gray matter volume |
HC | Healthy controls |
MACVI | MacArthur Community Violence Instrument |
MANCOVA | Multivariate analysis of covariance |
OFC | Orbitofrontal cortex |
PANSS | Positive and Negative Syndrome Scale |
ROI | Region of interest |
Sch | Schizophrenia |
sMRI | Structural magnetic resonance imaging |
TIV | Total intracranial volume |
vlPFC | Ventrolateral prefrontal cortex |
References
- Swanson, J.W.; Swartz, M.S.; Van Dorn, R.A.; Elbogen, E.B.; Wagner, H.R.; Rosenheck, R.A.; Stroup, T.S.; McEvoy, J.P.; Lieberman, J.A. A National Study of Violent Behavior in Persons with Schizophrenia. Arch. Gen. Psychiatry 2006, 63, 490–499. [Google Scholar] [CrossRef]
- Silverstein, S.M.; Del Pozzo, J.; Roché, M.; Boyle, D.; Miskimen, T. Schizophrenia and Violence: Realities and Recommendations. Crime Psychol. Rev. 2015, 1, 21–42. [Google Scholar] [CrossRef]
- Fazel, S.; Gulati, G.; Linsell, L.; Geddes, J.R.; Grann, M. Schizophrenia and Violence: Systematic Review and Meta-Analysis. PLoS Med. 2009, 6, e1000120. [Google Scholar] [CrossRef]
- Witt, K.; van Dorn, R.; Fazel, S. Risk Factors for Violence in Psychosis: Systematic Review and Meta-Regression Analysis of 110 Studies. PLoS ONE 2013, 8, e55942. [Google Scholar] [CrossRef]
- Witt, K.; Lichtenstein, P.; Fazel, S. Improving Risk Assessment in Schizophrenia: Epidemiological Investigation of Criminal History Factors. Br. J. Psychiatry 2015, 206, 424. [Google Scholar] [CrossRef]
- Hachtel, H.; Nixon, M.; Bennett, D.; Mullen, P.; Ogloff, J. Motives, Offending Behavior, and Gender Differences in Murder Perpetrators With or Without Psychosis. J. Interpers. Violence 2018, 36, 3168–3190. [Google Scholar] [CrossRef] [PubMed]
- Reinharth, J.; Reynolds, G.; Dill, C.; Serper, M. Cognitive Predictors of Violence in Schizophrenia: A Meta-Analytic Review. Schizophr. Res. Cogn. 2014, 1, 101–111. [Google Scholar] [CrossRef]
- Hodgins, S.; Riaz, M. Violence and Phases of Illness: Differential Risk and Predictors. Eur. Psychiatry 2011, 26, 518–524. [Google Scholar] [CrossRef]
- Bulgari, V.; Iozzino, L.; Ferrari, C.; Picchioni, M.; Candini, V.; De Francesco, A.; Maggi, P.; Segalini, B.; de Girolamo, G. Clinical and Neuropsychological Features of Violence in Schizophrenia: A Prospective Cohort Study. Schizophr. Res. 2017, 181, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, A.; Sint, K.; Swanson, J.; Rosenheck, R. Correlates of Future Violence in People Being Treated for Schizophrenia. Am. J. Psychiatry 2019, 176, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Hodgins, S. Aggressive Behavior Among Persons with Schizophrenia and Those Who Are Developing Schizophrenia: Attempting to Understand the Limited Evidence on Causality. Schizophr. Bull. 2017, 43, 1021. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Schizophrenia. Available online: https://www.who.int/news-room/fact-sheets/detail/schizophrenia (accessed on 12 October 2024).
- Hodgins, S.; Janson, C.-G. Criminality and Violence Among the Mentally Disordered: The Stockholm Metropolitan Project; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Hodgins, S. Violent Behaviour among People with Schizophrenia: A Framework for Investigations of Causes, and Effective Treatment, and Prevention. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 2505–2518. [Google Scholar] [CrossRef]
- Fazel, S.; Wolf, A.; Fimińska, Z.; Larsson, H. Mortality, Rehospitalisation and Violent Crime in Forensic Psychiatric Patients Discharged from Hospital: Rates and Risk Factors. PLoS ONE 2016, 11, e0155906. [Google Scholar] [CrossRef]
- Torrey, E.F. Stigma and Violence: Isn’t It Time to Connect the Dots? Schizophr. Bull. 2011, 37, 892. [Google Scholar] [CrossRef] [PubMed]
- Volavka, J.; Citrome, L. Heterogeneity of Violence in Schizophrenia and Implications for Long-Term Treatment. Int. J. Clin. Pract. 2008, 62, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, M.; Pezzoli, P.; Jaworska, N.; Seto, M.C. Brain Responses in Aggression-Prone Individuals: A Systematic Review and Meta-Analysis of Functional Magnetic Resonance Imaging (FMRI) Studies of Anger- and Aggression-Eliciting Tasks. Prog. Neuropsychopharmacol. Biol. Psychiatry 2022, 119, 110596. [Google Scholar] [CrossRef]
- Dugré, J.R.; Radua, J.; Carignan-Allard, M.; Dumais, A.; Rubia, K.; Potvin, S. Neurofunctional Abnormalities in Antisocial Spectrum: A Meta-Analysis of FMRI Studies on Five Distinct Neurocognitive Research Domains. Neurosci. Biobehav. Rev. 2020, 119, 168–183. [Google Scholar] [CrossRef] [PubMed]
- Raschle, N.M.; Menks, W.M.; Fehlbaum, L.V.; Tshomba, E.; Stadler, C. Structural and Functional Alterations in Right Dorsomedial Prefrontal and Left Insular Cortex Co-Localize in Adolescents with Aggressive Behaviour: An ALE Meta-Analysis. PLoS ONE 2015, 10, e0136553. [Google Scholar] [CrossRef]
- Aoki, Y.; Inokuchi, R.; Nakao, T.; Yamasue, H. Neural Bases of Antisocial Behavior: A Voxel-Based Meta-Analysis. Soc. Cogn. Affect. Neurosci. 2014, 9, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Dugré, J.R.; De Brito, S.A. Unraveling the Morphological Brain Architecture of Human Aggression: A Systematic Review and Meta-Analysis of Structural Neuroimaging Studies. Aggress. Violent Behav. 2024, 79, 102003. [Google Scholar] [CrossRef]
- De Brito, S.A.; McDonald, D.; Camilleri, J.A.; Rogers, J.C. Cortical and Subcortical Gray Matter Volume in Psychopathy: A Voxel-Wise Meta-Analysis. J. Abnorm. Psychol. 2021, 130, 627–640. [Google Scholar] [CrossRef]
- Bobes, M.A.; Ostrosky, F.; Diaz, K.; Romero, C.; Borja, K.; Santos, Y.; Valdés-Sosa, M. Linkage of Functional and Structural Anomalies in the Left Amygdala of Reactive-Aggressive Men. Soc. Cogn. Affect. Neurosci. 2013, 8, 928. [Google Scholar] [CrossRef] [PubMed]
- Joyal, C.C.; Putkonen, A.; Mancini-Marïe, A.; Hodgins, S.; Kononen, M.; Boulay, L.; Pihlajamaki, M.; Soininen, H.; Stip, E.; Tiihonen, J.; et al. Violent Persons with Schizophrenia and Comorbid Disorders: A Functional Magnetic Resonance Imaging Study. Schizophr. Res. 2007, 91, 97–102. [Google Scholar] [CrossRef]
- Kumari, V.; Aasen, I.; Taylor, P.; Ffytche, D.H.; Das, M.; Barkataki, I.; Goswami, S.; O’Connell, P.; Howlett, M.; Williams, S.C.R.; et al. Neural Dysfunction and Violence in Schizophrenia: An FMRI Investigation. Schizophr. Res. 2006, 84, 144–164. [Google Scholar] [CrossRef]
- Tikàsz, A.; Potvin, S.; Richard-Devantoy, S.; Lipp, O.; Hodgins, S.; Lalonde, P.; Lungu, O.; Dumais, A. Reduced Dorsolateral Prefrontal Cortex Activation during Affective Go/NoGo in Violent Schizophrenia Patients: An FMRI Study. Schizophr. Res. 2018, 197, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Tikàsz, A.; Potvin, S.; Lungu, O.; Joyal, C.C.; Hodgins, S.; Mendrek, A.; Dumais, A. Anterior Cingulate Hyperactivations during Negative Emotion Processing among Men with Schizophrenia and a History of Violent Behavior. Neuropsychiatr. Dis. Treat. 2016, 12, 1397–1410. [Google Scholar] [CrossRef] [PubMed]
- Widmayer, S.; Borgwardt, S.; Lang, U.E.; Stieglitz, R.D.; Huber, C.G. Functional Neuroimaging Correlates of Aggression in Psychosis: A Systematic Review with Recommendations for Future Research. Front. Psychiatry 2019, 10, 777. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Wang, Y.; Cao, Q.; Zhang, M. Task-Related Brain Activation Associated with Violence in Patients with Schizophrenia: A Meta-Analysis. Asian J. Psychiatr. 2024, 97, 104080. [Google Scholar] [CrossRef] [PubMed]
- Athanassiou, M.; Dumais, A.; Tikasz, A.; Lipp, O.; Dubreucq, J.L.; Potvin, S. Increased Cingulo-Orbital Connectivity Is Associated with Violent Behaviours in Schizophrenia. J. Psychiatr. Res. 2022, 147, 183–189. [Google Scholar] [CrossRef]
- Tikàsz, A.; Potvin, S.; Dugré, J.R.; Fahim, C.; Zaharieva, V.; Lipp, O.; Mendrek, A.; Dumais, A. Violent Behavior Is Associated With Emotion Salience Network Dysconnectivity in Schizophrenia. Front. Psychiatry 2020, 11, 143. [Google Scholar] [CrossRef] [PubMed]
- Hoptman, M.J.; D’Angelo, D.; Catalano, D.; Mauro, C.J.; Shehzad, Z.E.; Kelly, A.M.C.; Castellanos, F.X.; Javitt, D.C.; Milham, M.P. Amygdalofrontal Functional Disconnectivity and Aggression in Schizophrenia. Schizophr. Bull. 2010, 36, 1020. [Google Scholar] [CrossRef]
- Kumari, V.; Uddin, S.; Premkumar, P.; Young, S.; Gudjonsson, G.H.; Raghuvanshi, S.; Barkataki, I.; Sumich, A.; Taylor, P.; Das, M. Lower Anterior Cingulate Volume in Seriously Violent Men with Antisocial Personality Disorder or Schizophrenia and a History of Childhood Abuse. Aust. N. Z. J. Psychiatry 2014, 48, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Kuroki, N.; Kashiwagi, H.; Ota, M.; Ishikawa, M.; Kunugi, H.; Sato, N.; Hirabayashi, N.; Ota, T. Brain Structure Differences among Male Schizophrenic Patients with History of Serious Violent Acts: An MRI Voxel-Based Morphometric Study. BMC Psychiatry 2017, 17, 105. [Google Scholar] [CrossRef] [PubMed]
- Kolla, N.J.; Harenski, C.L.; Harenski, K.A.; Dupuis, M.; Crawford, J.J.; Kiehl, K.A. Brain Gray Matter Differences among Forensic Psychiatric Patients with Psychosis and Incarcerated Individuals without Psychosis: A Source-Based Morphometry Study. Neuroimage Clin. 2021, 30, 102673. [Google Scholar] [CrossRef]
- Kumari, V.; Gudjonsson, G.H.; Raghuvanshi, S.; Barkataki, I.; Taylor, P.; Sumich, A.; Das, K.; Kuipers, E.; Ffytche, D.H.; Das, M. Reduced Thalamic Volume in Men with Antisocial Personality Disorder or Schizophrenia and a History of Serious Violence and Childhood Abuse. Eur. Psychiatry 2013, 28, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Hoptman, M.J.; Volavka, J.; Weiss, E.M.; Czobor, P.; Szeszko, P.R.; Gerig, G.; Chakos, M.; Blocher, J.; Citrome, L.L.; Lindenmayer, J.P.; et al. Quantitative MRI Measures of Orbitofrontal Cortex in Patients with Chronic Schizophrenia or Schizoaffective Disorder. Psychiatry Res. 2005, 140, 133. [Google Scholar] [CrossRef]
- Storvestre, G.B.; Valnes, L.M.; Jensen, A.; Nerland, S.; Tesli, N.; Hymer, K.E.; Rosaeg, C.; Server, A.; Ringen, P.A.; Jacobsen, M.; et al. A Preliminary Study of Cortical Morphology in Schizophrenia Patients with a History of Violence. Psychiatry Res. Neuroimaging 2019, 288, 29–36. [Google Scholar] [CrossRef]
- Fjellvang, M.; Grøning, L.; Haukvik, U.K. Imaging Violence in Schizophrenia: A Systematic Review and Critical Discussion of the MRI Literature. Front. Psychiatry 2018, 9, 333. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, M.P.; Regenbogen, C.; Hamilton, R.H.; Habel, U. Some Neuroanatomical Insights to Impulsive Aggression in Schizophrenia. Schizophr. Res. 2018, 201, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Cao, Q.; Zhang, M. Aberrant Brain Structure in Patients with Schizophrenia and Violence: A Meta-Analysis. J. Psychiatr. Res. 2023, 164, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Widmayer, S.; Sowislo, J.F.; Jungfer, H.A.; Borgwardt, S.; Lang, U.E.; Stieglitz, R.D.; Huber, C.G. Structural Magnetic Resonance Imaging Correlates of Aggression in Psychosis: A Systematic Review and Effect Size Analysis. Front. Psychiatry 2018, 9, 217. [Google Scholar] [CrossRef] [PubMed]
- Lamsma, J.; Raine, A.; Kia, S.M.; Cahn, W.; Arold, D.; Banaj, N.; Barone, A.; Brosch, K.; Brouwer, R.; Brunetti, A.; et al. Structural Brain Abnormalities and Aggressive Behaviour in Schizophrenia: Mega-Analysis of Data from 2095 Patients and 2861 Healthy Controls via the ENIGMA Consortium. medRxiv 2024, 18, 54. [Google Scholar] [CrossRef]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013; ISBN 0890425574. [Google Scholar]
- Steadman, H.; Silver, E. Immediate Precursors of Violence among Persons with Mental Illness: A Return to a Situational Perspective. In Violence Among the Mentally Ill; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Monahan, J.; Steadman, H.J.; Silver, E.; Appelbaum, P.S.; Robbins, P.C.; Mulvey, E.P.; Roth, L.H.; Grisso, T.; Banks, S. Rethinking Risk Assessment: The MacArthur Study of Mental Disorder and Violence; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Appelbaum, P.S.; Robbins, P.C.; Monahan, J. Violence and Delusions: Data from the MacArthur Violence Risk Assessment Study. Am. J. Psychiatry 2000, 157, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, J.K.; Desmarais, S.L.; Grimm, K.J.; Meade, A.W.; Van Dorn, R.A. Psychometric Properties of the MacArthur Community Violence Screening Instrument. Int. J. Forensic Ment. Health 2020, 19, 253–268. [Google Scholar] [CrossRef]
- Bell, C.; Tesli, N.; Gurholt, T.P.; Rokicki, J.; Hjell, G.; Fischer-Vieler, T.; Melle, I.; Agartz, I.; Andreassen, O.A.; Rasmussen, K.; et al. Associations between Amygdala Nuclei Volumes, Psychosis, Psychopathy, and Violent Offending. Psychiatry Res. Neuroimaging 2022, 319, 111416. [Google Scholar] [CrossRef] [PubMed]
- First, M.; Gibbon, M. The Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) and the Structured Clinical Interview for DSM-IV Axis II Disorders (SCID-II). In Comprehensive Handbook of Psychological Assessment, Personality Assessment; Hilsenroth, M., Segal, J., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; Volume 2, pp. 134–143. [Google Scholar]
- Leucht, S.; Samara, M.; Heres, S.; Davis, J.M. Dose Equivalents for Antipsychotic Drugs: The DDD Method. Schizophr. Bull. 2016, 42 (Suppl. S1), S90–S94. [Google Scholar] [CrossRef] [PubMed]
- Fischl, B. FreeSurfer. Neuroimage 2012, 62, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Schumacker, R.E. Using R with Multivariate Statistics; Sage: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Glickman, M.E.; Rao, S.R.; Schultz, M.R. False Discovery Rate Control Is a Recommended Alternative to Bonferroni-Type Adjustments in Health Studies. J. Clin. Epidemiol. 2014, 67, 850–857. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Li, Y.; Liang, W.; Zhao, L. Quantitative Gray Matter Volumetric Analysis in Schizophrenia: Investigating the Risk of Violent Behaviors through Structural MRI. Egypt. J. Radiol. Nucl. Med. 2024, 55, 119. [Google Scholar] [CrossRef]
- Coccaro, E.F.; Sripada, C.S.; Yanowitch, R.N.; Phan, K.L. Corticolimbic Function in Impulsive Aggressive Behavior. Biol. Psychiatry 2011, 69, 1153–1159. [Google Scholar] [CrossRef]
- Davidson, R.J.; Putnam, K.M.; Larson, C.L. Dysfunction in the Neural Circuitry of Emotion Regulation—A Possible Prelude to Violence. Science 2000, 289, 591–594. [Google Scholar] [CrossRef]
- Fanning, J.R.; Keedy, S.; Berman, M.E.; Lee, R.; Coccaro, E.F. Neural Correlates of Aggressive Behavior in Real Time: A Review of FMRI Studies of Laboratory Reactive Aggression. Curr. Behav. Neurosci. Rep. 2017, 4, 138–150. [Google Scholar] [CrossRef]
- Achterberg, M.; van Duijvenvoorde, A.C.K.; Bakermans-Kranenburg, M.J.; Crone, E.A. Control Your Anger! The Neural Basis of Aggression Regulation in Response to Negative Social Feedback. Soc. Cogn. Affect. Neurosci. 2016, 11, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Achterberg, M.; van Duijvenvoorde, A.C.K.; van IJzendoorn, M.H.; Bakermans-Kranenburg, M.J.; Crone, E.A. Longitudinal Changes in DLPFC Activation during Childhood Are Related to Decreased Aggression Following Social Rejection. Proc. Natl. Acad. Sci. USA 2020, 117, 8602–8610. [Google Scholar] [CrossRef] [PubMed]
- Chester, D.S.; DeWall, C.N. The Pleasure of Revenge: Retaliatory Aggression Arises from a Neural Imbalance toward Reward. Soc. Cogn. Affect. Neurosci. 2016, 11, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Roberton, T.; Daffern, M.; Bucks, R.S. Emotion Regulation and Aggression. Aggress. Violent Behav. 2012, 17, 72–82. [Google Scholar] [CrossRef]
- Dolcos, F.; Iordan, A.D.; Dolcos, S. Neural Correlates of Emotion–Cognition Interactions: A Review of Evidence from Brain Imaging Investigations. J. Cogn. Psychol. 2011, 23, 669. [Google Scholar] [CrossRef]
- Barkataki, I.; Kumari, V.; Das, M.; Taylor, P.; Sharma, T. Volumetric Structural Brain Abnormalities in Men with Schizophrenia or Antisocial Personality Disorder. Behav. Brain Res. 2006, 169, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Tesli, N.; van der Meer, D.; Rokicki, J.; Storvestre, G.; Røsæg, C.; Jensen, A.; Hjell, G.; Bell, C.; Fischer-Vieler, T.; Tesli, M.; et al. Hippocampal Subfield and Amygdala Nuclei Volumes in Schizophrenia Patients with a History of Violence. Eur. Arch. Psychiatry Clin. Neurosci. 2020, 270, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Berboth, S.; Morawetz, C. Amygdala-Prefrontal Connectivity during Emotion Regulation: A Meta-Analysis of Psychophysiological Interactions. Neuropsychologia 2021, 153, 107767. [Google Scholar] [CrossRef]
- Ocklenburg, S.; Peterburs, J.; Mundorf, A. Hemispheric Asymmetries in the Amygdala: A Comparative Primer. Prog. Neurobiol. 2022, 214, 102283. [Google Scholar] [CrossRef]
- Baas, D.; Aleman, A.; Kahn, R.S. Lateralization of Amygdala Activation: A Systematic Review of Functional Neuroimaging Studies. Brain Res. Rev. 2004, 45, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Kotani, Y.; Ohgami, Y.; Kunimatsu, A.; Inoue, Y.; Kiryu, S.; Okada, Y. Effects of Negativity Bias on Amygdala and Anterior Cingulate Cortex Activity in Short and Long Emotional Stimulation Paradigms. Neuroreport 2021, 32, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Gläscher, J.; Adolphs, R. Processing of the Arousal of Subliminal and Supraliminal Emotional Stimuli by the Human Amygdala. J. Neurosci. 2003, 23, 10274–10282. [Google Scholar] [CrossRef] [PubMed]
- Lickley, R.A.; Sebastian, C.L. The Neural Basis of Reactive Aggression and Its Development in Adolescence. Psychol. Crime Law 2018, 24, 313–333. [Google Scholar] [CrossRef]
- Coccaro, E.F.; Lee, R.; McCloskey, M.; Csernansky, J.G.; Wang, L. Morphometric Analysis of Amygdla and Hippocampus Shape in Impulsively Aggressive and Healthy Control Subjects. J. Psychiatr. Res. 2015, 69, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Coccaro, E.F.; Fitzgerald, D.A.; Lee, R.; McCloskey, M.; Phan, K.L. Frontolimbic Morphometric Abnormalities in Intermittent Explosive Disorder and Aggression. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2016, 1, 32–38. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, K.; O’Connell, P.; O’Sullivan, D.; Corvin, A.; Sheerin, J.; O’Flynn, P.; Donohoe, G.; McCarthy, H.; Ambrosh, D.; O’Donnell, M.; et al. Moral Cognition, the Missing Link between Psychotic Symptoms and Acts of Violence: A Cross-Sectional National Forensic Cohort Study. BMC Psychiatry 2019, 19, 408. [Google Scholar] [CrossRef]
- O’Reilly, K.; Donohoe, G.; Coyle, C.; O’Sullivan, D.; Rowe, A.; Losty, M.; McDonagh, T.; McGuinness, L.; Ennis, Y.; Watts, E.; et al. Prospective Cohort Study of the Relationship between Neuro-Cognition, Social Cognition and Violence in Forensic Patients with Schizophrenia and Schizoaffective Disorder. BMC Psychiatry 2015, 15, 155. [Google Scholar] [CrossRef] [PubMed]
- Kolla, N.J.; Houle, S. Single-Photon Emission Computed Tomography and Positron Emission Tomography Studies of Antisocial Personality Disorder and Aggression: A Targeted Review. Curr. Psychiatry Rep. 2019, 21, 24. [Google Scholar] [CrossRef]
- Abbott, C.C.; Jaramillo, A.; Wilcox, C.E.; Hamilton, D.A. Antipsychotic Drug Effects in Schizophrenia: A Review of Longitudinal FMRI Investigations and Neural Interpretations. Curr. Med. Chem. 2013, 20, 428–437. [Google Scholar] [CrossRef]
- Gonzalez-Vivas, C.; Soldevila-Matias, P.; Sparano, O.; Garcia-Marti, G.; Marti-Bonmati, L.; Crespo-Facorro, B.; Aleman, A.; Sanjuan, J. Longitudinal Studies of Functional Magnetic Resonance Imaging in First-Episode Psychosis: A Systematic Review. Eur. Psychiatry 2019, 59, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Vita, A.; De Peri, L.; Deste, G.; Sacchetti, E. Progressive Loss of Cortical Gray Matter in Schizophrenia: A Meta-Analysis and Meta-Regression of Longitudinal MRI Studies. Transl. Psychiatry 2012, 2, e190. [Google Scholar] [CrossRef] [PubMed]
- Mendrek, A.; Mancini-Marïe, A. Sex/Gender Differences in the Brain and Cognition in Schizophrenia. Neurosci. Biobehav. Rev. 2016, 67, 57–78. [Google Scholar] [CrossRef] [PubMed]
Sch-V (n = 34) | Sch+V (n = 28) | HC (n = 20) | Statistics | |
---|---|---|---|---|
Age, mean (SE) | 33.9 (1.3) | 33.9 (1.7) | 30.6 (1.8) | F = 1.26, p = 0.29 |
Sex, % male | 91.2 | 96.4 | 85.0 | χ2 = 1.96, df = 2, p = 0.38 |
Handedness, % right/% left | 88.2/2.9 | 89.3/7.1 | 75.0/20.0 | χ2 = 5.47, df = 4, p = 0.24 |
PANSS-positive, mean (SE) | 16.4 (0.9) | 17.0 (1.1) | - | T = −0.39, p = 0.70 |
PANSS-negative, mean (SE) | 16.1 (1.2) | 17.0 (1.3) | - | T = −0.50, p = 0.62 |
PANSS-generalized, mean (SE) | 31.8 (1.1) | 34.0 (2.1) | - | T = 0.93, p = 0.34 |
PANSS-total, mean (SE) | 64.8 (2.5) | 69.7 (3.4) | - | T = −1.16, p = 0.25 |
Diagnosis, % schizophrenia * | 64.7 | 60.7 | - | χ2 = 0.05, df = 1, p = 0.83 |
Age of onset, mean (SE) | 19.3 (1.1) | 19.6 (1.4) | - | T = −0.15, p = 0.88 |
Duration of illness, mean (SE) | 14.7 (0.7) | 14.4 (0.9) | - | T = 0.13, p = 0.89 |
Clozapine, % patients | 38.2% | 57.1% | - | χ2 = 2.035, df = 1, p = 0.154 |
Chlorpromazine equivalents (mg/day), mean (SE) | 652.5 (86.8) | 492.4 (60.4) | - | T = 1.51, p = 0.14 |
Antisocial personality trait score, mean (SE) | 31.7 (1.3) | 40.5 (2.0) | - | T = −3.7, p < 0.001 |
All Groups | HC vs. Sch-V | HC vs. Sch+V | Sch-V vs. Sch+V | ||||||
---|---|---|---|---|---|---|---|---|---|
Regions of Interest | F | Partial η2 | FDR-Corrected p | t | FDR-Corrected p | t | FDR-Corrected p | t | FDR-Corrected p |
Left Amygdala | 3.66 | 0.09 | 0.08 | ||||||
Right Amygdala | 10.63 | 0.21 | 0.0003 | 1.81 | 0.07 | 4.12 | 0.0003 | 2.74 | 0.01 |
Left Accumbens | 0.73 | 0.02 | 0.81 | ||||||
Right Accumbens | 3.13 | 0.07 | 0.10 | ||||||
Left Caudate | 0.09 | 0.002 | 0.91 | ||||||
Right Caudate | 0.15 | 0.004 | 0.91 | ||||||
Left Putamen | 0.25 | 0.006 | 0.91 | ||||||
Right Putamen | 0.11 | 0.003 | 0.91 |
All Groups | HC vs. Sch-V | HC vs. Sch+V | Sch-V vs. Sch+V | ||||||
---|---|---|---|---|---|---|---|---|---|
Regions of Interest | F | Partial η2 | FDR-Corrected p | t | FDR-Corrected p | t | FDR-Corrected p | t | FDR-Corrected p |
Medial orbitofrontal | 4.96 | 0.12 | 0.03 | 3.07 | 0.009 | 2.39 | 0.03 | −0.65 | 0.52 |
Left lateral orbitofrontal | 3.62 | 0.09 | 0.07 | ||||||
Right lateral orbitofrontal | 2.19 | 0.05 | 0.12 | ||||||
Left pars orbitalis of the inferior frontal gyrus | 3.52 | 0.08 | 0.07 | ||||||
Right pars orbitalis of the inferior frontal gyrus | 2.32 | 0.06 | 0.12 | ||||||
Left caudal middle frontal | 5.94 | 0.14 | 0.02 | 1.10 | 0.27 | 3.11 | 0.008 | 2.35 | 0.03 |
Right caudal middle frontal | 8.26 | 0.18 | 0.006 | 1.89 | 0.06 | 3.81 | 0.0008 | 2.29 | 0.04 |
Caudal anterior cingulate | 2.39 | 0.06 | 0.12 | ||||||
Left insula | 2.77 | 0.07 | 0.10 | ||||||
Right insula | 3.15 | 0.08 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanassiou, M.; Dumais, A.; Zouaoui, I.; Fortier, A.; de Benedictis, L.; Lipp, O.; Tikàsz, A.; Potvin, S. Corticolimbic Structural Deficits in Violent Patients with Schizophrenia. Brain Sci. 2025, 15, 224. https://doi.org/10.3390/brainsci15030224
Athanassiou M, Dumais A, Zouaoui I, Fortier A, de Benedictis L, Lipp O, Tikàsz A, Potvin S. Corticolimbic Structural Deficits in Violent Patients with Schizophrenia. Brain Sciences. 2025; 15(3):224. https://doi.org/10.3390/brainsci15030224
Chicago/Turabian StyleAthanassiou, Maria, Alexandre Dumais, Inès Zouaoui, Alexandra Fortier, Luigi de Benedictis, Olivier Lipp, Andràs Tikàsz, and Stéphane Potvin. 2025. "Corticolimbic Structural Deficits in Violent Patients with Schizophrenia" Brain Sciences 15, no. 3: 224. https://doi.org/10.3390/brainsci15030224
APA StyleAthanassiou, M., Dumais, A., Zouaoui, I., Fortier, A., de Benedictis, L., Lipp, O., Tikàsz, A., & Potvin, S. (2025). Corticolimbic Structural Deficits in Violent Patients with Schizophrenia. Brain Sciences, 15(3), 224. https://doi.org/10.3390/brainsci15030224