A Brief Review of Inherited Neuropathies: A Perspective from Saudi Arabia
Abstract
:1. Introduction
2. Review
2.1. Overview on Major Inherited Neuropathies
2.2. Charcot-Marie-Tooth Disease (CMT)
2.3. Hereditary Neuropathy with Liability to Pressure Palsies (HNPP)
2.4. Hereditary Sensory and Autonomic Neuropathies (HSAN)
2.5. Familial Amyloid Polyneuropathy (FAP)
2.6. Refsum Disease
2.7. Giant Axonal Neuropathy (GAN)
2.8. Congenital Hypomyelinating Neuropathy (CHN)
2.9. Tangier Disease
3. Saudi Perspective and Existing Consensus on Inherited Neuropathies
4. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
- The following abbreviations are used in this manuscript:
NGS | Next-Generation Sequencing |
SMTs | Small Molecule Therapies |
ASOs | Antisense Oligonucleotides |
CMT | Charcot-Marie-Tooth Disease |
HSAN | Hereditary Sensory and Autonomic Neuropathies |
HNPP | Hereditary Neuropathy with Liability to Pressure Palsies |
PMP22 | Peripheral Myelin Protein 22 |
IVIG | Intravenous Immunoglobulin |
SPTLC1 | Serine Palmitoyltransferase Long Chain Base Subunit 1 |
TTR | Transthyretin |
LT | Liver Transplantation |
GAN | Giant Axonal Neuropathy |
scAAV9 | Self-Complementary Adeno-Associated Virus 9 |
IF | Intermediate Filaments |
GRIN | Global Registry for Inherited Neuropathies |
HNF | Hereditary Neuropathy Foundation |
AANEM | American Association of Neuromuscular and Electrodiagnostic Medicine |
ABCA1 | ATP-Binding Cassette Transporter A1 |
CHN | Congenital Hypomyelinating Neuropathy |
FAP | Familial Amyloid Polyneuropathy |
HDL | High-Density Lipoprotein |
IT | Intrathecal |
KO | Knockout |
References
- Eggermann, K.; Gess, B.; Häusler, M.; Weis, J.; Hahn, A.; Kurth, I. Hereditary Neuropathies. Dtsch. Arztebl. Int. 2018, 115, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Jennings, M.J.; Lochmüller, A.; Atalaia, A.; Horvath, R. Targeted therapies for hereditary peripheral neuropathies: Systematic review and steps towards a ‘treatabolome’. J. Neuromuscul. Dis. 2021, 8, 383–400. [Google Scholar] [CrossRef] [PubMed]
- Baets, J.; De Jonghe, P.; Timmerman, V. Recent advances in Charcot-Marie-Tooth disease. Curr. Opin. Neurol. 2014, 27, 532–540. [Google Scholar] [CrossRef]
- Timmerman, V.; Strickland, A.V.; Züchner, S. Genetics of Charcot-Marie-Tooth (CMT) disease within the frame of the Human Genome Project success. Genes 2014, 5, 13–32. [Google Scholar] [CrossRef]
- Harding, A.E.; Thomas, P.K. Genetic aspects of hereditary motor and sensory neuropathy (types I and II). J. Med. Genet. 1980, 17, 329–336. [Google Scholar] [CrossRef]
- Thenmozhi, R.; Lee, J.S.; Park, N.Y.; Choi, B.O.; Hong, Y.B. Gene therapy options as new treatment for inherited peripheral neuropathy. Exp. Neurobiol. 2020, 29, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Gao, G. State-of-the-art human gene therapy: Part II. Gene therapy strategies and clinical applications. Discov. Med. 2014, 18, 151–161. [Google Scholar]
- Stavrou, M.; Sargiannidou, I.; Georgiou, E.; Kagiava, A.; Kleopa, K.A. Emerging therapies for Charcot-Marie-Tooth inherited neuropathies. Int. J. Mol. Sci. 2021, 22, 6048. [Google Scholar] [CrossRef]
- Amanat, M.; Nemeth, C.L.; Fine, A.S.; Leung, D.G.; Fatemi, A. Antisense oligonucleotide therapy for the nervous system: From bench to bedside with emphasis on pediatric neurology. Pharmaceutics 2022, 14, 2389. [Google Scholar] [CrossRef]
- Askari, F.K.; McDonnell, W.M. Antisense-oligonucleotide therapy. N. Engl. J. Med. 1996, 334, 316–318. [Google Scholar] [CrossRef]
- Saporta, M.A.; Shy, M.E. Inherited peripheral neuropathies. Neurol. Clin. 2013, 31, 597–619. [Google Scholar] [CrossRef] [PubMed]
- Hustinx, M.; Shorrocks, A.M.; Servais, L. Novel Therapeutic Approaches in Inherited Neuropathies: A Systematic Review. Pharmaceutics 2023, 15, 1626. [Google Scholar] [CrossRef] [PubMed]
- Skre, H. Genetic and clinical aspects of Charcot-Marie-Tooth’s disease. Clin. Genet. 1974, 6, 98–118. [Google Scholar] [CrossRef]
- Magy, L.; Mathis, S.; Le Masson, G.; Goizet, C.; Tazir, M.; Vallat, J.M. Updating the classification of inherited neuropathies: Results of an international survey. Neurology 2018, 90, e870–e876. [Google Scholar] [CrossRef] [PubMed]
- Juneja, M.; Burns, J.; Saporta, M.A.; Timmerman, V. Challenges in modelling the Charcot-Marie-Tooth neuropathies for therapy development. J. Neurol. Neurosurg. Psychiatry 2019, 90, 58–67. [Google Scholar] [CrossRef]
- Passage, E.; Norreel, J.C.; Noack-Fraissignes, P.; Sanguedolce, V.; Pizant, J.; Thirion, X.; Robaglia-Schlupp, A.; Pellissier, J.F.; Fontés, M. Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot-Marie-Tooth disease. Nat. Med. 2004, 10, 396–401. [Google Scholar] [CrossRef]
- Kiepura, A.J.; Kochański, A. Charcot Marie Tooth type 1A drug therapies: Role of adenylyl cyclase activity and G protein coupled receptors in disease pathomechanism. Acta Neurobiol. Exp. 2018, 78, 198–209. [Google Scholar] [CrossRef]
- Pareyson, D.; Reilly, M.M.; Schenone, A.; Fabrizi, G.M.; Cavallaro, T.; Santoro, L.; Vita, G.; Quattrone, A.; Padua, L.; Gemignani, F.; et al. Ascorbic acid in Charcot-Marie-Tooth disease type 1A (CMT-TRIAAL and CMT-TRAUK): A double-blind randomised trial. Lancet Neurol. 2011, 10, 320–328. [Google Scholar] [CrossRef]
- Pisciotta, C.; Saveri, P.; Pareyson, D. Updated review of therapeutic strategies for Charcot-Marie-Tooth disease and related neuropathies. Expert. Rev. Neurother. 2021, 21, 701–713. [Google Scholar] [CrossRef]
- Attarian, S.; Young, P.; Brannagan, T.H.; Adams, D.; Van Damme, P.; Thomas, F.P.; Casanovas, C.; Kafaie, J.; Tard, C.; Walter, M.C.; et al. A double-blind, placebo-controlled, randomized trial of PXT3003 for the treatment of Charcot-Marie-Tooth type 1A. Orphanet J. Rare Dis. 2021, 16, 433. [Google Scholar] [CrossRef]
- Chumakov, I.; Milet, A.; Cholet, N.; Primas, G.; Boucard, A.; Pereira, Y.; Graudens, E.; Mandel, J.; Laffaire, J.; Foucquier, J.; et al. Polytherapy with a combination of three repurposed drugs (PXT3003) down-regulates Pmp22 over-expression and improves myelination, axonal and functional parameters in models of CMT1A neuropathy. Orphanet J. Rare Dis. 2014, 9, 201. [Google Scholar] [CrossRef] [PubMed]
- Thomas, F.P.; Brannagan, T.H., 3rd; Butterfield, R.J.; Desai, U.; Habib, A.A.; Herrmann, D.N.; Eichinger, K.J.; Johnson, N.E.; Karam, C.; Pestronk, A.; et al. Randomized Phase 2 Study of ACE-083 in Patients With Charcot-Marie-Tooth Disease. Neurology 2022, 98, e2356–e2367. [Google Scholar] [CrossRef] [PubMed]
- Keystone, E.C.; Wang, M.M.; Layton, M.; Hollis, S.; McInnes, I.B. Clinical evaluation of the efficacy of the P2X7 purinergic receptor antagonist AZD9056 on the signs and symptoms of rheumatoid arthritis in patients with active disease despite treatment with methotrexate or sulphasalazine. Ann. Rheum. Dis. 2012, 71, 1630–1635. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Dimos, J.T.; Rodolfa, K.T.; Niakan, K.K.; Weisenthal, L.M.; Mitsumoto, H.; Chung, W.; Croft, G.F.; Saphier, G.; Leibel, R.; Goland, R.; et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008, 321, 1218–1221. [Google Scholar] [CrossRef]
- Saporta, M.A.; Grskovic, M.; Dimos, J.T. Induced pluripotent stem cells in the study of neurological diseases. Stem Cell Res. Ther. 2011, 2, 37. [Google Scholar] [CrossRef]
- Saporta, M.A. Cellular reprogramming and inherited peripheral neuropathies: Perspectives and challenges. Neural Regen. Res. 2015, 10, 894–896. [Google Scholar] [CrossRef]
- van Paassen, B.W.; van der Kooi, A.J.; van Spaendonck-Zwarts, K.Y.; Verhamme, C.; Baas, F.; de Visser, M. PMP22 related neuropathies: Charcot-Marie-Tooth disease type 1A and Hereditary Neuropathy with liability to Pressure Palsies. Orphanet J. Rare Dis. 2014, 9, 38. [Google Scholar] [CrossRef]
- Reilly, M.M. Sorting out the inherited neuropathies. Pract. Neurol. 2007, 7, 93–105. [Google Scholar]
- Kalfakis, N.; Panas, M.; Karadima, G.; Floroskufi, P.; Kokolakis, N.; Vassilopoulos, D. Hereditary neuropathy with liability to pressure palsies emerging during vincristine treatment. Neurology 2002, 59, 1470–1471. [Google Scholar] [CrossRef]
- Chance, P.F. Inherited focal, episodic neuropathies: Hereditary neuropathy with liability to pressure palsies and hereditary neuralgic amyotrophy. Neuromolecular Med. 2006, 8, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Chrestian, N. Hereditary Neuropathy with Liability to Pressure Palsy. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Bean, L.J.H., Gripp, K.W., Mirzaa, G.M., Stevenson, R.E., et al., Eds.; University of Washington: Seattle, DC, USA, 2020; pp. 1–21. [Google Scholar]
- Liew, Z.H.; Lo, Y.L. Intravenous Immunoglobulin in Treatment of Hereditary Neuropathy With Liability to Pressure Palsy. J. Clin. Neuromuscul. Dis. 2017, 18, 160–161. [Google Scholar] [CrossRef]
- Vrinten, C.; Gu, X.; Weinreich, S.S.; Schipper, M.H.; Wessels, J.; Ferrari, M.D.; Hoijtink, H.; Verschuuren, J.J. An n-of-one RCT for intravenous immunoglobulin G for inflammation in hereditary neuropathy with liability to pressure palsy (HNPP). J. Neurol. Neurosurg. Psychiatry 2016, 87, 790–791. [Google Scholar] [CrossRef]
- Axelrod, F.B.; Gold-von Simson, G. Hereditary sensory and autonomic neuropathies: Types II, III, and IV. Orphanet J. Rare Dis. 2007, 2, 39. [Google Scholar] [CrossRef]
- Dyck, P.J. The causes, classification, and treatment of peripheral neuropathy. N. Engl. J. Med. 1982, 307, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Axelrod, F.B.; Pearson, J. Congenital sensory neuropathies. Diagnostic distinction from familial dysautonomia. Am. J. Dis. Child. 1984, 138, 947–954. [Google Scholar] [CrossRef]
- Houlden, H.; King, R.H.; Hashemi-Nejad, A.; Wood, N.W.; Mathias, C.J.; Reilly, M.; Thomas, P.K. A novel TRK A (NTRK1) mutation associated with hereditary sensory and autonomic neuropathy type V. Ann. Neurol. 2001, 49, 521–525. [Google Scholar] [CrossRef]
- Bejaoui, K.; Uchida, Y.; Yasuda, S.; Ho, M.; Nishijima, M.; Brown, R.H., Jr.; Holleran, W.M.; Hanada, K. Hereditary sensory neuropathy type 1 mutations confer dominant negative effects on serine palmitoyltransferase, critical for sphingolipid synthesis. J. Clin. Investig. 2002, 110, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Axelrod, F.B. Familial dysautonomia: A review of the current pharmacological treatments. Expert. Opin. Pharmacother. 2005, 6, 561–567. [Google Scholar] [CrossRef]
- Penno, A.; Reilly, M.M.; Houlden, H.; Laurá, M.; Rentsch, K.; Niederkofler, V.; Stoeckli, E.T.; Nicholson, G.; Eichler, F.; Brown, R.H., Jr.; et al. Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J. Biol. Chem. 2010, 285, 11178–11187. [Google Scholar] [CrossRef]
- Hanada, K. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim. Biophys. Acta. 2003, 1632, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, K.; Penno, A.; Schmidt, B.P.; Lee, H.J.; Frosch, M.P.; von Eckardstein, A.; Brown, R.H.; Hornemann, T.; Eichler, F.S. Oral L-serine supplementation reduces production of neurotoxic deoxysphingolipids in mice and humans with hereditary sensory autonomic neuropathy type 1. J. Clin. Investig. 2011, 121, 4735–4745. [Google Scholar] [CrossRef]
- Planté-Bordeneuve, V.; Said, G. Familial amyloid polyneuropathy. Lancet Neurol. 2011, 10, 1086–1097. [Google Scholar] [CrossRef]
- Rohatgi, S.; Nirhale, S.; Manohar, P.; Rao, P.; Naphade, P.; Khan, F.M.A.; Dave, D.; Kotaru, V.V.S.; Gupta, S.; Gitay, A.; et al. Novel transthyretin gene mutation in familial amyloid neuropathy in India: Case. Ann. Afr. Med. 2022, 21, 296–298. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.; Suhr, O.B.; Hund, E.; Obici, L.; Tournev, I.; Campistol, J.M.; Slama, M.S.; Hazenberg, B.P.; Coelho, T.; European Network for TTR-FAP (ATTReuNET). First European consensus for diagnosis, management, and treatment of transthyretin familial amyloid polyneuropathy. Curr. Opin. Neurol. 2016, 29 (Suppl. S1), S14–S26. [Google Scholar] [CrossRef]
- Ando, Y.; Coelho, T.; Berk, J.L.; Cruz, M.W.; Ericzon, B.G.; Ikeda, S.; Lewis, W.D.; Obici, L.; Planté-Bordeneuve, V.; Rapezzi, C.; et al. Guideline of transthyretin-related hereditary amyloidosis for clinicians. Orphanet J. Rare Dis. 2013, 8, 31. [Google Scholar] [CrossRef]
- Adams, D.; Théaudin, M.; Cauquil, C.; Algalarrondo, V.; Slama, M. FAP neuropathy and emerging treatments. Curr. Neurol. Neurosci. Rep. 2014, 14, 435. [Google Scholar] [CrossRef] [PubMed]
- Adams, D. Recent advances in the treatment of familial amyloid polyneuropathy. Ther. Adv. Neurol. Disord. 2013, 6, 129–139. [Google Scholar] [CrossRef]
- Schilling, M. Gentherapieoptionen der hereditären Transthyretinamyloidose. Nervenarzt 2022, 93, 557–565. [Google Scholar] [CrossRef]
- Habib, M.H.; Tiger, Y.K.R.; Dima, D.; Schlögl, M.; McDonald, A.; Mazzoni, S.; Khouri, J.; Williams, L.; Anwer, F.; Raza, S. Role of palliative care in the supportive management of AL amyloidosis—A review. J. Clin. Med. 2024, 13, 1991. [Google Scholar] [CrossRef]
- Baldwin, E.J.; Gibberd, F.B.; Harley, C.; Sidey, M.C.; Feher, M.D.; Wierzbicki, A.S. The effectiveness of long-term dietary therapy in the treatment of adult Refsum disease. J. Neurol. Neurosurg. Psychiatry 2010, 81, 954–957. [Google Scholar] [CrossRef]
- Baldwin, E.J.; Harrington, D.J.; Sampson, B.; Feher, M.D.; Wierzbicki, A.S. Safety of long-term restrictive diets for peroxisomal disorders: Vitamin and trace element status of patients treated for Adult Refsum Disease. Int. J. Clin. Pract. 2016, 70, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Wanders, R.J.; Waterham, H.R. Peroxisomal disorders: The single peroxisomal enzyme deficiencies. Biochim. Biophys. Acta 2006, 1763, 1707–1720. [Google Scholar] [CrossRef]
- Rizzo, W.B.; Jenkens, S.M.; Boucher, P. Recognition and diagnosis of neuro-ichthyotic syndromes. Semin. Neurol. 2012, 32, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Rüether, K.; Baldwin, E.; Casteels, M.; Feher, M.D.; Horn, M.; Kuranoff, S.; Leroy, B.P.; Wanders, R.J.; Wierzbicki, A.S. Adult Refsum disease: A form of tapetoretinal dystrophy accessible to therapy. Surv. Ophthalmol. 2010, 55, 531–538. [Google Scholar] [CrossRef]
- Zolotov, D.; Wagner, S.; Kalb, K.; Bunia, J.; Heibges, A.; Klingel, R. Long-term strategies for the treatment of Refsum’s disease using therapeutic apheresis. J. Clin. Apher. 2012, 27, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Gutsche, H.U.; Siegmund, J.B.; Hoppmann, I. Lipapheresis: An immunoglobulin-sparing treatment for Refsum’s disease. Acta Neurol. Scand. 1996, 94, 190–193. [Google Scholar] [CrossRef]
- Harari, D.; Gibberd, F.B.; Dick, J.P.; Sidey, M.C. Plasma exchange in the treatment of Refsum’s disease (heredopathia atactica polyneuritiformis). J. Neurol. Neurosurg. Psychiatry 1991, 54, 614–617. [Google Scholar] [CrossRef]
- Demir, E.; Bomont, P.; Erdem, S.; Cavalier, L.; Demirci, M.; Kose, G.; Muftuoglu, S.; Cakar, A.N.; Tan, E.; Aysun, S.; et al. Giant axonal neuropathy: Clinical and genetic study in six cases. J. Neurol. Neurosurg. Psychiatry 2005, 76, 825–832. [Google Scholar] [CrossRef]
- Johnson-Kerner, B.L.; Roth, L.; Greene, J.P.; Wichterle, H.; Sproule, D.M. Giant axonal neuropathy: An updated perspective on its pathology and pathogenesis. Muscle Nerve 2014, 50, 467–476. [Google Scholar] [CrossRef]
- Edem, P.; Karakaya, M.; Wirth, B.; Okur, T.D.; Yiş, U. Giant axonal neuropathy: A differential diagnosis of consideration. Turk. J. Pediatr. 2019, 61, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Su, Q.; Zhu, X.; Wang, J.; Lou, Y.; Miao, P.; Wang, Y.; Zhang, B.; Jin, Y.; Gao, L.; et al. Giant axonal neuropathy (GAN) in an 8-year-old girl caused by a homozygous pathogenic splicing variant in GAN gene. Am. J. Med. Genet. A 2022, 188, 836–846. [Google Scholar] [CrossRef]
- Ashrafi, M.R.; Dehnavi, A.Z.; Tavasoli, A.R.; Heidari, M.; Ghahvechi Akbari, M.; Ronagh, A.R.; Ghafouri, M.; Mahdieh, N.; Mohammadi, P.; Rezaei, Z. Expanding the genetic spectrum of giant axonal neuropathy: Two novel variants in Iranian families. Mol. Genet. Genom. Med. 2023, 11, e2159. [Google Scholar] [CrossRef] [PubMed]
- Koichihara, R.; Saito, T.; Ishiyama, A.; Komaki, H.; Yuasa, S.; Saito, Y.; Nakagawa, E.; Sugai, K.; Shiihara, T.; Shioya, A.; et al. A mild case of giant axonal neuropathy without central nervous system manifestation. Brain Dev. 2016, 38, 350–353. [Google Scholar] [CrossRef]
- Akagi, M.; Mohri, I.; Iwatani, Y.; Kagitani-Shimono, K.; Okinaga, T.; Sakai, N.; Ozono, K.; Taniike, M. Clinicogenetical features of a Japanese patient with giant axonal neuropathy. Brain Dev. 2012, 34, 156–162. [Google Scholar] [CrossRef]
- Bharucha-Goebel, D.X.; Todd, J.J.; Saade, D.; Norato, G.; Jain, M.; Lehky, T.; Bailey, R.M.; Chichester, J.A.; Calcedo, R.; Armao, D.; et al. Intrathecal gene therapy for giant axonal neuropathy. N. Engl. J. Med. 2024, 390, 1092–1104. [Google Scholar] [CrossRef]
- Lesmana, H.; Vawter Lee, M.; Hosseini, S.A.; Burrow, T.A.; Hallinan, B.; Bove, K.; Schapiro, M.; Hopkin, R.J. CNTNAP1-Related Congenital Hypomyelinating Neuropathy. Pediatr. Neurol. 2019, 93, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Sevilla, T.; Lupo, V.; Sivera, R.; Marco-Marín, C.; Martínez-Rubio, D.; Rivas, E.; Hernández, A.; Palau, F.; Espinós, C. Congenital hypomyelinating neuropathy due to a novel MPZ mutation. J. Peripher. Nerv. Syst. 2011, 16, 347–352. [Google Scholar] [CrossRef]
- Smit, L.S.; Roofthooft, D.; van Ruissen, F.; Baas, F.; van Doorn, P.A. Congenital hypomyelinating neuropathy, a long term follow-up study in an affected family. Neuromuscul. Disord. 2008, 18, 59–62. [Google Scholar] [CrossRef]
- Hahn, J.S.; Henry, M.; Hudgins, L.; Madan, A. Congenital hypomyelination neuropathy in a newborn infant: Unusual cause of diaphragmatic and vocal cord paralyses. Pediatrics 2001, 108, E95. [Google Scholar] [CrossRef]
- Utech, M.; Höbbel, G.; Rust, S.; Reinecke, H.; Assmann, G.; Walter, M. Accumulation of RhoA, RhoB, RhoG, and Rac1 in fibroblasts from Tangier disease subjects suggests a regulatory role of Rho family proteins in cholesterol efflux. Biochem. Biophys. Res. Commun. 2001, 280, 229–236. [Google Scholar] [CrossRef]
- Burnett, J.R.; Hooper, A.J.; McCormick, S.P.A.; Hegele, R.A. Tangier Disease. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, DC, USA, 2019; pp. 1–18. [Google Scholar]
- Sulaiman, R.A.; Al-Owain, M. Inherited Metabolic Disorders in Adults: A view from Saudi Arabia. Eur. J. Med. Genet. 2019, 62, 103562. [Google Scholar] [CrossRef] [PubMed]
- Khayat, A.M.; Alshareef, B.G.; Alharbi, S.F.; AlZahrani, M.M.; Alshangity, B.A.; Tashkandi, N.F. Consanguineous Marriage and Its Association with Genetic Disorders in Saudi Arabia: A Review. Cureus 2024, 16, e53888. [Google Scholar] [CrossRef] [PubMed]
- Albanghali, M.A. Prevalence of Consanguineous Marriage among Saudi Citizens of Albaha, a Cross-Sectional Study. Int. J. Environ. Res. Public Health 2023, 20, 3767. [Google Scholar] [CrossRef]
- Bissar-Tadmouri, N.; Al Homssi, M.; Nair, P. Hereditary Diseases of the Nervous System in Arabs. In Genomics and Health in the Developing World; Kumar, D., Ed.; Oxford Academic: Oxford, UK, 2012; pp. 450–467. [Google Scholar]
- Monies, D.; Abouelhoda, M.; AlSayed, M.; Alhassnan, Z.; Alotaibi, M.; Kayyali, H.; Al-Owain, M.; Shah, A.; Rahbeeni, Z.; Al-Muhaizea, M.A.; et al. The landscape of genetic diseases in Saudi Arabia based on the first 1000 diagnostic panels and exomes. Hum. Genet. 2017, 136, 921–939. [Google Scholar] [CrossRef] [PubMed]
- Balobaid, A.; Qari, A.; Al-Zaidan, H. Genetic counselors’ scope of practice and challenges in genetic counseling services in Saudi Arabia. Int. J. Pediatr. Adolesc. Med. 2016, 3, 1–6. [Google Scholar] [CrossRef]
- Bamaga, A.K.; Muthaffar, O.Y.; Alyazidi, A.S.; Abu Alqam, R. Giant Axonal Neuropathy: A Case Report of Subclinical Childhood Manifestations. Cureus 2024, 16, e54368. [Google Scholar] [CrossRef]
- Avan, A.; Hachinski, V. Brain health: Key to health, productivity, and well-being. Alzheimers Demen. 2022, 18, 1396–1407. [Google Scholar] [CrossRef]
- Sivera Mascaró, R.; García Sobrino, T.; Horga Hernández, A.; Pelayo Negro, A.L.; Alonso Jiménez, A.; Antelo Pose, A.; Calabria Gallego, M.D.; Casasnovas, C.; Cemillán Fernández, C.A.; Esteban Pérez, J.; et al. Clinical practice guidelines for the diagnosis and management of Charcot-Marie-Tooth disease. In Neurologia; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Courtney. Charcot-Marie-Tooth Disease—JOIN GRIN Patient Registry [Internet]. Charcot-Marie-Tooth Disease. Available online: https://www.hnf-cure.org/cmt/cmt-research/grin-patient-registry/ (accessed on 12 January 2025).
- Laurie, S.; Piscia, D.; Matalonga, L.; Corvó, A.; Fernández-Callejo, M.; Garcia-Linares, C.; Hernandez-Ferrer, C.; Luengo, C.; Martínez, I.; Papakonstantinou, A.; et al. The RD-Connect Genome-Phenome Analysis Platform: Accelerating diagnosis, research, and gene discovery for rare diseases. Hum. Mutat. 2022, 43, 717–733. [Google Scholar] [CrossRef]
- Salih, M.A.; Maisonobe, T.; Kabiraj, M.; al Rayess, M.; al-Turaiki, M.H.; Akbar, M.; Tahan, A.; Urtizberea, J.A.; Grid, D.; Hamadouche, T.; et al. Autosomal recessive hereditary neuropathy with focally folded myelin sheaths and linked to chromosome 11q23: A distinct and homogeneous entity. Neuromuscul. Disord. 2000, 10, 10–15. [Google Scholar] [CrossRef]
Condition | Subtypes | Gene/Locus |
---|---|---|
Charcot–Marie–Tooth (CMT) | CMT1A | Dup 17p (PMP22) |
CMT1A | PMP22 (point mutation) | |
CMT1B | MPZ | |
CMT1C | LITAF | |
CMT1D | EGR2 | |
CMT1E | NEFL | |
CMT2A | MFN2 | |
CMT2B | RAB7A | |
CMT2C | TRPV4 | |
CMT2D | GARS | |
CMT2E | NEFL | |
CMT2F | HSPB1 | |
CMT2G | Unknown | |
CMT2H | Unknown | |
CMT2I/J | MPZ | |
CMT2K | GDAP1 | |
CMT4A | GDAP1 | |
CMT4B1 | MTMR2 | |
CMT4B2 | SBF2 | |
CMT4C | SH3TC2 | |
CMT4D | NDRG1 | |
CMT4E | EGR2 | |
CMT4F | PRX | |
CMT4H | FGD4 | |
CMT4J | FIG4 | |
CMTX1 | GJB1 | |
CMTX2 | Xp22.2 | |
CMTX3 | Xq26 | |
CMTX4 | AIFM1 | |
CMTX5 | PRPS1 | |
CMTX6 | PDK3 | |
Hereditary neuropathy with pressure palsies (HNPP) | HNPP | Del 17p (PMP22) |
PMP22 (point mutation) | ||
Hereditary Sensory and Autonomic Neuropathies (HSAN) | HSAN IA | SPTLC1 |
HSAN IB | DNMT1 | |
HSAN IC | ATL1 | |
HSAN ID | SPTLC2 | |
HSAN IE | NGF | |
HSAN IIA | WNK1 | |
HSAN IIB: Caused by FAM134B gene mutations | FAM134B | |
HSAN IIC | KIF1A | |
HSAN IID | SCN9A | |
HSAN III | IKBKAP | |
HSAN IV | NTRK1 | |
HSAN V | NGF | |
NTRK1 | ||
Familial Amyloid Polyneuropathy (FAP) | FAP Type I | TTR (Val30Met) |
FAP Type II | TTR (Arg104His) | |
Refsum disease | Classic Refsum Disease | PHYH |
Refsum Disease due to PEX7 Deficiency | PEX7 | |
Giant axonal neuropathy (GAN) | GAN | GAN |
Congenital hypomyelinating neuropathy (CHN) | CHN1 | MPZ |
CHN2 | PMP22 | |
CHN3 | EGR2 | |
CHN4 | SOX10 | |
CHN5 | CNTNAP1 | |
CHN6 | KIF1B | |
Tangier disease | Tangier disease | ABCA1 |
Author | Year | Study Type | Intervention |
---|---|---|---|
Canals et al. | 2023 | Cross-sectional | Treatment of chronic pain in patients with CMT. The vast majority of patients reported effectiveness of cannabis in controlling their pain symptoms |
Créange et al. | 2023 | Phase IIb | Treatment with high-dose pharmaceutical-grade biotin led to an improvement in various sensory and motor parameters |
Bai et al. | 2022 | Preclinical | Treatment with IFB-088 improves neuropathy in CMT1A and CMT1B mice |
Attarian et al. | 2021 | Phase III | A double-blind, placebo-controlled, randomized trial of PXT3003 for the treatment of CMT1A. PXT3003 doses were safe and well-tolerated |
Gautier et al. | 2021 | Preclinical | AAV2/9-mediated silencing of PMP22 prevents the development of pathological features in a rat model of CMT1A |
Author | Year | Study Type | Intervention |
---|---|---|---|
Vrinten et al. | 2016 | Double-blind, placebo-controlled n-of-one trial | A 35-year-old female patient was treated with IVIg (0.4 mg/kg/day) for 5 days followed by maintenance doses every 3 weeks, which led to improvements in muscle strength and resolution of pain. |
Author | Year | Study Type | Intervention |
---|---|---|---|
Fridman et al. | 2019 | Randomized placebo-controlled trial | Patients aged 18–70 years with symptomatic HSAN1 were randomized to l-serine (400 mg/kg/day) or placebo for 1 year. All participants received l-serine during the second year. |
Garofalo et al. | 2011 | Unspecified clinical trial | In mice bearing a transgene expressing the C133W SPTLC1 mutant linked to HSAN1, a 10% l-serine–enriched diet reduced dSL levels. l-serine supplementation also improved measures of motor and sensory performance as well as measures of male fertility. |
Author | Year | Study Type | Intervention |
---|---|---|---|
Coelho et al. | 2012 | Randomized, double-blind trial | Patients received tafamidis 20 mg QD or placebo |
Adams et al. | 2000 | Clinical trial | They underwent orthotopic cadaveric liver transplantation and received an ABO compatible graft, and received as immunosuppressive therapy a triple drug combination of cyclosporin A (Novartis, Basel, Switzerland), steroids and azathioprine (Gugenheim et al., 1987), or rabbit antithymocyte globulin (Merieux, France) in place of cyclosporin |
Suhr et al. | 2015 | Clinical trial | Administration of patisiran led to rapid, dose-dependent, and durable knockdown of transthyretin, with the maximum effect seen with patisiran 0.3 mg/kg |
Tokuda et al. | 1998 | Clinical trial | In an initial trial on three patients, TTR-adsorption therapy consistently reduced the serum concentrations of both total and Met30 TTR to about a half of the pre-adsorption levels |
Pomfret et al. | 1998 | Clinical trial | Thirteen patients with FAP have undergone successful liver transplant surgery. Ten of 13 patients (77%) remain alive an average of 49 months (range, 17–64 months) after transplantation. |
Author | Year | Study Type | Intervention |
---|---|---|---|
Bharucha-Goebel et al. | 2024 | Dose escalation trial | The study conducted an intrathecal dose-escalation study of scAAV9/JeT-GAN (a self-complementary adeno-associated virus-based gene therapy containing the GAN transgene) in children with GAN. |
Bailey et al. | 2018 | Clinical trial | IT delivery of AAV9/JeT-GAN in aged GAN KO mice preserved sciatic nerve ultrastructure, reduced neuronal IF accumulations and attenuated rotarod dysfunction. |
Author | Year | Study Type | Intervention |
---|---|---|---|
Belin et al. | 2019 | Genetic intervention study | The study crossed Q215X mice with a transgenic mouse overexpressing HA-Nrg1 type III in neurons (30). We observed an improvement in myelin thickness and NCV in Nrg1 type III: Q215X mice. |
Author | Year | Study Type | Intervention |
---|---|---|---|
Oram | 2005 | Review | ABCA1-stimulating drugs have the potential to both mobilize cholesterol from atherosclerotic lesions and eliminate cholesterol from the body. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bamaga, A.K.; Alyazidi, A.S.; Alali, F.K. A Brief Review of Inherited Neuropathies: A Perspective from Saudi Arabia. Brain Sci. 2025, 15, 403. https://doi.org/10.3390/brainsci15040403
Bamaga AK, Alyazidi AS, Alali FK. A Brief Review of Inherited Neuropathies: A Perspective from Saudi Arabia. Brain Sciences. 2025; 15(4):403. https://doi.org/10.3390/brainsci15040403
Chicago/Turabian StyleBamaga, Ahmed K., Anas S. Alyazidi, and Feryal K. Alali. 2025. "A Brief Review of Inherited Neuropathies: A Perspective from Saudi Arabia" Brain Sciences 15, no. 4: 403. https://doi.org/10.3390/brainsci15040403
APA StyleBamaga, A. K., Alyazidi, A. S., & Alali, F. K. (2025). A Brief Review of Inherited Neuropathies: A Perspective from Saudi Arabia. Brain Sciences, 15(4), 403. https://doi.org/10.3390/brainsci15040403