Mechanistic Aspects of Apiaceae Family Spices in Ameliorating Alzheimer’s Disease
Abstract
:1. Introduction
2. Traditional Spices and Their Neuroprotective Effect
2.1. Anethum graveolens
2.2. Carum carvi
2.3. Coriandrum sativum
2.4. Cuminum cyminum
2.5. Ferula asafoetida
2.6. Foeniculum vulgare
2.7. Trachyspermum ammi
3. Clinical Studies
4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alzheimer’s Association Report. 2020 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2020, 16, 391–460. [Google Scholar] [CrossRef]
- Parsons, C.G.; Stöffler, A.; Danysz, W. Memantine: A NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system—Too little activation is bad, too much is even worse. Neuropharmacology 2007, 53, 699–723. [Google Scholar] [CrossRef]
- Tabet, N. Acetylcholinesterase inhibitors for Alzheimer’s disease: Anti-inflammatories in acetylcholine clothing! Age Ageing 2006, 35, 336–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podtelezhnikov, A.A.; Tanis, K.Q.; Nebozhyn, M.; Ray, W.J.; Stone, D.J.; Loboda, A.P. Molecular insights into the pathogenesis of Alzheimer’s disease and its relationship to normal aging. PLoS ONE 2011, 6, e29610. [Google Scholar] [CrossRef] [Green Version]
- Beckhauser, T.F.; Francis-Oliveira, J.; De Pasquale, R. Reactive oxygen species: Physiological and physiopathological effects on synaptic plasticity. J. Exp. Neurosci. 2016, 10, JEN.S39887. [Google Scholar] [CrossRef]
- Sharma, J.; Chawla, R.; Kumar, R.; Sharma, A.; Sharma, R.; Arora, R. Camellia sinensis as a safe neuroprotective radiation counter measure agent. Int. J. Pharm. Sci. Invent. 2013, 2, 26–33. [Google Scholar]
- Bayer, T.A.; Schäfer, S.; Breyhan, H.; Wirths, O.; Treiber, C.; Multhaup, G. A vicious circle: Role of oxidative stress, intraneuronal Aβ and Cu in Alzheimer’s disease. Clin. Neuropathol. 2006, 25, 163–171. [Google Scholar]
- Ono, K.; Hamaguchi, T.; Naiki, H.; Yamada, M. Anti-amyloidogenic effects of antioxidants: Implications for the prevention and therapeutics of Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2006, 1762, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 2007, 8, 766–775. [Google Scholar] [CrossRef]
- Reiter, C.D.; Teng, R.J.; Beckman, J.S. Superoxide reacts with nitric oxide to nitrate tyrosine at physiological pH via peroxynitrite. J. Biol. Chem. 2000, 275, 32460–32466. [Google Scholar] [CrossRef] [Green Version]
- Grothe, M.; Zaborszky, L.; Atienza, M.; Gil-Neciga, E.; Rodriguez-Romero, R.; Teipel, S.J.; Amunts, K.; Suarez-Gonzalez, A.; Cantero, J.L. Reduction of basal forebrain cholinergic system parallels cognitive impairment in patients at high risk of developing Alzheimer’s disease. Cereb. Cortex 2010, 20, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Grant, W.B. Dietary links to Alzheimer’s disease. J. Alzheimers Dis. Rev. 1997, 2, 42–55. [Google Scholar]
- Dodge, H.H.; Buracchio, T.J.; Fisher, G.G.; Kiyohara, Y.; Meguro, K.; Tanizaki, Y.; Kaye, J.A. Trends in the prevalence of dementia in Japan. Int. J. Alzheimers Dis. 2012, 2012, 956354. [Google Scholar] [CrossRef] [Green Version]
- Epure, A.; Pârvu, A.E.; Vlase, L.; Benedec, D.; Hanganu, D.; Gheldiu, A.M.; Vlad, A.T.; Oniga, I. Phytochemical profile, antioxidant, cardioprotective and nephro-protective activity of Romanian Chicory extract. Plants 2021, 10, 64. [Google Scholar] [CrossRef]
- Saravanan, S.; Parimelazhagan, T. In vitro antioxidant, antimicrobial and anti-diabetic properties of polyphenols of Passiflora ligularis Juss. fruit pulp. Food Sci. Hum. Wellness 2014, 3, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Tong, T.; Liu, Y.J.; Zhang, P.; Kang, S.G. Antioxidant, anti-inflammatory, and α-amylase inhibitory activities of Ulva lactuca extract. Korean J. Food Preserv. 2020, 27, 513–521. [Google Scholar] [CrossRef]
- Kannappan, R.; Gupta, S.C.; Kim, J.H.; Reuter, S.; Aggarwal, B.B. Neuro-protection by spice-derived nutraceuticals: You are what you eat! Mol. Neurobiol. 2011, 44, 142–159. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.S.; Talou, T.; Saad, Z.; Hijazi, A.; Cerny, M.; Chokr, A.; Kanaan, H.; Merah, O. Fennel oil and by-products seed characterization and their potential applications. Ind. Crop. Prod. 2018, 111, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.S.; Talou, T.; Saad, Z.; Hijazi, A.; Merah, O. The Apiaceae: Ethnomedicinal family as source for industrial uses. Ind. Crop. Prod. 2017, 109, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Szwajgier, D.; Baranowska-Wójcik, E. Terpenes and phenylpropanoids as acetyl- and butyrylcholinesterase inhibitors: A comparative study. Curr. Alzheimer Res. 2019, 16, 963–973. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Talou, T.; Evon, P.; Cerny, M.; Merah, O. Fatty acid composition and oil content during coriander fruit development. Food Chem. 2020, 326, 127034. [Google Scholar] [CrossRef]
- Mitchell, R.W.; On, N.H.; Del Bigio, M.R.; Miller, D.W.; Hatch, G.M. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. J. Neurochem. 2011, 117, 735–746. [Google Scholar] [CrossRef]
- Dobri, A.M.; Dudău, M.; Enciu, A.M.; Hinescu, M.E. CD36 in Alzheimer’s disease: An overview of molecular mechanisms and therapeutic targeting. Neuroscience 2020, 453, 301–311. [Google Scholar] [CrossRef]
- Bhadra, S.; Mukherjee, P.K.; Kumar, N.S.; Bandyopadhyay, A. Anticholinesterase activity of standardized extract of Illicium verum Hook f fruits. Fitoterapia 2011, 82, 342–346. [Google Scholar] [CrossRef]
- Epifano, F.; Molinaro, G.; Genovese, S.; Ngomba, R.T.; Nicoletti, F.; Curini, M. Neuroprotective effect of prenyloxycoumarins from edible vegetables. Neurosci. Lett. 2008, 443, 57–60. [Google Scholar] [CrossRef]
- Agrahari, P.; Singh, D.K. A review on the pharmacological aspects of Carum carvi. J. Biol. Earth Sci. 2014, 4, M1–M13. [Google Scholar]
- Wojtunik-Kulesza, K.; Targowska-Duda, K.; Klimek, K.; Ginalska, G.; Jóźwiak, K.; Waksmundzka-Hajnos, M.; Cieśla, Ł. Volatile terpenoids as potential drug leads in Alzheimer’s disease. Open Chem. 2017, 15, 332–343. [Google Scholar] [CrossRef] [Green Version]
- Omari, Z.; Kazunori, S.; Sabti, M.; Bejaoui, M.; Hafidi, A.; Gadhi, C.; Isoda, H. Dietary administration of cumin-derived cuminaldehyde induce neuroprotective and learning and memory enhancement effects to aging mice. Aging 2021, 13, 1671–1685. [Google Scholar] [CrossRef]
- Nahavandi, B.S.; Yaghmaei, P.; Ahmadian, S.; Ebrahim-Habibi, A.; Ghobeh, M. Effects of terpinolene and physical activity on memory and learning in a model of Alzheimer’s disease among rats. Qom Univ. Med. Sci. J. 2020, 14, 25–33. [Google Scholar]
- Fanelli, S.L.; Castro, G.D.; de Toranzo, E.G.; Castro, J.A. Mechanisms of the preventive properties of some garlic components in the carbon tetrachloride-promoted oxidative stress. Diallyl sulfide, diallyl disulfide, allyl mercaptan and allyl methyl sulfide. Res. Commun. Mol. Pathol. Pharmacol. 1998, 102, 163–174. [Google Scholar]
- Kim, H.S.; Cho, J.Y.; Kim, D.H.; Yan, J.J.; Lee, H.K.; Suh, H.W.; Song, D.K. Inhibitory effects of long term administration of ferulic acid on microglial activation induced by intercerebroventricular injection of beta amyloid peptide (1–42) in mice. Biol. Pharm. Bull. 2004, 27, 120–121. [Google Scholar] [CrossRef] [Green Version]
- Mori, T.; Koyama, N.; Guillot-Sestier, M.V.; Tan, J.; Town, T. Ferulic acid is a nutraceutical β-secretase modulator that improves behavioral impairment and alzheimer-like pathology in transgenic mice. PLoS ONE 2013, 8, e55774. [Google Scholar]
- Sgarbossa, A.; Giacomazza, D.; Di Carlo, M. Ferulic acid: A hope for Alzheimer’s disease therapy from plants. Nutrients 2015, 7, 5764–5782. [Google Scholar] [CrossRef]
- Sultana, R.; Ravagna, A.; Mohmmad-Abdul, H.; Calabrese, V.; Butterfield, D.A. Ferulic acid ethyl ester protects neurons against amyloid β-peptide (1–42)-induced oxidative stress and neurotoxicity: Relationship to antioxidant activity. J. Neurochem. 2005, 92, 749–758. [Google Scholar] [CrossRef]
- Yan, J.J.; Cho, J.Y.; Kim, H.S.; Kim, K.L.; Jung, J.S.; Huh, S.O.; Suh, H.W.; Kim, Y.H.; Song, D.K. Protection against β-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br. J. Pharmacol. 2001, 133, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Angulo, E.; Noé, V.; Casadó, V.; Mallol, J.; Gomez-Isla, T.; Lluis, C.; Ferrer, I.; Ciudad, C.J.; Franco, R. Up-regulation of the Kv3.4 potassium channel subunit in early stages of Alzheimer’s disease. J. Neurochem. 2004, 91, 547–557. [Google Scholar] [CrossRef]
- Boiangiu, R.S.; Brinza, I.; Hancianu, M.; Orhan, I.E.; Eren, G.; Gündüz, E.; Ertas, H.; Hritcu, L.; Cioanca, O. Cognitive facilitation and antioxidant effects of an essential oil mix on scopolamine-induced amnesia in rats: Molecular modeling of in vitro and in vivo approaches. Molecules 2020, 25, 1519. [Google Scholar] [CrossRef] [Green Version]
- Piccialli, I.; Tedeschi, V.; Caputo, L.; Amato, G.; De Martino, L.; De Feo, V.; Secondo, A.; Pannaccione, A. The antioxidant activity of limonene counteracts neurotoxicity triggered by Aβ1-42 oligomers in primary cortical neurons. Antioxidants 2021, 10, 937. [Google Scholar] [CrossRef]
- Tramutola, A.; Triani, F.; Di Domenico, F.; Barone, E.; Cai, J.; Klein, J.B.; Perluigi, M.; Butterfield, D.A. Poly-ubiquitin profile in Alzheimer disease brain. Neurobiol. Dis. 2018, 118, 129–141. [Google Scholar] [CrossRef]
- Cioanca, O.; Hritcu, L.; Mihasan, M.; Hancianu, M. Cognitive-enhancing and antioxidant activities of inhaled coriander volatile oil in amyloid β (1–42) rat model of Alzheimer’s disease. Physiol. Behav. 2013, 120, 193–202. [Google Scholar] [CrossRef]
- Farag, M.A.; Ezzat, S.M.; Salama, M.M.; Tadros, M.G.; Serya, R.A. Anti-acetylcholinesterase activity of essential oils and their major constituents from four Ocimum species. Z. Naturforsch. C 2016, 71, 393–402. [Google Scholar] [CrossRef]
- Asadbegi, M.; Komaki, A.; Salehi, I.; Yaghmaei, P.; Ebrahim-Habibi, A.; Shahidi, S.; Sarihi, A.; Asl, S.S.; Golipoor, Z. Effects of thymol on amyloid-β-induced impairments in hippocampal synaptic plasticity in rats fed a high-fat diet. Brain Res. Bull. 2018, 137, 338–350. [Google Scholar] [CrossRef]
- Azizi, Z.; Ebrahimi, S.; Saadatfar, E.; Kamalinejad, M.; Majlessi, N. Cognitive enhancing activity of thymol and carvacrol in two rat models of dementia. Behav. Pharmacol. 2012, 23, 241–249. [Google Scholar] [CrossRef]
- Hindam, M.O.; Sayed, R.H.; Skalicka-Woźniak, K.; Budzyńska, B.; El Sayed, N.S. Xanthotoxin and umbelliferone attenuate cognitive dysfunction in a strep-tozotocin-induced rat model of sporadic Alzheimer’s disease: The role of JAK2/STAT3 and Nrf2/HO-1 signalling pathway modulation. Phytother. Res. 2020, 34, 2351–2365. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, H.S.; Hong, S.S.; Sul, D.; Hwang, K.W.; Lee, D. The neuroprotective effects of traditional oriental herbal medicines against β-amyloid-induced toxicity. Pharm. Biol. 2009, 47, 976–981. [Google Scholar] [CrossRef]
- Kumar, N.; Dhiman, C.; Kothiyal, P. Evaluation of Anethum graveolens extract on memory impaired mice. Indo Am. J. Pharm. Sci. 2017, 4, 1965–1975. [Google Scholar]
- Heshami, N.; Mohammadali, S.; Komaki, A.; Tayebinia, H.; Karimi, J.; Oshaghi, E.A.; Hashemnia, M.; Khodadadi, I. Favorable effects of dill tablets and Ocimum basilicum L. extract on learning, memory, and hippocampal fatty acid composition in hypercholesterolemic rats. Iran. J. Basic Med. Sci. 2021, 24, 300–311. [Google Scholar]
- Koppula, S.; Choi, D.K. Anethum graveolens Linn (Umbelliferae) extract attenuates stress-induced urinary biochemical changes and improves cognition in scopolamine induced amnesic rats. Trop. J. Pharm. Res. 2011, 10, 47–54. [Google Scholar] [CrossRef]
- Mohammadali, S.; Heshami, N.; Komaki, A.; Tayebinia, H.; Oshaghi, E.A.; Karimi, J.; Hashemnia, M.; Khodadadi, I. Dill tablet and Ocimum basilicum aqueous extract: Promising therapeutic agents for improving cognitive deficit in hypercholesterolemic rats. J. Food Biochem. 2020, 44, e13485. [Google Scholar] [CrossRef]
- Thukham-Mee, W.; Wattanathorn, J. Evaluation of safety and protective effect of combined extract of Cissampelos pareira and Anethum graveolens (PM52) against age-related cognitive impairment. Evid.-Based Complement. Altern. Med. 2012, 2012, 674101. [Google Scholar] [CrossRef] [Green Version]
- Kopalli, S.R.; Koppula, S. Carum carvi Linn (Umbelliferae) attenuates lipopolysaccharide-induced neuroinflammatory responses via regulation of NF-κB signaling in BV-2 Microglia. Trop. J. Pharm. Res. 2015, 14, 1041–1047. [Google Scholar] [CrossRef] [Green Version]
- Koppula, S.; Kopalli, S.R.; Sreemantula, S. Adaptogenic and nootropic activities of aqueous extracts of Carum carvi Linn (Caraway) fruit: An experimental study in Wistar rats. Aust. J. Med. Herb. 2009, 21, 72–78. [Google Scholar]
- Hajlaoui, H.; Arraouadi, S.; Noumi, E.; Aouadi, K.; Adnan, M.; Khan, M.A.; Kadri, A.; Snoussi, M. Antimicrobial, antioxidant, anti-acetylcholinesterase, antidiabetic, and pharmacokinetic properties of Carum carvi L. and Coriandrum sativum L. essential oils alone and in combination. Molecules 2021, 26, 3625. [Google Scholar] [CrossRef]
- Mima, Y.; Izumo, N.; Chen, J.-R.; Yang, S.-C.; Furukawa, M.; Watanabe, Y. Effects of Coriandrum sativum seed extract on aging-induced memory impairment in Samp8 mice. Nutrients 2020, 12, 455. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.B.; Kopalli, S.R.; Koppula, S. Cuminum cyminum Linn (Apiaceae) extract attenuates MPTP-induced oxidative stress and behavioral impairments in mouse model of Parkinson’s disease. Trop. J. Pharm. Res. 2016, 15, 765–772. [Google Scholar] [CrossRef] [Green Version]
- Koppula, S.; Choi, D.K. Cuminum cyminum extract attenuates scopolamine-induced memory loss and stress-induced urinary biochemical changes in rats: A non-invasive biochemical approach. Pharm. Biol. 2011, 49, 702–708. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Brijeshlata, D.S.; Dixit, S. Screening of traditional Indian spices for inhibitory activity of acetylcholinesterase and butyrylcholinesterase enzymes. Int. J. Pharm. Bio. Sci. 2012, 3, 59–65. [Google Scholar]
- Fang, L.; Wang, X.; Guo, L.; Liu, Q. Antioxidant, antimicrobial properties and chemical composition of cumin essential oils extracted by three methods. Open Chem. 2018, 16, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Morshedi, D.; Aliakbari, F.; Tayaranian-Marvian, A.; Fassihi, A.; Pan-Montojo, F.; Pérez-Sánchez, H. Cuminaldehyde as the major component Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. J. Food Sci. 2015, 80, H2336–H2345. [Google Scholar] [CrossRef]
- Koppula, S.; Kumar, H. Foeniculum vulgare Mill (Umbelliferae) attenuates stress and improves memory in Wister rats. Trop. J. Pharm. Res. 2013, 12, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, S.; Ali Shah, S.A.; Ahmed, T.; Zahid, S. Neuroprotective effects of Foeniculum vulgare seeds extract on lead-induced neurotoxicity in mice brain. Drug Chem. Toxicol. 2018, 41, 399–407. [Google Scholar] [CrossRef]
- Soni, K.; Parle, M. Trachyspermum ammi seeds supplementation helps reverse scopolamine, alprazolam and electroshock induced amnesia. Neurochem. Res. 2017, 42, 1333–1344. [Google Scholar] [CrossRef]
- Capatina, L.; Todirascu-Ciornea, E.; Napoli, E.M.; Ruberto, G.; Hritcu, L.; Dumitru, G. Thymus vulgaris essential oil protects zebrafish against cognitive dysfunction by regulating cholinergic and antioxidants systems. Antioxidants 2020, 9, 1083. [Google Scholar] [CrossRef]
- Ozliman, S.; Yaldiz, G.; Camlica, M.; Ozsoy, N. Chemical components of essential oils and biological activities of the aqueous extract of Anethum graveolens L. grown under inorganic and organic conditions. Chem. Biol. Technol. Agric. 2021, 8, 20. [Google Scholar] [CrossRef]
- Raal, A.; Arak, E.; Orav, A. The content and composition of the essential oil found in Carum carvi L. commercial fruits obtained from different countries. J. Essent. Oil Res. 2012, 24, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Onuska, K.M. The dual role of microglia in the progression of Alzheimer’s disease. J. Neurosci. 2020, 40, 1608–1610. [Google Scholar] [CrossRef]
- Filipov, N.M. Overview of peripheral and central inflammatory responses and their contribution to neurotoxicity. Adv. Neurotoxicol. 2019, 3, 169–193. [Google Scholar]
- Passamonti, L.; Tsvetanov, K.A.; Jones, P.S.; Bevan-Jones, W.R.; Arnold, R.; Borchert, R.J.; Mak, E.; Su, L.; O’Brien, J.; Rowe, J. Neuroinflammation and functional connectivity in Alzheimer’s disease: Interactive influences on cognitive performance. J. Neurosci. 2019, 39, 7218–7226. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Wang, J.-L.; Liu, R.; Li, X.-X.; Li, J.-F.; Zhang, L. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules 2013, 18, 9949–9965. [Google Scholar] [CrossRef]
- López, M.D.; Campoy, F.J.; Pascual-Villalobos, M.J.; Muñoz-Delgado, E.; Vidal, C.J. Acetylcholinesterase activity of electric eel is increased or decreased by selected monoterpenoids and phenylpropanoids in a concentration-dependent manner. Chem. Biol. Interact. 2015, 229, 36–43. [Google Scholar] [CrossRef]
- Hritcu, L.; Boiangiu, R.S.; de Morais, M.C.; de Sousa, D.P. (‒)-cis-Carveol, a natural compound, improves β-amyloid-peptide 1-42-induced memory impairment and oxidative stress in the rat hippocampus. BioMed Res. Int. 2020, 2020, 8082560. [Google Scholar] [CrossRef] [Green Version]
- Bigdeli, Y.; Asle-Rousta, M.; Rahnema, M. Effects of limonene on chronic restraint stress-induced memory impairment and anxiety in male rats. Neurophysiology 2019, 51, 107–113. [Google Scholar] [CrossRef]
- Ebrahimi, S.N.; Hadian, J.; Ranjbar, H. Essential oil compositions of different accessions of Coriandrum sativum L. from Iran. Nat. Prod. Res. 2010, 24, 1287–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, D.; Desai, S.; Devkar, R.; Ramachandran, A.V. Acute and sub-chronic toxicological evaluation of hydro-methanolic extract of Coriandrum sativum L. seeds. EXCLI J. 2012, 11, 566–575. [Google Scholar] [PubMed]
- Picollo, M.I.; Toloza, A.C.; Mougabure, C.G.; Zygadlo, J.; Zerba, E. Anticholinesterase and pediculicidal activities of monoterpenoids. Fitoterapia 2008, 79, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Wang, B.; Yang, F.; Sun, Q.; Yang, Z.; Zhu, L. Chemical composition and anti-acetyl cholinesterase activity of flower essential oils of Artemisia annua at different flowering stage. Iran. J. Pharm. Res. 2011, 10, 265–271. [Google Scholar] [PubMed]
- Allahghadri, T.; Rasooli, I.; Owlia, P.; Nadooshan, M.J.; Ghazanfari, T.; Taghizadeh, M.; Astaneh, S.D. Antimicrobial property, antioxidant capacity, and cytotoxicity of essential oil from cumin produced in Iran. J. Food Sci. 2010, 75, H54–H61. [Google Scholar] [CrossRef] [PubMed]
- Mehdizadeh, L.; Pirbalouti, A.G.; Moghaddam, M. Storage stability of essential oil of cumin (Cuminum cyminum L.) as a function of temperature. Int. J. Food Prop. 2017, 20, 1742–1750. [Google Scholar] [CrossRef]
- Willatgamuwa, S.A.; Platel, K.; Saraswathi, G.; Srinivasan, K. Antidiabetic influence of dietary cumin seeds (Cuminum cyminum) in streptozotocin induced diabetic rats. Nutr. Res. 1998, 18, 131–142. [Google Scholar] [CrossRef]
- Ali, A.; Jumma, H. Yield, quality and composition of cumin essential oil as affected by storage period. Int. J. Anal. Mass Spectrom. Chromatogr. 2019, 7, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Jiang, Z. Chemical composition of the essential oil of Cuminum cyminum L. from China. Flavour Fragr. J. 2004, 19, 311–313. [Google Scholar] [CrossRef]
- Merah, O.; Sayed-Ahmad, B.; Talou, T.; Saad, Z.; Cerny, M.; Grivot, S.; Evon, P.; Hijazi, A. Biochemical composition of cumin seeds, and biorefining study. Biomolecules 2020, 10, 1054. [Google Scholar] [CrossRef]
- Kumar, S.; Chowdhury, S. Kinetics of acetylcholinesterase inhibition by an aqueous extract of Cuminum cyminum seeds. Int. J. Appl. Sci. Biotechnol. 2014, 2, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Kumar, S. Inhibition of BACE1, MAO-B, cholinesterase enzymes, and anti-amyloidogenic potential of selected natural phytoconstituents: Multi-target-directed ligand approach. J. Food Biochem. 2021, 45, e13571. [Google Scholar] [CrossRef]
- Youdim, M.; Riederer, P. The relevance of glial monoamine Oxidase-B and polyamines to the action of selegiline in Parkinson’s disease. Mov. Disord. 1993, 8, S8–S13. [Google Scholar] [CrossRef]
- Emilsson, L.; Saetre, P.; Balciuniene, J.; Castensson, A.; Cairns, N.; Jazin, E.E. Increased monoamine oxidase messenger RNA expression levels in frontal cortex of Alzheimer’s disease patients. Neurosci. Lett. 2002, 326, 56–60. [Google Scholar] [CrossRef]
- Jo, S.; Yarishkin, O.; Hwang, Y.J.; Chun, Y.E.; Park, M.; Woo, D.H.; Bae, J.Y.; Kim, T.; Lee, J.; Chun, H.; et al. GABA from reactive astrocytes impairs memory in mouse models of Alz-heimer’s disease. Nat. Med. 2014, 20, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Hassanabadi, M.; Ebrahimi, M.; Farajpour, M.; Dejahang, A. Variation in essential oil components among Iranian Ferula assa-foetida L. accessions. Ind. Crop. Prod. 2019, 140, 111598. [Google Scholar] [CrossRef]
- Mahendra, P.; Bisht, S. Ferula asafoetida: Traditional uses and pharmacological activity. Pharmacogn. Rev. 2012, 6, 141–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, M.; Sudheer, A.R.; Menon, V.P. Ferulic acid: Therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr. 2007, 40, 92–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Singh, V.K.; Singh, D.K. Kinetics of enzyme inhibition by active molluscicidal agents ferulic acid, umbelliferone, eugenol and limonene in the nervous tissue of snail Lymnaea acuminata. Phytother. Res. 2009, 23, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Choi, S.J.; Lim, S.T.; Kim, H.K.; Heo, H.J.; Kim, E.K.; Jun, W.J.; Cho, H.Y.; Kim, Y.J.; Shin, D.-H. Ferulic acid supplementation prevents trimethyltin-induced cognitive deficits in mice. Biosci. Biotechnol. Biochem. 2007, 71, 1063–1068. [Google Scholar] [CrossRef] [Green Version]
- Ono, K.; Hirohata, M.; Yamada, M. Ferulic acid destabilizes preformed beta-amyloid fibrils in vitro. Biochem. Biophys. Res. Commun. 2005, 336, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, T.; Ono, K.; Yamad, M. Curcumin and Alzheimer’s disease. CNS Neurosci. Ther. 2010, 16, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Perluigi, M.; Joshi, G.; Sultana, R.; Calabrese, V.; De Marco, C.; Coccia, R.; Cini, C.; Butterfield, D.A. In vivo protective effects of ferulic acid ethyl ester against amyloid-beta peptide 1–42-induced oxidative stress. J. Neurosci. Res. 2006, 84, 418–426. [Google Scholar] [CrossRef]
- Joshi, G.; Perluigi, M.; Sultana, R.; Agrippino, R.; Calabrese, V.; Butterfield, D.A. In vivo protection of synaptosomes by ferulic acid ethyl ester (FAEE) from oxidative stress mediated by 2, 2-azobis (2-amidino-propane) dihydrochloride (AAPH) or Fe2+/H2O2: Insight into mechanisms of neuroprotection and relevance to oxidative stress-related neurodegenerative disorders. Neurochem. Int. 2006, 48, 318–327. [Google Scholar]
- Scapagnini, G.; Butterfield, D.A.; Colombrita, C.; Sultana, R.; Pascale, A.; Calabrese, V. Ethyl ferulate, a lipophilic polyphenol, induces HO-1 and protects rat neurons against oxidative stress. Antiox. Redox Signal. 2004, 6, 811–818. [Google Scholar]
- Lenzi, J.; Rodriguez, A.F.; Rós Ade, S.; de Castro, A.B.; de Lima, D.D.; Magro, D.D.; Zeni, A.L. Ferulic acid chronic treatment exerts antidepressant-like effect: Role of antioxidant defense system. Metab. Brain Dis. 2015, 30, 1453–1463. [Google Scholar] [CrossRef]
- Jin, Y.; Yan, E.; Fan, Y.; Zong, Z.; Qi, Z.; Li, Z. Sodium ferulate prevents amyloid-beta-induced neurotoxicity through suppression of p38 MAPK and upregulation of ERK-1/2 and Akt/protein kinase B in rat hippocampus. Acta Pharmacol. Sin. 2005, 26, 943–951. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Fan, Y.; Yan, E.; Liu, Z.; Zong, Z.; Qi, Z. Effects of sodium ferulate on amyloid-beta-induced MKK3/MKK6-p38 MAPK-Hsp27 signal pathway and apoptosis in rat hippocampus. Acta Pharmacol. Sin. 2006, 27, 1309–1316. [Google Scholar] [CrossRef]
- Thomson, M.; Ali, M. Garlic [Allium sativum]: A review of its potential use as an anti-cancer agent. Curr. Cancer Drug. Targets 2003, 3, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Saharkhiz, M.J.; Tarakeme, A. Essential oil content and composition of fennel (Foeniculum vulgare L.) fruits at different stages of development. J. Essent. Oil Bear. Plants 2011, 14, 605–609. [Google Scholar] [CrossRef]
- Agarwal, D.; Saxena, S.N.; Sharma, L.K.; Lal, G. Prevalence of essential and fatty oil constituents in fennel (Foeniculum vulgare Mill) genotypes grown in semi-arid regions of India. J. Essent. Oil Bear. Plants 2018, 21, 40–51. [Google Scholar] [CrossRef]
- Joshi, H.; Parle, M. Cholinergic basis of memory-strengthening effect of Foeniculum vulgare Linn. J. Med. Food 2006, 9, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Raman, S.; Asle-Rousta, M.; Rahnema, M. Protective effect of fennel, and its major component trans-anethole against social isolation induced behavioral deficits in rats. Physiol. Int. 2020, 107, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Hong, M.J.; Kim, J.H.; Kim, H.Y.; Kim, M.J.; Kim, S.M. Chemical composition and biological activity of essential oil of Agastache rugosa (Fisch. & C. A. Mey.) O. Kuntze. Korean J. Med. Crop. Sci. 2020, 28, 95–110. [Google Scholar]
- Shin, M.; Liu, Q.; Choi, B.; Shin, C.; Lee, B.; Yuan, C.; Song, Y.J.; Yun, H.S.; Lee, I.-S.; Koo, B.-S.; et al. Neuroprotective effects of limonene (+) against Aβ42-induced neurotoxicity in a Drosophila Model of Alzheimer’s disease. Biol. Pharm. Bull. 2020, 43, 409–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conforti, F.; Statti, G.A.; Tundis, R.; Loizzo, M.R.; Menichini, F. In vitro activities of Citrus medica L. cv. Diamante (Diamante citron) relevant to treatment of diabetes and Alzheimer’s disease. Phytother. Res. 2007, 21, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Maurya, S.; Catalan, C.; De Lampasona, M.P. Chemical constituents, antifungal and antioxidative effects of ajwain essential oil and its acetone extract. J. Agric. Food Chem. 2004, 52, 3292–3296. [Google Scholar] [CrossRef] [PubMed]
- Javed, H.; Azimullah, S.; Meeran, M.F.; Ansari, S.A.; Ojha, S. Neuroprotective effects of thymol, a dietary monoterpene against dopaminergic neurodegen-eration in rotenone-induced rat model of Parkinson’s disease. Int. J. Mol. Sci. 2019, 20, 1538. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.-Y.; Lee, C.; Park, G.H.; Jang, J.-H. Amelioration of scopolamine-induced learning and memory impairment by α-pinene in C57BL/6 mice. Evid.-Based Complement. Altern. Med. 2017, 2017, 4926815. [Google Scholar] [CrossRef] [Green Version]
- Baldissera, M.D.; Souza, C.F.; Grando, T.H.; Sagrillo, M.R.; De Brum, G.F.; Nascimento, K.; Peres, D.S.; Maciel, M.F.; Silveira, S.O.; Da Luz, S.C.A.; et al. Memory deficit, toxic effects and activity of Na+, K+-ATPase and NTPDase in brain of Wistar rats submitted to orally treatment with alpha-terpinene. Environ. Toxicol. Pharmacol. 2016, 46, 1–8. [Google Scholar] [CrossRef]
- Ghatreh Samani, K.; Gharib, M.H.; Momeni, A.; Hemati, Z.; Sedighin, R. A comparison between the effect of Cuminum cyminum and Vitamin E on the level of leptin, paraoxonase 1, HbA1c and oxidized LDL in diabetic patients. Int. J. Mol. Cell. Med. 2016, 5, 229–235. [Google Scholar]
- Haidari, F.; Zakerkish, M.; Borazjani, F.; Angali, K.A.; Foroushani, G.A. The effects of Anethum graveolens (dill) powder supplementation on clinical and metabolic status in patients with type 2 diabetes. Trials 2020, 21, 483. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Kim, J.; Choue, R.; Lim, H.F. Fennel (Forniculum vulgare) and fenugreek (Trigonella foenum-graecum) tea drinking suppresses subjective short-term appetite in overweight women. Clin. Nutr. Res. 2015, 4, 168–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazemipoor, M.; Radzi, C.; Hajifaraji, M.; Haerian, B.S.; Mosaddegh, M.H.; Cordell, G.A. Antiobesity effect of caraway extract on overweight and obese women: A randomized, triple-blind, placebo-controlled clinical trial. Evid.-Based Complement. Altern. Med. 2013, 2013, 928582. [Google Scholar] [CrossRef] [PubMed]
- Kazemipoor, M.; Radzi, C.; Hajifaraji, M.; Cordell, G.A. Preliminary safety evaluation and biochemical efficacy of a Carum carvi extract: Results from a randomized, triple-blind, and placebo-controlled clinical trial. Phytother. Res. 2014, 28, 1456–1460. [Google Scholar] [CrossRef]
- Hadi, A.; Mohammadi, H.; Hadi, Z.; Roshanravan, N.; Kafeshani, M. Cumin (Cuminum cyminum L.) is a safe approach for management of lipid parameters: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2018, 32, 2146–2154. [Google Scholar] [CrossRef]
- Mirhosseini, M.; Baradaran, A.; Rafieian-Kopaei, M. Anethum graveolens and hyperlipidemia: A randomized clinical trial. J. Res. Med. Sci. 2014, 19, 758–761. [Google Scholar]
- Mansouri, M.; Nayebi, N.; Keshtkar, A.; Hasani-Ranjbar, S.; Taheri, E.; Larijani, B. The effect of 12 weeks Anethum graveolens (dill) on metabolic markers in patients with metabolic syndrome; a randomized double blind controlled trial. DARU J. Pharm. Sci. 2012, 20, 47. [Google Scholar] [CrossRef] [Green Version]
- Morovati, A.; Gargari, B.P.; Sarbakhsh, P. Effects of cumin (Cuminum cyminum L.) essential oil supplementation on metabolic syndrome components: A randomized, triple-blind, placebo-controlled clinical trial. Phytother. Res. 2019, 33, 3261–3269. [Google Scholar] [CrossRef]
- Mala, K.N.; Thomas, J.; Syam, D.S.; Maliakel, B.; Krishnakumar, I.M. Safety and efficacy of Ferula asafoetida in functional dyspepsia: A randomized, double-blinded, placebo-controlled study. Evid.-Based Complement. Altern. Med. 2018, 2018, 4813601. [Google Scholar] [CrossRef] [Green Version]
- Petramfar, P.; Moein, M.; Samani, S.M.; Tabatabaei, S.H.; Zarshenas, M.M. Trachyspermum ammi 10% topical cream versus placebo on neuropathic pain, a randomized, double-blind, placebo-controlled trial. Neurol. Sci. 2016, 37, 1449–1455. [Google Scholar] [CrossRef] [PubMed]
- Rajeshwari, C.U.; Siri, S.; Andallu, B. Antioxidant and antiarthritic potential of coriander (Coriandrum sativum L.) leaves. e-SPEN J. 2012, 7, e223–e228. [Google Scholar] [CrossRef]
- Talebi, Z.; Afshari, G.K.; Nasrollahi, S.A.; Firooz, A.; Ghovvati, M.; Samadi, A.; Karimi, M.; Kolahdooz, S.; Vazirian, M. Potential of Trachyspermum ammi (ajwain) gel for treatment of facial acne vulgaris: A pilot study with skin biophysical profile assessment and red fluorescence photography. Res. J. Pharmacogn. 2020, 7, 61–69. [Google Scholar]
- Afshar, S.; Afshar, F.; Rezazade, A.; Ardakani, Z.S.; Azar, Z.J.; Amin, G.; Shariat, M.; Haghollahi, F. Effects of a combination of Foeniculum vulgare, Melissa officinalis Extract, and Nigella saliva powder on healthy menopausal women with sexual dysfunction: A randomized clinical trial. Jundishapur J. Nat. Pharm. Prod. 2020, 15, e89925. [Google Scholar] [CrossRef]
- Akbari, M.; Javadnoori, M.; Siahpoosh, A.; Afshari, P.; Haghighi, M.; Lake, E. Comparison the effect of Anethum graveolens and oxytocin on induction of labor in term pregnancy: A randomized clinical trial. Jundishapur J. Nat. Pharm. Prod. 2016, 11, e27876. [Google Scholar] [CrossRef] [Green Version]
- Asma, K.; Sultana, A.; Rahman, K. A single-blind randomized comparative study of Asafoetida vs. Mefenamic acid in dysmenorrhea, associated symptoms and health-related quality of life. J. Herb. Med. 2017, 9, 21–31. [Google Scholar]
- Ghazanfarpour, M.; Najafi, M.N.; Sharghi, N.B.; Mousavi, M.S.; Babakhanian, M.; Rakhshandeh, H. A double-blind, placebo-controlled trial of Fennel (Foeniculum vulgare) on menopausal symptoms: A high placebo response. J. Turk. Ger. Gynecol. Assoc. 2018, 19, 122–127. [Google Scholar] [CrossRef]
- Motavalli, R.; Shahbazzadegan, S. Comparative study of the effects of fennel with Gelofen on the severity of primary dysmenorrhea: A randomized clinical trial. Iran. J. Obstet. Gynecol. Infertil. 2018, 21, 36–42. [Google Scholar]
- Hashemi, M.S.; Hashempur, M.H.; Lotfi, M.H.; Hemat, H.; Mousavi, Z.; Emtiazy, M.; Vaziri, F. The efficacy of asafoetida (Ferula assa-foetida oleo-gum resin) versus chlorhexidine gluconate mouthwash on dental plaque and gingivitis: A randomized double-blind controlled trial. Eur. J. Integr. Med. 2019, 29, 100929. [Google Scholar] [CrossRef]
Natural Product | Identification in Apiaceae Species | Reported Mechanism Associated with Alzheimer’s Disease | Reference |
---|---|---|---|
trans-Anethole | Foeniculum vulgare | AChE-inhibitory activity BChE Inhibitory activity | [24] |
Auraptene | Ferula sp. | AChE-inhibitory activity | [25] |
Carvone | Carum carvi | Neuroinflammatory effects by inhibiting leukotrienes and prostaglandins and modulation of NF-ΚB signaling pathway AChE-inhibitory activity | [26,27] |
Cuminaldehyde | Cuminum cyminum | Spatial learning and memory enhancement Modulation of BDNF, Icam, ApoE, and IL-6 genes | [28] |
p-Cymene | Coriandrum sativum Trachyspermum ammi Cuminum cyminum | Improved learning and memory functions Reduced the deposition of amyloid plaques | [29] |
Diallyl sulfide Diallyl disulfide Diallyl trisulfide | Ferula asafoetida | Antioxidant activity by trapping trichloromethyl and trichloromethyl peroxyl free radicals Inhibition of CCl4-induced lipid peroxidation by diallyl disulfide | [30] |
Ferulic acid | Ferula asafoetida | AChE-inhibitory activity In vivo cognitive improvement by inhibiting BACE-1, decreasing cleavage of C-terminal APP fragment, neuroinflammatory activity, and stabilization of oxidative stress Enhancement of learning and memory deficits by inhibiting Aβ plaques in vivo Inhibition of Aβ fibrillization and aggregation | [31,32,33,34,35] |
Limonene | Anethus graveolens Carum carvi Foeniculum vulgare | Increased the levels of oxidative markers MDA, SOD, and GSH AChE-inhibitory activity BChE inhibitory activity Suppression of Aβ42-induced cell neurotoxicity Reduction in ROS levels Downregulation of the neurotransmitter Kv3.4 expression Reduction of kinase phosphorylation Neuroinflammatory effects | [36,37,38,39] |
Linalool | Coriandrum sativum Carum carvi | Reduction of lipid peroxidation Cognitive enhancement Antiapoptosis in Aβ42-treated rats | [40] |
Methyl chavicol | Foeniculum vulgare | AChE-inhibitory activity | [41] |
α-Pinene | Trachyspermum ammi Coriandrum sativum Carum carvi | Improved learning and memory functions by inhibiting AChE and oxidative stressors | [27] |
α-Terpinene | Carum carvi Coriander sativum Cuminum cyminum Trachyspermum ammi | AChE-inhibitory activity Inhibition of enzymes responsible for neuronal plasticity and hydrolysis of ADP and ATP | [27] |
Thymol | Trachyspermum ammi | Antioxidant activity Inhibition of Aβ plaques in cognitive-impaired rats Neuroinflammatory effects by reduction of the activated astrocytes and microglia and downregulation of COX-2 and iNOS expression in vivo | [42,43] |
Umbelliferone | Ferula asafoetida | AChE-inhibitory activity Increased the expression of Nrf2 and heme oxygenase-1 (HO-1) in vivo | [44] |
Plant Species | Extract | Reported Activity Associated with Alzheimer’s Disease | Reference |
---|---|---|---|
Anethum graveolens | Methanolic seed extract | Neuroprotective effects in Aβ-induced PC12 cells | [45] |
Ethanolic leaf extract | Enhancement of learning and memory in vivo AChE-inhibitory activity Amelioration of antioxidant SOD enzyme Reduction of lipid peroxidation | [46] | |
Aqueous extract | Improvement of memory impairment in vivo by reducing oxidative stress In vivo lowering of serum cholesterol, inhibition of Aβ deposition, and normalization hippocampal morphology | [47,48,49] | |
PM52 extract (combined extract of A. graveolens and Cissampelos pareira) | In vivo Cognitive enhancement by suppressing AChE and reducing levels of ROS | [50] | |
Carum carvi | Aqueous seed extract | Neuroinflammatory activity by regulating the NF-kB signaling pathway In vivo antioxidant (reduction of lipid peroxidation), adaptogenic, and memory enhancement activities | [51,52] |
Essential oil | Inhibition of AChE activity | [53] | |
Coriandrum sativum | Seed extract | Improvement of memory impairment by increasing the level of mRNA NF-L and decreasing the mRNA nNOS | [54] |
Cuminum cyminum | Aqueous extract | In vivo memory enhancement, antioxidant activity, and inhibition of AChE | [55,56,57,58] |
Hexane extract and cumin essential oil | Inhibition of α-synuclein aggregation in PC12 cells | [59] | |
Foeniculum vulgare | Aqueous extract | In vivo inhibition of lipid peroxidation and antioxidant activity | [60] |
Ethanolic extract | In vivo neuroprotective effects in lead-induced neurotoxicity by decreasing the levels of oxidative stress and APP isoforms | [61] | |
Trachyspermum ammi | Seed extract | In vivo learning and memory enhancement by reducing the brain AChE activity, and prevention of oxidative damage by decreasing the levels of MDA and nitrite and increasing GSH | [62] |
Essential oil | AChE-inhibitory activity In vivo increased in brain antioxidant capacity | [63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, N.; Tan, M.A.; An, S.S.A. Mechanistic Aspects of Apiaceae Family Spices in Ameliorating Alzheimer’s Disease. Antioxidants 2021, 10, 1571. https://doi.org/10.3390/antiox10101571
Sharma N, Tan MA, An SSA. Mechanistic Aspects of Apiaceae Family Spices in Ameliorating Alzheimer’s Disease. Antioxidants. 2021; 10(10):1571. https://doi.org/10.3390/antiox10101571
Chicago/Turabian StyleSharma, Niti, Mario A. Tan, and Seong Soo A. An. 2021. "Mechanistic Aspects of Apiaceae Family Spices in Ameliorating Alzheimer’s Disease" Antioxidants 10, no. 10: 1571. https://doi.org/10.3390/antiox10101571
APA StyleSharma, N., Tan, M. A., & An, S. S. A. (2021). Mechanistic Aspects of Apiaceae Family Spices in Ameliorating Alzheimer’s Disease. Antioxidants, 10(10), 1571. https://doi.org/10.3390/antiox10101571