Increasing the Biological Stability Profile of a New Chemical Entity, UPEI-104, and Potential Use as a Neuroprotectant Against Reperfusion-Injury
Abstract
:1. Introduction
2. Experimental Section
2.1. Surgical Procedures
2.2. Dose-Response Curve for UPEI-104
2.3. Reagents and Animals
2.4. UPEI-100 and -104 Synthesis Method
2.5. Stability in Human Plasma
2.6. Stability in Human Liver Microsomes
2.7. HPLC-MS Optimization
2.8. HPLC Conditions:
Time, min | % B | Flow rate, mL/min |
---|---|---|
0 | 0 | 0.5 |
1.5 | 100 | 0.5 |
2.5 | 100 | 0.5 |
2.6 | 0 | 0.5 |
3.0 | 0 | 0.5 |
2.9. Statistical Analysis
3. Results
3.1. Comparison of Stability of UPEI-100 vs. UPEI-104 in Human Plasma
Compound | Test Concentration | Incubation Time(minutes) | % Compound Remaining | Half-Life (minute) | |||||||||
1st | 2nd | Mean | 1st | 2nd | Mean | ||||||||
UPEI-100 | 1.0E−06 M | 0 | 100.0 | 100.0 | 100 | >120 | >120 | >120 | |||||
UPEI-100 | 1.0E−06 M | 30 | 92.7 | 126.6 | 110 | - | - | - | |||||
UPEI-100 | 1.0E−06 M | 60 | 100.7 | 116.0 | 108 | - | - | - | |||||
UPEI-100 | 1.0E−06 M | 90 | 99.5 | 111.2 | 105 | - | - | - | |||||
UPEI-100 | 1.0E−06 M | 120 | 109.9 | 140.1 | 125 | - | - | - | |||||
UPEI-104 | 1.0E−06 M | 0 | 100.0 | 100.0 | 100 | 351.8 | 351.1 | >120 | |||||
UPEI-104 | 1.0E−06 M | 30 | 89.3 | 112.0 | 101 | - | - | - | |||||
UPEI-104 | 1.0E−06 M | 60 | 95.5 | 98.6 | 97 | - | - | - | |||||
UPEI-104 | 1.0E−06 M | 90 | 82.9 | 76.4 | 80 | - | - | - | |||||
UPEI-104 | 1.0E−06 M | 120 | 77.2 | 90.1 | 84 | - | - | - | |||||
Reference Compound | TestConcentration | Half-Life(minute) | |||||||||||
1st | 2nd | Mean | |||||||||||
Half-life (plasma, human) | |||||||||||||
Propantheline | 1.0E−06 M | 7.2 | 7.2 | 7 | |||||||||
Propoxycaine | 1.0E−06 M | <30 | <30 | <30 | |||||||||
Verapamil | 1.0E−06 M | 1410.1 | 2004.7 | >120 |
3.2. Intrinsic Clearance Metabolic Profile in Human Liver Microsomes
Compound | Test Concentration | Incubation Time(minutes) | % Compound Remaining | Half-Life (minute) | Clint | Flags | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | Mean | 1st | 2nd | Mean | |||||||
Intrinsic clearance (liver microsomes, human) | ||||||||||||
UPEI-100 | 1.0E−07 M | 0 | 0.0 | 0.0 | 0 | - | - | - | - | ND | ||
UPEI-100 | 1.0E−07 M | 15 | 0.0 | 0.0 | 0 | - | - | - | - | ND | ||
UPEI-100 | 1.0E−07 M | 30 | 0.0 | 0.0 | 0 | - | - | - | - | ND | ||
UPEI-100 | 1.0E−07 M | 45 | 0.0 | 0.0 | 0 | - | - | - | - | ND | ||
UPEI-100 | 1.0E−07 M | 60 | 0.0 | 0.0 | 0 | - | - | - | - | ND | ||
UPEI-104 | 1.0E−07 M | 0 | 100.0 | 100.0 | 100 | 7.3 | 7.1 | 7 | 962.7 | - | ||
UPEI-104 | 1.0E−07 M | 15 | 34.6 | 34.8 | 35 | - | - | - | - | - | ||
UPEI-104 | 1.0E−07 M | 30 | 8.8 | 5.8 | 7 | - | - | - | - | - | ||
UPEI-104 | 1.0E−07 M | 45 | 1.4 | 1.4 | 1 | - | - | - | - | - | ||
UPEI-104 | 1.0E−07 M | 60 | 1.1 | 1.2 | 1 | - | - | - | - | - | ||
Reference Compound | Test Concentration | Half-Life (minute) | Clint | |||||||||
1st | 2nd | Mean | ||||||||||
Intrinsic clearance (liver microsomes, human) | ||||||||||||
Imipramine | 1.0E−07 M | 231.4 | 174.4 | >60 | <115.5 | |||||||
Propranolol | 1.0E−07 M | 264.2 | 273.1 | >60 | <115.5 | |||||||
Terfenadine | 1.0E−07 M | 6.8 | 7.7 | 7 | 959.1 | |||||||
Verapamil | 1.0E−07 M | 22.5 | 21.6 | 22 | 314.3 |
Compound | Test Concentration | Incubation Time(minutes) | % Compound Remaining | Half-Life (minute) | Clint | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | Mean | 1st | 2nd | Mean | |||||||||||||||
Intrinsic clearance (liver microsomes, human) | ||||||||||||||||||||
UPEI-100 | 1.0E−07 M | 0 | 100.0 | 100.0 | 100 | 1.1 | <15 | 1 | 6032.4 | |||||||||||
UPEI-100 | 1.0E−07 M | 15 | 0.0 | 0.0 | 0 | - | - | - | - | |||||||||||
UPEI-100 | 1.0E−07 M | 30 | 0.0 | 0.0 | 0 | - | - | - | - | |||||||||||
UPEI-100 | 1.0E−07 M | 45 | 0.0 | 0.0 | 0 | - | - | - | - | |||||||||||
UPEI-100 | 1.0E−07 M | 60 | 0.0 | 0.0 | 0 | - | - | - | - | |||||||||||
Reference Compound | Test Concentration | Half-Life(minute) | Clint | |||||||||||||||||
1st | 2nd | Mean | ||||||||||||||||||
Intrinsic clearance (liver microsomes, human) | ||||||||||||||||||||
Imipramine | 1.0E−07 M | 216.3 | 135.4 | >60 | <115.5 | |||||||||||||||
Propranolol | 1.0E−07 M | 132.1 | 137.3 | >60 | <115.5 | |||||||||||||||
Terfenadine | 1.0E−07 M | 9.4 | 9.1 | 9 | 748.1 | |||||||||||||||
Verapamil | 1.0E−07 M | 19.7 | 21.6 | 21 | 336.2 |
3.3. Dose-Dependent Effects of UPEI-104 on Infarct Volume Following tMCAO
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Halliwell, B. Reactive oxygen species and the central nervous system. J. Neurochem. 1992, 59, 1609–1623. [Google Scholar] [PubMed]
- Kontos, H.A. Oxygen radicals in CNS damage. Chem.-Biol. Interact. 1989, 72, 229–255. [Google Scholar] [CrossRef] [PubMed]
- Tieu, K.; Ischiropoulos, H.; Przedborski, S. Nitric oxide and reactive oxygen species in Parkinson’s disease. IUBMB Life 2003, 55, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, H.; Takagi, S.; Watanabe, Y.; Kato, H.; Araki, T. Role of reactive nitrogen and reactive oxygen species against MPTP neurotoxicity in mice. Neural Transm. 2008, 115, 831–842. [Google Scholar] [CrossRef]
- Datla, S.R.; Griendling, K.K. Reactive oxygen species, NADPH oxidase, and hypertension. Hypertension 2010, 56, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Olas, B.; Wachowicz, B.; Stochmal, A.; Oleszek, W. Inhibition of oxidative stress in blood platelets by different phenolics from Yucca schidigera Roezl bark. Nutrition 2003, 19, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Thatte, U.; Bagadey, S.; Dahanukar, S. Modulation of programmed cell death by medicinal plants. Cell. Mol. Biol. 2000, 46, 199–214. [Google Scholar] [PubMed]
- Motterlini, R.; Foresti, R.; Bassi, R.; Green, C.J. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic. Biol. Med. 2000, 28, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Pianetti, S.; Guo, S.; Kavanagh, K.T.; Sonenshein, G.E. Green tea polyphenol epigallocatechin-3 gallate inhibits Her-2/neu signaling, proliferation, and transformed phenotype of breast cancer cells. Cancer Res. 2002, 62, 652–655. [Google Scholar] [PubMed]
- Engels, F.; Renirie, B.F.; Hart, B.A; Labadie, R.P.; Nijkamp, F.P. Effects of apocynin, a drug isolated from the roots of Picrorhiza kurroa, on arachidonic acid metabolism. FEBS Lett. 1992, 305, 254–256. [Google Scholar]
- Chen, H.; Song, Y.S.; Chan, P.H. Inhibition of NAOPH oxidase is neuroprotective after ischemia reperfusion. J. Cereb. Blood Flow Metab. 2009, 29, 1262–1272. [Google Scholar] [CrossRef] [PubMed]
- Connell, B.J.; Saleh, M.; Khan, B.V.; Saleh, T.M. Apocynin may limit total cell death following cerebral ischemia and reperfusion by enhancing apoptosis. Food Chem. Toxicol. 2011, 49, 3063–3069. [Google Scholar] [CrossRef] [PubMed]
- Jackman, K.A.; Miller, A.A.; DeSilva, T.M.; Crack, P.J.; Drummond, G.R.; So Bey, C.G. Reduction of cerebral infarct volume by apocynin requires pretreatment and is absent in Nox2-deficient mice. Br. J. Pharmacol. 2009, 156, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.L.; Ye, K.; Yang, X.F.; Zheng, J.S. Apocynin attenuates cerebral infarction after transient focal ischemia in rats. J. Int. Med. Res. 2007, 35, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Tompkins, K.O.; Simonya, A.; Korthuis, R.J. Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress, and injury in the gerbil hippocampus. Brain Res. 2006, 1090, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Morcos, M.; Borcea, V.; Isermann, B.; Gehrke, S.; Ehret, T.; Henkels, M.; Schiekofer, S.; Hofmann, M.; Amiral, J.; Tritschler, H.; et al. Effect of alpha-lipoic acid on the progression of endothelial cell damage and albuminuria in patients with diabetes mellitus: An exploratory study. Diabetes Res. Clin. Pract. 2001, 52, 175–183. [Google Scholar]
- Mijnhout, G.S.; Alkhalaf, A.; Kleefstra, N.; Bilo, H.J. Alpha lipoic acid: A new treatment for neuropathic pain in patients with diabetes. Neth. J. Med. 2010, 110, 158–162. [Google Scholar]
- Ying, Z.; Kherada, N.; Farrar, B.; Kampfrath, T.; Chung, Y.; Simonetti, O.; Deiuliis, J.; Desikan, R.; Khan, B.V.; Villamena, F.; et al. Lipoic acid effects on established atherosclerosis. Life Sci. 2010, 86, 95–102. [Google Scholar]
- Connell, B.J.; Saleh, M.C.; Khan, B.V.; Saleh, T.M. Lipoic acid protects against reperfusion injury in the early stages of cerebral ischemia. Brain Res. 2011, 1375, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Richard, M.J.P.; Connell, B.J.; Khan, B.V.; Saleh, T.M. Cellular mechanisms by which lipoic acid confers protection during the early stages of cerebral ischemia. Neurosci. Res. 2011, 69, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Mignini, F.M.; Capacchietti, M.; Napolioni, V.; Reggiardo, G.; Fasani, R.; Ferrari, P. Single dose bioavailability and pharmacokinetic study of a innovative formulation of alpha-lipoic acid (ALA600) in healthy volunteers. Minerva Med. 2011, 102, 475–482. [Google Scholar] [PubMed]
- Arner, E.S.; Nordberg, J.; Holmgren, A. Efficient reduction of lipoamide and lipoic acid by mammalian thioredoxin reductase. Biochem. Biophys. Res. Commun. 1996, 225, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Teichert, J.; Hermann, R.; Ruus, P.; Preiss, R. Plasma kinetics, metabolism, and urinary excretion of alpha-lipoic acid following oral administration in healthy volunteers. J. Clin. Pharmacol. 2003, 43, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Sola, S.; Mir, M.Q.; Cheema, F.A.; Khan-Merchant, N.; Menon, R.G.; Parthasarathy, S.; Khan, B.V. Irbesartan and lipoic acid improve endothelial function and reduce markers of inflammation in the metabolic syndrome: Results of the Irbesartan and Lipoic Acid in Endothelial Dysfunction (ISLAND) study. Circulation 2005, 111, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Minnerup, J.; Schabitz, W.R. Multifunctional actions of approved and candidate stroke drugs. Neurotherapeutics 2009, 6, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Oi Stefano, A.; Sozio, P.; Cocco, A.; Lannitelli, A.; Santucci, E.; Costa, M.; Pecci, L.; Nasuti, C.; Cantalamessa, F.; Pinnen, F. L-Oopa and dopamine-R-α-Lipoic acid Conjugates as multifunctional co-drugs with antioxidant properties. J. Med. Chem. 2006, 49, 1486–1493. [Google Scholar] [CrossRef] [PubMed]
- Connell, B.J.; Saleh, M.C.; Khan, B.V.; Rajogopal, D.; Saleh, T.M. UPEI-100, a conjugate of lipoic acid and apocynin, mediates neuroprotection in a rat model of ischemia/reperfusion. Am. J. Physiol. 2012, 302, R886–R895. [Google Scholar]
- Connell, B.J.; Saleh, T.M. A novel rodent model of reperfusion injury following occlusion of the middle cerebral artery. J. Neurosci. Methods 2010, 190, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Algar, W.R.; Krull, U.J. Multidentate surface ligand exchange for the immobilization of CdSe/ZnS quantum dots and surface quantum dot-oligonucleotide conjugates. Langmuir 2008, 24, 5514–5520. [Google Scholar] [CrossRef] [PubMed]
- Di, L.; Kerns, E.H.; Hong, Y.; Chen, H. Development and application of high throughput plasma stability assay for drug discovery. Int. J. Pharm. 2005, 297, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Obach, S. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J. Pharmacol. Exp. Ther. 1997, 283, 46–58. [Google Scholar] [PubMed]
- Bateman, K.P.; Castro-Perez, J.; Wrona, M.; Shockcor, J.P.; Yu, K.; Oballa, R.; Nicoll-Griffith, D.A. MSE with mass defect filtering for in vitro and in vivo metabolite identification. Rapid Commun. Mass Spectrom. 2007, 21, 1485–1496. [Google Scholar] [CrossRef] [PubMed]
- Connell, B.J.; Saleh, T.M. Co-administration of apocynin with lipoic acid enhances neuroprotection in a rat model of ischemia/reperfusion. Neurosci. Lett. 2012, 507, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Augustinsson, K.B. Multiple forms of esterase in vertebrate blood plasma. Ann. N.Y. Acad. Sci. 1961, 94, 844–860. [Google Scholar] [CrossRef]
- Egleton, R.D.; Davis, T.P. Development of neuropeptide drugs that cross the blood-brain-barrier. NeuroRx 2005, 2, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.N.; Cairns, B.; Cairns, N.; Yenari, M.A. Apocynin improves outcome in experimental stroke with a narrow dose range. Neuroscience 2008, 154, 556–562. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, T.M.; Connell, B.J.; Kucukkaya, I.; Abd-El-Aziz, A.S. Increasing the Biological Stability Profile of a New Chemical Entity, UPEI-104, and Potential Use as a Neuroprotectant Against Reperfusion-Injury. Brain Sci. 2015, 5, 130-143. https://doi.org/10.3390/brainsci5020130
Saleh TM, Connell BJ, Kucukkaya I, Abd-El-Aziz AS. Increasing the Biological Stability Profile of a New Chemical Entity, UPEI-104, and Potential Use as a Neuroprotectant Against Reperfusion-Injury. Brain Sciences. 2015; 5(2):130-143. https://doi.org/10.3390/brainsci5020130
Chicago/Turabian StyleSaleh, Tarek M., Barry J. Connell, Inan Kucukkaya, and Alaa S. Abd-El-Aziz. 2015. "Increasing the Biological Stability Profile of a New Chemical Entity, UPEI-104, and Potential Use as a Neuroprotectant Against Reperfusion-Injury" Brain Sciences 5, no. 2: 130-143. https://doi.org/10.3390/brainsci5020130
APA StyleSaleh, T. M., Connell, B. J., Kucukkaya, I., & Abd-El-Aziz, A. S. (2015). Increasing the Biological Stability Profile of a New Chemical Entity, UPEI-104, and Potential Use as a Neuroprotectant Against Reperfusion-Injury. Brain Sciences, 5(2), 130-143. https://doi.org/10.3390/brainsci5020130