The Impact of Glucose on Corticospinal and Intracortical Excitability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Electromyography
2.3. Transcranial Magnetic Stimulation
2.4. Resting Motor Threshold
2.5. MEP Recruitment Curve
2.6. Short Interval Intracortical Inhibition
2.7. Afferent Inhibition
2.8. Blood Glucose and Blood Pressure
2.9. Experimental Design
2.10. Statistical Analyses
3. Results
3.1. Blood Glucose
3.2. MEP Recruitment Curve
3.3. SICI
3.4. Afferent Inhibition
3.5. Mean Arterial Pressure
4. Discussion
Future Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ashrafi, G.; Ryan, T.A. Glucose metabolism in nerve terminals. Curr. Opin. Neurobiol. 2017, 45, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Dienel, G.A. Fueling and Imaging Brain Activation. ASN Neuro 2012, 4, AN20120021. [Google Scholar] [CrossRef] [PubMed]
- Dienel, G.A. Brain Glucose Metabolism: Integration of Energetics with Function. Physiol. Rev. 2018, 99, 949–1045. [Google Scholar] [CrossRef] [PubMed]
- Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends Neurosci. 2013, 36, 587–597. [Google Scholar] [CrossRef]
- Simeone, T.A.; Simeone, K.A.; Rho, J.M. Ketone Bodies as Anti-Seizure Agents. Neurochem. Res. 2017, 42, 2011–2018. [Google Scholar] [CrossRef]
- Lu, C.L.; Chang, Y.H.; Sun, Y.; Li, C.Y. A population-based study of epilepsy incidence in association with type 2 diabetes and severe hypoglycaemia. Diabetes Res. Clin. Pract. 2018, 140, 97–106. [Google Scholar] [CrossRef]
- Desilles, J.P.; Meseguer, E.; Labreuche, J.; Lapergue, B.; Sirimarco, G.; Gonzalez-Valcarcel, J.; Lavallée, P.; Cabrejo, L.; Guidoux, C.; Klein, I.; et al. Diabetes mellitus, admission glucose, and outcomes after stroke thrombolysis: A registry and systematic review. Stroke 2013, 44, 1915–1923. [Google Scholar] [CrossRef]
- Andersen, H.; Nielsen, S.; Nielsen, J.F. Motor cortical excitability remains unaffected of short-term hyperglycemia in Type 1 diabetic patients. J. Diabetes Complicat. 2006, 20, 51–55. [Google Scholar] [CrossRef]
- Badawy, R.A.B.; Vogrin, S.J.; Lai, A.; Cook, M.J. Cortical excitability changes correlate with fluctuations in glucose levels in patients with epilepsy. Epilepsy Behav. 2013, 27, 455–460. [Google Scholar] [CrossRef]
- Specterman, M.; Bhuiya, A.; Kuppuswamy, A.; Strutton, P.H.; Catley, M.; Davey, N.J. The effect of an energy drink containing glucose and caffeine on human corticospinal excitability. Physiol. Behav. 2005, 83, 723–728. [Google Scholar] [CrossRef]
- Turco, C.V.; El-Sayes, J.; Savoie, M.J.; Fassett, H.J.; Locke, M.B.; Nelson, A.J. Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors. Brain Stimul. 2018, 11, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Borghammer, P.; Hansen, S.B.; Eggers, C.; Chakravarty, M.; Vang, K.; Aanerud, J.; Hilker, R.; Heiss, W.D.; Rodell, A.; Munk, O.L.; et al. Glucose metabolism in small subcortical structures in Parkinson’s disease. Acta Neurol. Scand. 2012, 125, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Kapogiannis, D.; Mattson, M.P. Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol. 2011, 10, 187–198. [Google Scholar] [CrossRef]
- Stagg, C.J.; Bestmann, S.; Constantinescu, A.O.; Moreno Moreno, L.; Allman, C.; Mekle, R.; Woolrich, M.; Near, J.; Johansen-Berg, H.; Rothwell, J.C. Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. J. Physiol. 2011, 589, 5845–5855. [Google Scholar] [CrossRef]
- Ikemoto, A.; Bole, D.G.; Ueda, T. Glycolysis and glutamate accumulation into synaptic vesicles: Role of glyceraldehyde phosphate dehydrogenase and 3-phosphoglycerate kinase. J. Biol. Chem. 2003, 278, 5929–5940. [Google Scholar] [CrossRef]
- Pellerin, L.; Magistretti, P.J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci. USA 1994, 91, 10625–10629. [Google Scholar] [CrossRef]
- Roberts, B.L.; Zhu, M.; Zhao, H.; Dillon, C.; Appleyard, S.M. High glucose increases action potential firing of catecholamine neurons in the nucleus of the solitary tract by increasing spontaneous glutamate inputs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 313, R229–R239. [Google Scholar] [CrossRef]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A.; Avanzini, G.; Bestmann, S.; Berardelli, A.; Brewer, C.; Canli, T.; Cantello, R.; et al. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Hu, X.; Yu, W.; Yang, L.; Pan, W.; Si, Q.; Chen, X.; Li, Q.; Gu, X. Inverse association between physical activity and blood glucose is independent of sex, menopause status and first-degree family history of diabetes. J. Diabetes Investig. 2019, 1–8. [Google Scholar] [CrossRef]
- Vaseghi, B.; Zoghi, M.; Jaberzadeh, S. Inter-pulse interval affects the size of single-pulse TMS-induced motor evoked potentials: A reliability study. Basic Clin. Neurosci. 2015, 6, 44–51. [Google Scholar] [PubMed]
- Ah Sen, C.B.; Fassett, H.J.; El-Sayes, J.; Turco, C.V.; Hameer, M.M.; Nelson, A.J. Active and resting motor threshold are efficiently obtained with adaptive threshold hunting. PLoS ONE 2017, 12, e0186007. [Google Scholar] [CrossRef] [PubMed]
- Rebello, T.; Hodges, R.E.; Smith, J.L. Short-term effects of various sugars on antinatriuresis and blood pressure changes in normotensive young men. Am. J. Clin. Nutr. 1983, 38, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Synowski, S.J.; Kop, W.J.; Warwick, Z.S.; Waldstein, S.R. Effects of glucose ingestion on autonomic and cardiovascular measures during rest and mental challenge. J. Psychosom. Res. 2013, 74, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Shestov, A.A.; Emir, U.E.; Kumar, A.; Henry, P.G.; Seaquist, E.R.; Öz, G. Simultaneous measurement of glucose transport and utilization in the human brain. Am. J. Physiol. Endocrinol. Metab. 2011, 301, E1040–E1049. [Google Scholar] [CrossRef] [PubMed]
- Turco, C.V.; Pesevski, A.; McNicholas, P.D.; Beaulieu, L.-D.; Nelson, A.J. Reliability of transcranial magnetic stimulation measures of afferent inhibition. Brain Res. 2019, 1723, 146394. [Google Scholar] [CrossRef]
- Conover, W.J.; Iman, R.L. Analysis of Covariance Using the Rank Transformation. Biometrics 1982, 38, 715. [Google Scholar] [CrossRef]
- Di Lazzaro, V.; Pilato, F.; Dileone, M.; Profice, P.; Ranieri, F.; Ricci, V.; Bria, P.; Tonali, P.A.; Ziemann, U. Segregating two inhibitory circuits in human motor cortex at the level of GABAA receptor subtypes: A TMS study. Clin. Neurophysiol. 2007, 118, 2207–2214. [Google Scholar] [CrossRef]
- Müller-Dahlhaus, J.F.M.; Liu, Y.; Ziemann, U. Inhibitory circuits and the nature of their interactions in the human motor cortex—A pharmacological TMS study. J. Physiol. 2008, 586, 495–514. [Google Scholar] [CrossRef]
- Turco, C.V.; Locke, M.B.; El-sayes, J.; Tommerdahl, M.; Nelson, A.J. Exploring Behavioral Correlates of Afferent Inhibition. Brain Sci. 2018, 8, 64. [Google Scholar] [CrossRef]
- Sequeira, H.; Viltart, O.; Ba-M’Hamed, S.; Poulain, P. Cortical control of somato-cardiovascular integration: Neuroanatomical studies. Brain Res. Bull. 2000, 53, 87–93. [Google Scholar] [CrossRef]
- Binkofski, F.; Loebig, M.; Jauch-Chara, K.; Bergmann, S.; Melchert, U.H.; Scholand-Engler, H.G.; Schweiger, U.; Pellerin, L.; Oltmanns, K.M. Brain energy consumption induced by electrical stimulation promotes systemic glucose uptake. Biol. Psychiatry 2011, 70, 690–695. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, M.; Marcelino, E.; De Mendonça, A. Electrophysiological studies in healthy subjects involving caffeine. J. Alzheimer’s Dis. 2010, 20, 9–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattson, M.P.; Longo, V.D.; Harvie, M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 2017, 39, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.C.; Verdin, E. Ketone bodies as signaling metabolites. Trends Endocrinol. Metab. 2014, 25, 42–52. [Google Scholar] [CrossRef] [Green Version]
Measure | Timepoint | Test Statistic | Effect Size | p-Value |
---|---|---|---|---|
GLUglu | T1–T0 | 7.781 | 1.834 | <0.001 |
T2–T0 | 9.370 | 2.209 | <0.001 | |
T3–T0 | 6.963 | 1.641 | <0.001 | |
GLUwater | T1–T0 | −3.044 | −0.717 | 0.043 |
GLUsuc | T1–T0 | 7.434 | 1.752 | <0.001 |
MAPall | T1–T0 | 7.817 | 1.842 | <0.001 |
T2–T0 | 5.123 | 1.208 | <0.001 | |
T3–T0 | 6.922 | 1.632 | <0.001 | |
AURCall * | T1–T0 | 2.940 | 0.490 | 0.003 |
T2–T0 | 2.983 | 0.497 | 0.003 |
Measure | Grand CV (%) | Factor | df | F | p-Value |
---|---|---|---|---|---|
AURC ¶ | 60.8 | TREATMENT | 2,32 | 1.555 | 0.226 |
TIME | 2,32 | 10.429 | 0.001 | ||
TREATMENT × TIME | 4,64 | 2.290 | 0.069 | ||
SICI # | 80.8 | TREATMENT | 2,30 | 0.162 | 0.851 |
TIME | 2,30 | 2.640 | 0.088 | ||
TREATMENT × TIME | 4,60 | 1.712 | 0.200 | ||
SAI | 44.6 | TREATMENT | 2,30 | 0.059 | 0.943 |
TIME | 2,30 | 0.118 | 0.889 | ||
TREATMENT × TIME | 4,60 | 0.268 | 0.897 | ||
LAI * | 60.8 | TREATMENT | 2,32 | 2.663 | 0.085 |
TIME | 2,32 | 2.813 | 0.075 | ||
TREATMENT × TIME | 4,64 | 0.591 | 0.679 |
Measure/Timepoint A | Measure/Timepoint B | Correlation Coefficient | p-Value |
---|---|---|---|
AURC T1glu | GLU T1glu | −0.432 * | 0.261 |
AURC T1glu | GLU T2glu | −0.346 | 0.502 |
AURC T1all | MAP T1all | −0.127 | 0.978 |
AURC T1all | MAP T2all | 0.078 | 0.996 |
AURC T2glu | GLU T2glu | −0.366 | 0.440 |
AURC T2glu | GLU T3glu | −0.492 * | 0.144 |
AURC T2all | MAP T2all | 0.017 | 1.000 |
AURC T2all | MAP T3all | −0.167 | 0.941 |
Ave AURC T1glu & T2glu | Ave GLU T1glu, T2glu & T3glu | −0.351 | 0.283 |
Ave AURC T1all & T2all | Ave MAP T1all, T2all & T3all | −0.089 | 0.924 |
Measure. | Factor | df | F | p-Value |
---|---|---|---|---|
AURC | TREATMENT (T0) | 2,34 | 0.162 | 0.851 |
SICI | TREATMENT (T0) | 2,32 | 0.206 | 0.732 |
Water | PATTERN | 1,16 | 14.902 | 0.001 |
TIME | 2,32 | 0.463 | 0.560 | |
PATTERN × TIME | 2,32 | 1.348 | 0.269 | |
Sucralose | PATTERN | 1,15 | 40.673 | <0.001 |
TIME | 2,30 | 1.381 | 0.267 | |
PATTERN × TIME | 2,30 | 3.372 | 0.069 | |
Glucose | PATTERN | 1,17 | 28.103 | <0.001 |
TIME | 2,34 | 4.191 | 0.024 | |
PATTERN × TIME | 2,34 | 1.384 | 0.264 | |
SAI | TREATMENT (T0) | 2,34 | 0.325 | 0.725 |
Water | PATTERN | 1,16 | 49.518 | <0.001 |
TIME | 2,32 | 0.002 | 0.998 | |
PATTERN × TIME | 2,32 | 0.664 | 0.552 | |
Sucralose | PATTERN | 1,17 | 52.058 | <0.001 |
TIME | 2,34 | 0.892 | 0.419 | |
PATTERN × TIME | 2,34 | 0.345 | 0.710 | |
Glucose | PATTERN | 1,17 | 24.709 | <0.001 |
TIME | 2,34 | 0.477 | 0.625 | |
PATTERN × TIME | 2,34 | 0.100 | 0.905 | |
LAI | TREATMENT (T0) | 2,34 | 0.458 | 0.637 |
Water | PATTERN | 1,16 | 16.100 | 0.001 |
TIME | 2,32 | 0.214 | 0.809 | |
PATTERN × TIME | 2,32 | 2.256 | 0.121 | |
Sucralose | PATTERN | 1,17 | 28.422 | <0.001 |
TIME | 2,34 | 0.858 | 0.414 | |
PATTERN × TIME | 2,34 | 0.017 | 0.983 | |
Glucose | PATTERN | 1,17 | 8.101 | 0.011 |
TIME | 2,34 | 2.978 | 0.064 | |
PATTERN × TIME | 2,34 | 1.024 | 0.370 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toepp, S.L.; Turco, C.V.; Locke, M.B.; Nicolini, C.; Ravi, R.; Nelson, A.J. The Impact of Glucose on Corticospinal and Intracortical Excitability. Brain Sci. 2019, 9, 339. https://doi.org/10.3390/brainsci9120339
Toepp SL, Turco CV, Locke MB, Nicolini C, Ravi R, Nelson AJ. The Impact of Glucose on Corticospinal and Intracortical Excitability. Brain Sciences. 2019; 9(12):339. https://doi.org/10.3390/brainsci9120339
Chicago/Turabian StyleToepp, Stephen L., Claudia V. Turco, Mitchell B. Locke, Chiara Nicolini, Roshni Ravi, and Aimee J. Nelson. 2019. "The Impact of Glucose on Corticospinal and Intracortical Excitability" Brain Sciences 9, no. 12: 339. https://doi.org/10.3390/brainsci9120339
APA StyleToepp, S. L., Turco, C. V., Locke, M. B., Nicolini, C., Ravi, R., & Nelson, A. J. (2019). The Impact of Glucose on Corticospinal and Intracortical Excitability. Brain Sciences, 9(12), 339. https://doi.org/10.3390/brainsci9120339