Effects of Wine and Tyrosol on the Lipid Metabolic Profile of Subjects at Risk of Cardiovascular Disease: Potential Cardioprotective Role of Ceramides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Protocol
2.3. Cardiovascular Biomarker Assessments
2.4. Plasma Sample for Analysis
2.5. Lipidomic Profile Analysis
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Baseline Lipidomic Profile
3.3. Changes Observed in the Lipidomic Profile following the Clinical Trial Interventions
3.4. Correlation between Lipidomic Profile and Cardiovasuclar Biomarkers at Baseline
3.5. Correlation between Changes Observed in the Lipidomic Profile with Changes in Cardiovascular Biomarkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Lipid | Retention Time (min) | Precursor m/z | Product m/z | Collision Energy (eV) | Internal Standard | Acquisition Method |
---|---|---|---|---|---|---|
DAG 16:0 16:0 | 1.9 | 586.2 | 313.0 | 20 | DAG 16:0 16:0-D5 | 1 |
DAG 16:1 16:1 | 1.4 | 582.3 | 311.1 | 20 | DAG 16:1 16:1-D5 | 1 |
DAG 16:0 18:2 | 1.7 | 610.2 | 313.2 | 20 | DAG 16:0 16:0-D5 | 1 |
DAG 16:0 18:1 | 2.0 | 612.1 | 339.1 | 20 | DAG 16:0 16:0-D5 | 1 |
DAG 16:0 18:0 | 2.4 | 614.2 | 313.1 | 20 | DAG 16:0 16:0-D5 | 1 |
DAG 18:2 18:2 | 1.5 | 634.3 | 337.2 | 20 | DAG 18:2 18:2-D5 | 1 |
DAG 18:0 18:2 | 2.1 | 638.1 | 341.0 | 20 | DAG 16:0 16:0-D5 | 1 |
DAG 18:1 18:1 | 2.0 | 638.2 | 339.1 | 20 | DAG 18:1 18:1-D5 | 1 |
DAG 18:0 18:1 | 2.4 | 640.2 | 341.2 | 20 | DAG 18:0 18:0-D5 | 1 |
DAG 18:0 18:0 | 2.9 | 642.1 | 341.0 | 20 | DAG 18:0 18:0-D5 | 1 |
DAG 18:0 20:4 | 2.0 | 662.2 | 341.3 | 20 | DAG 20:4 20:4-D5 | 1 |
MAG 18:1 | 0.8 | 357.0 | 265.0 | 10 | Cer 24:1-D7 | 1 |
MAG 18:2 | 0.7 | 355.0 | 263.0 | 10 | DAG 18:2 18:2-D5 | 1 |
MAG 20:4 | 0.7 | 379.0 | 287.0 | 10 | DAG 20:4 20:4-D5 | 1 |
LPC 16:0 | 0.7 | 496.3 | 184.0 | 20 | Cer 16:0-D7 | 1 |
LPC 18:0 | 0.8 | 523.4 | 104.0 | 20 | Cer 18:0-D7 | 1 |
SM (d18:1/18:0) | 1.3 | 731.5 | 86.0 | 50 | Cer 24:1-D7 | 1 |
S1P | 0.7 | 300.3 | 282.3 | 15 | Cer 16:0-D7 | 2 |
Cer 14:0 | 1.2 | 510.3 | 264.3 | 30 | Cer 16:0-D7 | Both |
Cer 16:0 | 1.4 | 538.2 | 264.3 | 30 | Cer 16:0-D7 | Both |
Cer 18:0 | 1.6 | 566.0 | 264.3 | 30 | Cer 18:0-D7 | Both |
Cer 20:0 | 1.9 | 594.2 | 264.3 | 30 | Cer 18:0-D7 | Both |
Cer 22:0 | 2.3 | 622.6 | 264.3 | 30 | Cer 24:0-D7 | Both |
Cer 24:0 | 2.8 | 650.5 | 264.3 | 30 | Cer 24:0-D7 | Both |
Cer 24:1 | 2.3 | 648.3 | 264.3 | 30 | Cer 24:1-D7 | Both |
DAG 16:0 16:0-D5 | 1.9 | 591.0 | 318.0 | 20 | - | 1 |
DAG 16:1 16:1-D5 | 1.4 | 587.3 | 316.2 | 20 | - | 1 |
DAG 18:0 18:0-D5 | 2.9 | 647.3 | 346.2 | 20 | - | 1 |
DAG 18:1 18:1-D5 | 2.0 | 643.4 | 344.3 | 20 | - | 1 |
DAG 18:2 18:2-D5 | 1.5 | 639.2 | 342.1 | 20 | - | 1 |
DAG 20:4 20:4-D5 | 1.4 | 687.0 | 366.0 | 20 | - | 1 |
Cer 16:0-D7 | 1.4 | 545.4 | 271.2 | 30 | - | Both |
Cer 18:0-D7 | 1.6 | 573.4 | 271.2 | 30 | - | Both |
Cer 24:0-D7 | 2.8 | 657.5 | 271.2 | 30 | - | Both |
Cer 24:1-D7 | 2.3 | 655.5 | 271.2 | 30 | - | Both |
Lipid | Baseline Concentrations and Ratios |
---|---|
MAG 18:1 | 1.10 (0.56) a |
MAG 18:2 | 0.19 (0.09) aa |
DAG 16:1 16:1 | 0.51 (0.20) |
DAG 16:0 16:0 | 4.89 (2.00) |
DAG 16:0 18:2 | 8.55 (3.73) |
DAG 16:0 18:1 | 28.16 (11.20) |
DAG 18:2 18:2 | 1.01 (0.59) |
DAG 18:0 18:2 | 2.77 (1.12) |
DAG 18:1 18:1 | 60.16 (24.41) a |
DAG 18:0 18:1 | 3.38 (1.63) b |
DAG 18:0 20:4 | 1.11 (0.70) c |
LPC 16:0 | 1324.83 (525.13) b |
LPC 18:0 | 600.78 (260.70) |
Cer C14:0 | 0.08 (0.03) b |
Cer C16:0 | 1.26 (0.38) b,c |
Cer C18:0 | 0.94 (0.32) aa,c |
Cer C20:0 | 3.87 (1.25) |
Cer C22:0 | 2.33 (0.67) b,c |
Cer C24:0 | 9.84 (2.51) b,c |
Cer C24:1 | 15.40 (4.60) |
Ratio Cer C16:0/Cer C24:0 | 0.13 (0.03) |
Ratio Cer C18:0/Cer C24:0 | 0.10 (0.03) |
Ratio Cer C24:1/Cer C24:0 | 1.59 (0.36) |
SM (d18:1/18:0) | 14.01 (4.49) |
S1P | 0.40 (0.11) b |
Lipid | ΔControl | ΔWW | ΔWW + TYR | p Value a |
---|---|---|---|---|
MAG 18:1 | 0.02 (0.62) | 0.07 (0.45) | −0.19 (0.56) | 0.183 |
MAG 18:2 | 0.02 (0.15) | 0.01 (0.10) | −0.03 (0.10) | 0.229 |
DAG 16:1 16:1 | 0.11 (0.31) | 0.11 (0.30) | 0.08 (0.23) | 0.919 |
DAG 16:0 16:0 | 0.73 (3.81) | 1.25 (3.02) | 0.43 (2.31) | 0.571 |
DAG 16:0 18:2 | 0.99 (3.92) | 1.16 (4.52) | −0.56 (3.66) | 0.207 |
DAG 16:0 18:1 | 4.24 (12.68) | 4.60 (12.52) | −0.26 (10.74) | 0.247 |
DAG 18:2 18:2 | 0.05 (0.60) | 0.02 (0.69) | −0.04 (0.57) | 0.879 |
DAG 18:0 18:2 | 0.70 (2.27) | 0.66 (1.48) | 0.11 (1.05) | 0.314 |
DAG 18:1 18:1 | 8.10 (23.05) | 4.72 (17.64) | −5.48 (24.11) | 0.064 |
DAG 18:0 18:1 | 0.95 (3.51) | 0.86 (1.81) | 0.43 (1.34) | 0.685 |
DAG 18:0 20:4 | 0.25 (0.82) | 0.37 (0.96) | 0.19 (0.48) | 0.545 |
LPC 16:0 | 0.02 (0.15) | 0.01 (0.10) | −0.03 (0.10) | 0.597 |
LPC 18:0 | 88.84 (381.18) | 148.69 (563.99) | 50.61 (335.87) | 0.894 |
Cer C14:0 | 35.41 (247.82) | −14.47 (291.10) | 5.93 (218.86) | 0.999 |
Cer C16:0 | 0.01 (0.04) | 0.01 (0.05) | 0.01 (0.05) | 0.722 |
Cer C18:0 | 0.08 (0.24) | 0.05 (0.36) | 0.00 (0.32) | 0.338 |
Cer C20:0 | 0.10 (0.36) | 0.10 (0.29) | 0.00 (0.29) | 0. 492 |
Cer C22:0 | 0.47 (1.34) | 0.63 (1.79) | 0.18 (1.19) | 0.693 |
Cer C24:0 | 0.25 (0.69) | 0.33 (0.80) | 0.27 (0.53) | 0.520 |
Cer C24:1 | 0.84 (2.41) | 1.24 (2.92) | 1.15 (2.43) | 0.241 |
Ratio C16:0/C24:0 | 1.12 (3.90) | 1.25 (3.58) | −0.25 (3.39) | 0.046 |
Ratio C18:0/C24:0 | 0.00 (0.02) | 0.00 (0.03) | −0.01 (0.02) | 0.008 |
Ratio C24:1/C24:0 | 0.09 (0.32) | −0.07 (0.28) | −0.19 (0.28) | 0.005 |
SM (d18:1/18:0) | 0.22 (2.60) | −0.87 (2.97) | −0.76 (3.04) | 0.406 |
S1P | −0.01 (0.11) | 0.01 (0.11) | 0.01 (0.10) | 0.346 |
References
- Cardiovascular Diseases. Available online: https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1 (accessed on 20 October 2021).
- Gerszten, R.E.; Wang, T.J. The search for new cardiovascular biomarkers. Nature 2008, 451, 949–952. [Google Scholar] [CrossRef]
- Hoefer, I.E.; Steffens, S.; Ala-Korpela, M.; Bäck, M.; Badimon, L.; Bochaton-Piallat, M.L.; Boulanger, C.M.; Caligiuri, G.; Dimmeler, S.; Egido, J.; et al. Novel methodologies for biomarker discovery in atherosclerosis. Eur. Heart J. 2015, 36, 2635–2642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGurk, K.A.; Keavney, B.D.; Nicolaou, A. Circulating ceramides as biomarkers of cardiovascular disease: Evidence from phenotypic and genomic studies. Atherosclerosis 2021, 327, 18–30. [Google Scholar] [CrossRef]
- Meeusen, J.W.; Donato, L.J.; Kopecky, S.L.; Vasile, V.C.; Jaffe, A.S.; Laaksonen, R. Ceramides improve atherosclerotic cardiovascular disease risk assessment beyond standard risk factors. Clin. Chim. Acta 2020, 511, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Choi, R.H.; Tatum, S.M.; Symons, J.D.; Summers, S.A.; Holland, W.L. Ceramides and other sphingolipids as drivers of cardiovascular disease. Nat. Rev. Cardiol. 2021, 18, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, X.; Pang, J.; Zhang, Y.; Zhang, H.; Xu, Z.; Chen, Q.; Ling, W. Associations between plasma ceramides and mortality in patients with coronary artery disease. Atherosclerosis 2020, 314, 77–83. [Google Scholar] [CrossRef]
- Hilvo, M.; Vasile, V.C.; Donato, L.J.; Hurme, R.; Laaksonen, R. Ceramides and Ceramide Scores: Clinical Applications for Cardiometabolic Risk Stratification. Front. Endocrinol. 2020, 11, 570628. [Google Scholar] [CrossRef]
- Havulinna, A.S.; Sysi-Aho, M.; Hilvo, M.; Kauhanen, D.; Hurme, R.; Ekroos, K.; Salomaa, V.; Laaksonen, R. Circulating Ceramides Predict Cardiovascular Outcomes in the Population-Based FINRISK 2002 Cohort. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 2424–2430. [Google Scholar] [CrossRef] [Green Version]
- Laaksonen, R.; Ekroos, K.; Sysi-Aho, M.; Hilvo, M.; Vihervaara, T.; Kauhanen, D.; Suoniemi, M.; Hurme, R.; März, W.; Scharnagl, H.; et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J. 2016, 37, 1967–1976. [Google Scholar] [CrossRef]
- Tarasov, K.; Ekroos, K.; Suoniemi, M.; Kauhanen, D.; Sylvänne, T.; Hurme, R.; Gouni-Berthold, I.; Berthold, H.K.; Kleber, M.E.; Laaksonen, R.; et al. Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency. J. Clin. Endocrinol. Metab. 2014, 99, E45–E52. [Google Scholar] [CrossRef] [Green Version]
- Leiherer, A.; Mündlein, A.; Laaksonen, R.; Lääperi, M.; Jylhä, A.; Fraunberger, P.; Drexel, H. Comparison of recent ceramide-based coronary risk prediction scores in cardiovascular disease patients. Eur. J. Prev. Cardiol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Huélamo, M.; Rodríguez-Morató, J.; Boronat, A.; de la Torre, R. Modulation of Nrf2 by Olive Oil and Wine Polyphenols and Neuroprotection. Antioxidants 2017, 6, 73. [Google Scholar] [CrossRef] [Green Version]
- Di Castelnuovo, A.; Costanzo, S.; Bagnardi, V.; Donati, M.B.; Iacoviello, L.; de Gaetano, G. Alcohol dosing and total mortality in men and women: An updated meta-analysis of 34 prospective studies. Arch. Intern. Med. 2006, 166, 2437–2445. [Google Scholar] [CrossRef]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef]
- Boronat, A.; Mateus, J.; Soldevila-Domenech, N.; Guerra, M.; Rodríguez-Morató, J.; Varon, C.; Muñoz, D.; Barbosa, F.; Morales, J.C.; Gaedigk, A.; et al. Cardiovascular benefits of tyrosol and its endogenous conversion into hydroxytyrosol in humans. A randomized, controlled trial. Free Radic. Biol. Med. 2019, 143, 471–481. [Google Scholar] [CrossRef]
- Boronat, A.; Mateus, J.; Soldevila-Domenech, N.; Guerra, M.; Rodríguez-Morató, J.; Varon, C.; Muñoz, D.; Barbosa, F.; Morales, J.C.; Gaedigk, A.; et al. Data on the endogenous conversion of tyrosol into hydroxytyrosol in humans. Data Brief 2019, 27, 104787. [Google Scholar] [CrossRef]
- Velázquez, A.M.; Roglans, N.; Bentanachs, R.; Gené, M.; Sala-Vila, A.; Lázaro, I.; Rodríguez-Morató, J.; Sánchez, R.M.; Laguna, J.C.; Alegret, M. Effects of a Low Dose of Caffeine Alone or as Part of a Green Coffee Extract, in a Rat Dietary Model of Lean Non-Alcoholic Fatty Liver Disease without Inflammation. Nutrients 2020, 12, 3240. [Google Scholar] [CrossRef]
- Test ID: CERAM MI-Heart Ceramides, Plasma. Available online: https://www.mayocliniclabs.com/test-catalog/Clinical+and+Interpretive/606777 (accessed on 20 October 2021).
- Haus, J.M.; Kashyap, S.R.; Kasumov, T.; Zhang, R.; Kelly, K.R.; Defronzo, R.A.; Kirwan, J.P. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 2009, 58, 337–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leiherer, A.; Muendlein, A.; Saely, C.H.; Laaksonen, R.; Laaperi, M.; Vonbank, A.; Fraunberger, P.; Drexel, H. Comparison of two recent ceramide-based coronary risk prediction scores: CERT and CERT-2. Eur. Heart J. 2020, 41, 2424–2430. [Google Scholar] [CrossRef]
- Farvid, M.S.; Ding, M.; Pan, A.; Sun, Q.; Chiuve, S.E.; Steffen, L.M.; Willett, W.C.; Hu, F.B. Dietary linoleic acid and risk of coronary heart disease: A systematic review and meta-analysis of prospective cohort studies. Circulation 2014, 130, 1568–1578. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Schneider, J.G.; Shenouda, S.M.; Lee, A.; Towler, D.A.; Chakravarthy, M.V.; Vita, J.A.; Semenkovich, C.F. De novo lipogenesis maintains vascular homeostasis through endothelial nitric-oxide synthase (eNOS) palmitoylation. J. Biol. Chem. 2011, 286, 2933–2945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayasinghe, S.U.; Tankeu, A.T.; Amati, F. Reassessing the Role of Diacylglycerols in Insulin Resistance. Trends Endocrinol. Metab. 2019, 30, 618–635. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Mañá, C.; Farré, M.; Rodríguez-Morató, J.; Papaseit, E.; Pujadas, M.; Fitó, M.; Robledo, P.; Covas, M.I.; Cheynier, V.; Meudec, E.; et al. Moderate consumption of wine, through both its phenolic compounds and alcohol content, promotes hydroxytyrosol endogenous generation in humans. A randomized controlled trial. Mol. Nutr. Food Res. 2015, 59, 1213–1216. [Google Scholar] [CrossRef] [PubMed]
Lipid | Control | WW | WW + TYR | |||
---|---|---|---|---|---|---|
Baseline | Final | Baseline | Final | Baseline | Final | |
MAG 18:1 | 0.96 (0.49) | 0.96 (0.55) | 1.03 (0.52) | 1.09 (0.72) | 1.07 (0.68) | 0.89 (0.35) |
MAG 18:2 | 0.18 (0.08) | 0.20 (0.18) | 0.18 (0.08) | 0.19 (0.12) | 0.19 (0.10) | 0.16 (0.07) |
DAG 16:1 16:1 | 0.52 (0.21) | 0.63 (0.34) | 0.55 (0.28) | 0.66 (0.38) | 0.53 (0.28) | 0.61 (0.28) |
DAG 16:0 16:0 | 5.07 (2.23) | 5.73 (4.88) | 4.92 (2.30) | 6.17 (3.75) * | 5.11 (2.68) | 5.53 (2.70) |
DAG 16:0 18:2 | 8.01 (3.36) | 8.82 (5.60) | 8.29 (3.62) | 9.46 (5.63) | 8.95 (4.97) | 8.39 (3.54) |
DAG 16:0 18:1 | 27.91 (11.44) | 31.65 (18.72) | 28.28 (11.84) | 32.88 (17.41) * | 29.94 (15.12) | 29.68 (10.45) |
DAG 18:2 18:2 | 1.09 (0.63) | 1.11 (0.74) | 1.09 (0.60) | 1.11 (0.75) | 1.03 (0.51) | 0.99 (0.57) |
DAG 18:0 18:2 | 2.85 (1.26) | 3.51 (2.87) | 2.89 (1.11) | 3.55 (1.94) * | 2.95 (1.42) | 3.06 (1.20) |
DAG 18:1 18:1 | 59.46 (23.62) | 66.22 (30.81) | 59.85 (22.70) | 64.58 (27.87) | 64.67 (30.19) | 59.19 (18.55) |
DAG 18:0 18:1 | 3.70 (1.72) | 4.62 (3.81) | 3.66 (1.53) | 4.51 (2.52) * | 3.62 (1.89) | 4.05 (1.50) |
DAG 18:0 20:4 | 1.14 (0.58) | 1.38 (0.89) | 1.10 (0.74) | 1.48 (1.05) * | 1.24 (0.66) | 1.43 (0.66) * |
LPC 16:0 | 1302.00 (478.38) | 1375.30 (470.45) | 1337.74 (454.98) | 1486.43 (667.47) | 1385.23 (519.51) | 1435.84 (417.02) |
LPC 18:0 | 578.59 (289.26) | 600.51 (282.72) | 665.33 (261.74) | 650.86 (324.17) | 647.24 (275.40) | 653.17 (274.35) |
Cer C14:0 | 0.08 (0.03) | 0.09 (0.05) | 0.09 (0.04) | 0.09 (0.04) | 0.08 (0.04) | 0.09 (0.04) |
Cer C16:0 | 1.24 (0.29) | 1.28 (0.37) | 1.25 (0.33) | 1.30 (0.35) | 1.28 (0.38) | 1.28 (0.30) |
Cer C18:0 | 0.94 (0.36) | 1.00 (0.37) | 0.94 (0.34) | 1.04 (0.35) * | 0.98 (0.35) | 0.97 (0.27) |
Cer C20:0 | 3.91 (1.21) | 4.26 (1.42) | 3.83 (1.20) | 4.46 (1.63) | 4.13 (1.41) | 4.31 (1.15) |
Cer C22:0 | 2.57 (0.80) | 2.72 (0.76) | 2.55 (0.77) | 2.89 (0.88) * | 2.53 (0.74) | 2.79 (0.69) * |
Cer C24:0 | 9.75 (2.35) | 10.11 (2.40) | 10.03 (2.69) | 11.27 (2.90) * | 10.03 (2.73) | 11.18 (2.36) * |
Cer C24:1 | 15.45 (4.20) | 16.10 (4.27) | 14.92 (4.44) | 16.16 (4.72) | 16.04 (5.06) | 15.79 (3.73) |
Ratio C16:0/C24:0 | 0.13 (0.02) | 0.13 (0.03) | 0.13 (0.03) | 0.12 (0.03) * | 0.13 (0.04) | 0.12 (0.03) * |
Ratio C18:0/C24:0 | 0.10 (0.03) | 0.10 (0.03) | 0.10 (0.03) | 0.10 (0.03) | 0.10 (0.03) | 0.09 (0.03) * |
Ratio C24:1/C24:0 | 1.60 (0.33) | 1.62 (0.36) | 1.53 (0.40) | 1.46 (0.32) | 1.62 (0.32) | 1.43 (0.28) ** |
SM (d18:1/18:0) | 12.38 (3.88) | 11.94 (3.50) | 13.27 (4.42) | 12.41 (3.46) | 12.48 (3.15) | 11.72 (2.45) |
S1P | 0.38 (0.08) | 0.36 (0.08) | 0.37 (0.09) | 0.38 (0.11) | 0.36 (0.12) | 0.37 (0.10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Morató, J.; Boronat, A.; Serreli, G.; Enríquez, L.; Gomez-Gomez, A.; Pozo, O.J.; Fitó, M.; de la Torre, R. Effects of Wine and Tyrosol on the Lipid Metabolic Profile of Subjects at Risk of Cardiovascular Disease: Potential Cardioprotective Role of Ceramides. Antioxidants 2021, 10, 1679. https://doi.org/10.3390/antiox10111679
Rodríguez-Morató J, Boronat A, Serreli G, Enríquez L, Gomez-Gomez A, Pozo OJ, Fitó M, de la Torre R. Effects of Wine and Tyrosol on the Lipid Metabolic Profile of Subjects at Risk of Cardiovascular Disease: Potential Cardioprotective Role of Ceramides. Antioxidants. 2021; 10(11):1679. https://doi.org/10.3390/antiox10111679
Chicago/Turabian StyleRodríguez-Morató, Jose, Anna Boronat, Gabriele Serreli, Laura Enríquez, Alex Gomez-Gomez, Oscar J. Pozo, Montserrat Fitó, and Rafael de la Torre. 2021. "Effects of Wine and Tyrosol on the Lipid Metabolic Profile of Subjects at Risk of Cardiovascular Disease: Potential Cardioprotective Role of Ceramides" Antioxidants 10, no. 11: 1679. https://doi.org/10.3390/antiox10111679
APA StyleRodríguez-Morató, J., Boronat, A., Serreli, G., Enríquez, L., Gomez-Gomez, A., Pozo, O. J., Fitó, M., & de la Torre, R. (2021). Effects of Wine and Tyrosol on the Lipid Metabolic Profile of Subjects at Risk of Cardiovascular Disease: Potential Cardioprotective Role of Ceramides. Antioxidants, 10(11), 1679. https://doi.org/10.3390/antiox10111679