Brain Activation During Motor Preparation and Execution in Patients with Mild Cognitive Impairment: An fNIRS Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Gait Task
2.3. Motion Artifact Correction
2.4. Data Process
2.5. Statistical Analysis
3. Results
3.1. Gait Parameter
3.2. Brain Activation
3.3. Correlation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCI | Mild cognitive impairment |
fNIRS | Functional near-infrared spectroscopy |
PW | Prepared walking |
SW | Single walking |
CT | Computed tomography |
HC | Healthy control |
ROI | Region of interest |
PFC | Prefrontal cortex |
GLM | Generalized linear model |
MoCA | Montreal Cognitive Assessment |
BMI | Body Mass Index |
fMRI | Functional magnetic resonance imaging |
R-SW | Rest-state of SW |
OD | Optical density |
CV | Coefficient of variation |
HRF | Hemodynamic response function |
MRI | Magnetic resonance imaging. |
Appendix A
Appendix A.1
r | p | |
---|---|---|
SW rest-state | ||
PFC | −0.06 | 0.57 |
Primary motor cortex | 0.04 | 0.73 |
Secondary motor cortex | 0.02 | 0.83 |
Parietal lobe | −0.03 | 0.74 |
SW execution | ||
PFC | −0.07 | 0.51 |
Primary motor cortex | 0.10 | 0.34 |
Secondary motor cortex | 0.03 | 075 |
Parietal lobe | 0.04 | 0.71 |
PW preparation | ||
PFC | 0.04 | 0.64 |
Primary motor cortex | −0.01 | 0.91 |
Secondary motor cortex | −0.01 | 0.92 |
Parietal lobe | −0.02 | 0.84 |
PW execution | ||
PFC | 0.09 | 0.33 |
Primary motor cortex | 0.23 | 0.02 * |
Secondary motor cortex | 0.19 | 0.04 * |
Parietal lobe | 0.08 | 0.41 |
Appendix A.2
r | p | |
---|---|---|
SW rest-state | ||
PFC | 0.02 | 0.81 |
Primary motor cortex | 0.01 | 0.94 |
Secondary motor cortex | −0.01 | 0.97 |
Parietal lobe | 0.05 | 0.63 |
SW execution | ||
PFC | −0.02 | 0.82 |
Primary motor cortex | 0.02 | 0.87 |
Secondary motor cortex | 0.03 | 0.72 |
Parietal lobe | −0.00 | 0.99 |
PW preparation | ||
PFC | 0.22 | 0.02 * |
Primary motor cortex | 0.22 | 0.01 * |
Secondary motor cortex | 0.20 | 0.02 * |
Parietal lobe | 0.19 | 0.03 * |
PW execution | ||
PFC | −0.04 | 0.65 |
Primary motor cortex | −0.02 | 0.85 |
Secondary motor cortex | −0.06 | 0.54 |
Parietal lobe | −0.09 | 0.30 |
References
- Jia, L.; Du, Y.; Chu, L.; Zhang, Z.; Li, F.; Lyu, D.; Li, Y.; Li, Y.; Zhu, M.; Jiao, H.; et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. Lancet Public Health 2020, 5, e661–e671. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Zhao, Q.; Guo, Q.; Liang, X.; Luo, J.; Yu, L.; Zheng, L.; Hong, Z. Progression and predictors of mild cognitive impairment in Chinese elderly: A prospective follow-up in the shanghai aging study. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2016, 4, 28–36. [Google Scholar] [CrossRef]
- Hunter, S.W.; Divine, A.; Frengopoulos, C.; Montero, O.M. A framework for secondary cognitive and motor tasks in dual-task gait testing in people with mild cognitive impairment. BMC Geriatr. 2018, 18, 202. [Google Scholar] [CrossRef] [PubMed]
- Montero-Odasso, M.M.; Sarquis-Adamson, Y.; Speechley, M.; Borrie, M.J.; Hachinski, V.C.; Wells, J.; Riccio, P.M.; Schapira, M.; Sejdic, E.; Camicioli, R.M.; et al. Association of dual-task gait with incident dementia in mild cognitive impairment: Results from the gait and brain study. JAMA Neurol. 2017, 74, 857–865. [Google Scholar] [CrossRef]
- Pieruccini-Faria, F.; Sarquis-Adamson, Y.; Montero-Odasso, M. Mild cognitive impairment affects obstacle negotiation in older adults: Results from “gait and brain study”. Gerontology 2019, 65, 164–173. [Google Scholar] [CrossRef]
- Bennet, R.; Reiner, M. Shared mechanisms underlie mental imagery and motor planning. Sci. Rep. 2022, 12, 2947. [Google Scholar] [CrossRef]
- Yang, D.; Huang, R.; Yoo, S.H.; Shin, M.J.; Yoon, J.A.; Shin, Y.I.; Hong, K.S. Detection of mild cognitive impairment using convolutional neural network: Temporal-feature maps of functional near-infrared spectroscopy. Front. Aging Neurosci. 2020, 12, 141. [Google Scholar] [CrossRef]
- Grande, G.; Triolo, F.; Nuara, A.; Welmer, A.; Fratiglioni, L.; Vetrano, D.L. Measuring gait speed to better identify prodromal dementia. Exp. Gerontol. 2019, 124, 110625. [Google Scholar] [CrossRef] [PubMed]
- Lindh-Rengifo, M.; Jonasson, S.B.; Ullén, S.; Stomrud, E.; Palmqvist, S.; Mattsson-Carlgren, N.; Hansson, O.; Nilsson, M.H. Components of gait in people with and without mild cognitive impairment. Gait Posture 2022, 93, 83–89. [Google Scholar] [CrossRef]
- Suzuki, M.; Miyai, I.; Ono, T.; Kubota, K. Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study. Neuroimage 2008, 39, 600–607. [Google Scholar] [CrossRef]
- Stephan, M.A.; Lega, C.; Penhune, V.B. Auditory prediction cues motor preparation in the absence of movements. Neuroimage 2018, 174, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Majima, K.; Itokazu, T.; Maki, T.; Albrecht, U.; Castner, N.; Izumo, M.; Sohya, K.; Sato, T.K.; Kamitani, Y.; et al. Selective suppression of local circuits during movement preparation in the mouse motor cortex. Cell Rep. 2017, 18, 2676–2686. [Google Scholar] [CrossRef] [PubMed]
- Ames, K.C.; Ryu, S.I.; Shenoy, K.V. Simultaneous motor preparation and execution in a last-moment reach correction task. Nat. Commun. 2019, 10, 2718. [Google Scholar] [CrossRef]
- Watanabe, T.; Ishida, K.; Tanabe, S.; Nojima, I. Preparatory state and postural adjustment strategies for choice reaction step initiation. Neuroscience 2016, 332, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzoli, D.; Ortelli, P.; Madeo, G.; Giladi, N.; Petzinger, G.M.; Frazzitta, G. Basal ganglia and beyond: The interplay between motor and cognitive aspects in Parkinson’s disease rehabilitation. Neurosci. Biobehav. Rev. 2018, 90, 294–308. [Google Scholar] [CrossRef]
- Morris, R.; Lord, S.; Bunce, J.; Burn, D.; Rochester, L. Gait and cognition: Mapping the global and discrete relationships in ageing and neurodegenerative disease. Neurosci. Biobehav. Rev. 2016, 64, 326–345. [Google Scholar] [CrossRef] [PubMed]
- Bishnoi, A.; Hernandez, M.E. Dual task walking costs in older adults with mild cognitive impairment: A systematic review and meta-analysis. Aging Ment. Health 2021, 25, 1618–1629. [Google Scholar] [CrossRef]
- Montero-Odasso, M.; Oteng-Amoako, A.; Speechley, M.; Gopaul, K.; Beauchet, O.; Annweiler, C.; Muir-Hunter, S.W. The motor signature of mild cognitive impairment: Results from the gait and brain study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- Butters, E.; Srinivasan, S.; O’Brien, J.T.; Su, L.; Bale, G. A promising tool to explore functional impairment in neurodegeneration: A systematic review of near-infrared spectroscopy in dementia. Ageing Res. Rev. 2023, 90, 101992. [Google Scholar] [CrossRef]
- Udina, C.; Avtzi, S.; Durduran, T.; Holtzer, R.; Rosso, A.L.; Castellano-Tejedor, C.; Perez, L.M.; Soto-Bagaria, L.; Inzitari, M. Functional near-infrared spectroscopy to study cerebral hemodynamics in older adults during cognitive and motor tasks: A review. Front. Aging Neurosci. 2019, 11, 367. [Google Scholar] [CrossRef]
- Vitorio, R.; Stuart, S.; Rochester, L.; Alcock, L.; Pantall, A. FNIRS response during walking—Artefact or cortical activity? A systematic review. Neurosci. Biobehav. Rev. 2017, 83, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Abdelgaied, A.; Fisher, J.; Jennings, L.M. Understanding the differences in wear testing method standards for total knee replacement. J. Mech. Behav. Biomed. Mater. 2022, 132, 105258. [Google Scholar] [CrossRef]
- Hatakenaka, M.; Miyai, I.; Mihara, M.; Sakoda, S.; Kubota, K. Frontal regions involved in learning of motor skill—A functional NIRS study. NeuroImage 2007, 34, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Sahyoun, C.; Floyer-Lea, A.; Johansen-Berg, H.; Matthews, P.M. Towards an understanding of gait control: Brain activation during the anticipation, preparation and execution of foot movements. Neuroimage 2004, 21, 568–575. [Google Scholar] [CrossRef]
- Bürki, C.N.; Bridenbaugh, S.A.; Reinhardt, J.; Stippich, C.; Kressig, R.W.; Blatow, M. Imaging gait analysis: AnfMRI dual task study. Brain Behav. 2017, 7, e00724. [Google Scholar] [CrossRef] [PubMed]
- Rea, M.; Rana, M.; Lugato, N.; Terekhin, P.; Gizzi, L.; Brötz, D.; Fallgatter, A.; Birbaumer, N.; Sitaram, R.; Caria, A. Lower limb movement preparation in chronic stroke. Neurorehabil. Neural Repair 2014, 28, 564–575. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, K.; Li, D.; Lv, Z.; Li, X.; He, X.; Wang, D.; Jiang, W. Assessment of brain function in patients with cognitive impairment based on fNIRS and gait analysis. Front. Aging Neurosci. 2022, 14, 799732. [Google Scholar] [CrossRef]
- Holtzer, R.; Izzetoglu, M. Mild cognitive impairments attenuate prefrontal cortex activations during walking in older adults. Brain Sci. 2020, 10, 415. [Google Scholar] [CrossRef]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild cognitive impairment: Clinical characterization and outcome. Arch. Neurol. 1999, 56, 303–308. [Google Scholar] [CrossRef]
- Hirose, S.; Nambu, I.; Naito, E. Cortical activation associated with motor preparation can be used to predict the freely chosen effector of an upcoming movement and reflects response time: An fMRI decoding study. Neuroimage 2018, 183, 584–596. [Google Scholar] [CrossRef]
- Grafton, S.T.; Volz, L.J. From ideas to action: The prefrontal-premotor connections that shape motor behavior. Handb. Clin. Neurol. 2019, 163, 237–255. [Google Scholar] [CrossRef] [PubMed]
- Westfall, J.; Kenny, D.A.; Judd, C.M. Statistical power and optimal design in experiments in which samples of participants respond to samples of stimuli. J. Exp. Psychol. Gen. 2014, 143, 2020–2045. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.; Izzetoglu, M.; Shewokis, P.A.; Sangobowale, M.; Diaz-Arrastia, R.; Izzetoglu, K. Evaluation of fNIRS signal components elicited by cognitive and hypercapnic stimuli. Sci. Rep. 2021, 11, 23457. [Google Scholar] [CrossRef]
- Sawilowsky, S.S. New effect size rules of thumb. J. Mod. Appl. Stat. Methods 2009, 8, 597–599. [Google Scholar] [CrossRef]
- Pieruccini-Faria, F.; Sarquis-Adamson, Y.; Anton-Rodrigo, I.; Noguerón-García, A.; Bray, N.W.; Camicioli, R.; Muir-Hunter, S.W.; Speechley, M.; McIlroy, B.; Montero-Odasso, M. Mapping associations between gait decline and fall risk in mild cognitive impairment. J. Am. Geriatr. Soc. 2020, 68, 576–584. [Google Scholar] [CrossRef]
- Jaquerod, M.E.; Knight, R.S.; Lintas, A.; Villa, A.E.P. A dual role for the dorsolateral prefrontal cortex (DLPFC) in auditory deviance detection. Brain Sci. 2024, 14, 994. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Li, H.; Chen, K.; Yang, G.; Xie, H.; Li, H.; Wu, Y.; Li, M. Brain compensatory activation during stroop task in patients with mild cognitive impairment: A functional near-infrared spectroscopy study. Front. Aging Neurosci. 2025, 17, 1470747. [Google Scholar] [CrossRef]
- Balada, F.; Aluja, A.; García, Ó.; Aymamí, N.; García, L.F. Gender differences in prefrontal cortex response to negative emotional stimuli in drivers. Brain Sci. 2024, 14, 884. [Google Scholar] [CrossRef]
- Doi, T.; Shimada, H.; Makizako, H.; Tsutsumimoto, K.; Uemura, K.; Anan, Y.; Suzuki, T. Cognitive function and gait speed under normal and dual-task walking among older adults with mild cognitive impairment. BMC Neurol. 2014, 14, 67. [Google Scholar] [CrossRef]
- Montero-Odasso, M.M.; Barnes, B.; Speechley, M.; Muir, H.S.; Doherty, T.J.; Duque, G.; Gopaul, K.; Sposato, L.A.; Casas-Herrero, A.; Borrie, M.J.; et al. Disentangling cognitive-frailty: Results from the gait and brain study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 71, 1476–1482. [Google Scholar] [CrossRef]
- Verghese, J.; Robbins, M.; Holtzer, R.; Zimmerman, M.; Wang, C.; Xue, X.; Lipton, R.B. Gait dysfunction in mild cognitive impairment syndromes. J. Am. Geriatr. Soc. 2008, 56, 1244–1251. [Google Scholar] [CrossRef] [PubMed]
- Montero-Odasso, M.; Muir, S.W.; Speechley, M. Dual-task complexity affects gait in people with mild cognitive impairment: The interplay between gait variability, dual tasking, and risk of falls. Arch. Phys. Med. Rehabil. 2012, 93, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Rypma, B.; D’Esposito, M. Isolating the neural mechanisms of age-related changes in human working memory. Nat. Neurosci. 2000, 3, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Pieruccini-Faria, F.; Black, S.E.; Masellis, M.; Smith, E.E.; Almeida, Q.J.; Li, K.; Bherer, L.; Camicioli, R.; Montero-Odasso, M. Gait variability across neurodegenerative and cognitive disorders: Results from the canadian consortium of neurodegeneration in aging (CCNA) and the gait and brain study. Alzheimer’s Dement. 2021, 17, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Job, X.; Golemme, M.; Bhattacharya, J.; Cappelletti, M.; de Fockert, J.; van Velzen, J. The influence of motor preparation on the processing of action-relevant visual features. Sci. Rep. 2019, 9, 11084. [Google Scholar] [CrossRef]
- Dupont-Hadwen, J.; Bestmann, S.; Stagg, C.J. Motor training modulates intracortical inhibitory dynamics in motor cortex during movement preparation. Brain Stimul. 2019, 12, 300–308. [Google Scholar] [CrossRef]
- Davis, S.W.; Dennis, N.A.; Daselaar, S.M.; Fleck, M.S.; Cabeza, R. Que PASA? The posterior-anterior shift in aging. Cereb. Cortex 2008, 18, 1201–1209. [Google Scholar] [CrossRef]
- Desmurget, M.; Richard, N.; Beuriat, P.; Szathmari, A.; Mottolese, C.; Duhamel, J.; Sirigu, A. Selective inhibition of volitional hand movements after stimulation of the dorsoposterior parietal cortex in humans. Curr. Biol. 2018, 28, 3303–3309. [Google Scholar] [CrossRef]
- Seer, C.; Sidlauskaite, J.; Lange, F.; Rodríguez-Nieto, G.; Swinnen, S.P. Cognition and action: A latent variable approach to study contributions of executive functions to motor control in older adults. Aging 2021, 13, 15942–15963. [Google Scholar] [CrossRef]
- Van der Lubbe, R.H.J.; Sobierajewicz, J.; Jongsma, M.L.A.; Verwey, W.B.; Przekoracka-Krawczyk, A. Frontal brain areas are more involved during motor imagery than during motor execution/preparation of a response sequence. Int. J. Psychophysiol. 2021, 164, 71–86. [Google Scholar] [CrossRef]
- D’Esposito, M.; Postle, B.R.; Rypma, B. Prefrontal cortical contributions to working memory: Evidence from event-related fMRI studies. Exp. Brain Res. 2000, 133, 3–11. [Google Scholar] [CrossRef]
- Delval, A.; Braquet, A.; Dirhoussi, N.; Bayot, M.; Derambure, P.; Defebvre, L.; Tard, C.; Dujardin, K. Motor preparation of step initiation: Error-related cortical oscillations. Neuroscience 2018, 393, 12–23. [Google Scholar] [CrossRef]
- Doi, T.; Makizako, H.; Shimada, H.; Park, H.; Tsutsumimoto, K.; Uemura, K.; Suzuki, T. Brain activation during dual-task walking and executive function among older adults with mild cognitive impairment: A fNIRS study. Aging Clin. Exp. Res. 2013, 25, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.H.; Yang, Y.R.; Yeh, N.C.; Ku, P.H.; Wang, P.S.; Liao, Y.Y.; Wang, R.Y. Gait performance and prefrontal cortex activation during single and dual task walking in older adults with different cognitive levels. Front. Aging Neurosci. 2023, 15, 1177082. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Chang, K.H.; Roh, J.K. Subregions within the supplementary motor area activated at different stages of movement preparation and execution. Neuroimage 1999, 9, 117–123. [Google Scholar] [CrossRef]
- Al-Wasity, S.; Vogt, S.; Vuckovic, A.; Pollick, F.E. Upregulation of supplementary motor area activation with fMRI neurofeedback during motor imagery. Eneuro 2021, 8, 318–377. [Google Scholar] [CrossRef]
- Binkofski, F.; Buccino, G. The role of the parietal cortex in sensorimotor transformations and action coding. Handb. Clin. Neurol. 2018, 151, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Greenhouse, I.; Sias, A.; Labruna, L.; Ivry, R.B. Nonspecific inhibition of the motor system during response preparation. J. Neurosci. 2015, 35, 10675–10684. [Google Scholar] [CrossRef]
- Hamel, R.; Waltzing, B.M.; Hinder, M.R.; McAllister, C.J.; Jenkinson, N.; Galea, J.M. Bilateral intracortical inhibition during unilateral motor preparation and sequence learning. Brain Stimul. 2024, 17, 349–361. [Google Scholar] [CrossRef]
- Di Tella, S.; Blasi, V.; Cabinio, M.; Bergsland, N.; Buccino, G.; Baglio, F. How do we motorically resonate in aging? A compensatory role of prefrontal cortex. Front. Aging Neurosci. 2021, 13, 694676. [Google Scholar] [CrossRef]
- Farina, E.; Baglio, F.; Pomati, S.; D’Amico, A.; Campini, I.C.; Di Tella, S.; Belloni, G.; Pozzo, T. The mirror neurons network in aging, mild cognitive impairment, and alzheimer disease: A functional MRI study. Front. Aging Neurosci. 2017, 9, 371. [Google Scholar] [CrossRef] [PubMed]
- Ushakov, V.L.; Kartashov, S.I.; Zavyalova, V.V.; Bezverhiy, D.D.; Posichanyuk, V.I.; Terentev, V.N.; Anokhin, K.V. Network activity of mirror neurons depends on experience. J. Integr. Neurosci. 2013, 12, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Vigneswaran, G.; Philipp, R.; Lemon, R.N.; Kraskov, A. M1 corticospinal mirror neurons and their role in movement suppression during action observation. Curr. Biol. 2013, 23, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Masse, F.A.A.; Ansai, J.H.; Fiogbe, E.; Rossi, P.G.; Vilarinho, A.C.G.; Takahashi, A.C.D.M.; Pires De Andrade, L. Progression of gait changes in older adults with mild cognitive impairment: A systematic review. J. Geriatr. Phys. Ther. 2021, 44, 119–124. [Google Scholar] [CrossRef]
- Talamonti, D.; Gagnon, C.; Vincent, T.; Nigam, A.; Lesage, F.; Bherer, L.; Fraser, S. Exploring cognitive and brain oxygenation changes over a 1-year period in physically active individuals with mild cognitive impairment: A longitudinal fNIRS pilot study. BMC Geriatr. 2022, 22, 648. [Google Scholar] [CrossRef]
- Stojan, R.; Mack, M.; Bock, O.; Voelcker-Rehage, C. Inefficient frontal and parietal brain activation during dual-task walking in a virtual environment in older adults. Neuroimage 2023, 273, 120070. [Google Scholar] [CrossRef]
Characteristic | MCI (n = 57) | HC (n = 67) | p |
---|---|---|---|
Age (years) | 74.55 ± 6.62 | 74.32 ±6.23 | 0.69 |
Gender (male/female) | 25/32 | 29/38 | 0.35 |
Height (cm) | 162.29 ± 7.86 | 163.13 ± 7.10 | 0.55 |
Weight (kg) | 63.10 ± 9.11 | 63.33 ± 9.31 | 0.87 |
BMI (kg/m2) | 22.89 ± 3.12 | 23.87 ± 2.91 | 0.72 |
Educational level (years) | 11.28 ± 3.34 | 11.76 ± 2.97 | 0.42 |
MoCA | 20.77 ± 3.59 | 26.85 ± 2.34 | 0.00 * |
MCI (n = 57) | HC (n = 67) | p | |
---|---|---|---|
Speed (m/s) | |||
E-SW | 0.81 ± 0.14 | 0.83 ± 0.23 | 0.16 |
E-PW | 0.84 ± 0.26 | 0.85 ± 0.15 | 0.12 |
E-SW | E-PW | |
---|---|---|
PFC | 0.06 | 0.18 |
primary motor cortex | 0.17 | 0.38 |
secondary motor cortex | 0.20 | 0.35 |
parietal lobe | 0.32 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Fan, C.; Chen, K.; Xie, H.; Yang, G.; Li, H.; Ji, X.; Wu, Y.; Li, M. Brain Activation During Motor Preparation and Execution in Patients with Mild Cognitive Impairment: An fNIRS Study. Brain Sci. 2025, 15, 333. https://doi.org/10.3390/brainsci15040333
Li H, Fan C, Chen K, Xie H, Yang G, Li H, Ji X, Wu Y, Li M. Brain Activation During Motor Preparation and Execution in Patients with Mild Cognitive Impairment: An fNIRS Study. Brain Sciences. 2025; 15(4):333. https://doi.org/10.3390/brainsci15040333
Chicago/Turabian StyleLi, Hanfei, Chenyu Fan, Ke Chen, Hongyu Xie, Guohui Yang, Haozheng Li, Xiangtong Ji, Yi Wu, and Meng Li. 2025. "Brain Activation During Motor Preparation and Execution in Patients with Mild Cognitive Impairment: An fNIRS Study" Brain Sciences 15, no. 4: 333. https://doi.org/10.3390/brainsci15040333
APA StyleLi, H., Fan, C., Chen, K., Xie, H., Yang, G., Li, H., Ji, X., Wu, Y., & Li, M. (2025). Brain Activation During Motor Preparation and Execution in Patients with Mild Cognitive Impairment: An fNIRS Study. Brain Sciences, 15(4), 333. https://doi.org/10.3390/brainsci15040333