Ultrasound-Assisted “Green” Extraction (UAE) of Antioxidant Compounds (Betalains and Phenolics) from Opuntia stricta var. Dilenii’s Fruits: Optimization and Biological Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solvents, Reagents and Standards
2.2. Plant Material
2.3. Physicochemical Analysis
2.4. Analysis of Betalain and Phenolic Compounds of Opuntia stricta var. Dillenii Whole Fruits
2.4.1. Extraction of Betalains and Phenolic Compounds for HPLC Analysis
2.4.2. HPLC Analysis of Betalains and Phenolic Compounds
2.5. Optimization of Betalain and Phenolic Compound Ultrasound-Assisted Extraction (UAE)
2.5.1. Experimental Design
2.5.2. Ultrasound-Assisted Extraction (UAE)
2.5.3. Statistical Analysis and UAE Process Modelling
2.6. Analysis of the Opuntia stricta var. Dillenii Extracts Obtained by UAE
2.6.1. HPLC Analysis of Betalain and Phenolic Compounds of UAE Opuntia stricta var. Dillenii Whole Fruit Extracts
2.6.2. Determination of the In Vitro Antioxidant Activity of Opuntia stricta var. Dillenii Whole Fruit UAE Extracts
2.6.3. Determination of the In Vitro Anti-Inflammatory Activity of Opuntia stricta var. Dillenii Whole Fruit UAE Extracts
2.7. Statistical Analysis
3. Results and Discussion
3.1. Characterization and In Vitro Bioactive Properties of the Opuntia stricta var. Dillenii Whole Fruits (Starting Material) and UAE Extracts
3.2. Optimization of Ultrasound-Assisted Extraction (UAE) of Bioactive Compounds from Opuntia stricta var. Dillenii Whole Fruits
3.2.1. Effect of Time in Ultrasound-Assisted Extraction (UAE)
3.2.2. Experimental Data for Process Optimization
Betalains
Piscidic Acid
Flavonoids
In Vitro Biological Activities of UAE Extracts from Opuntia stricta var. Dillenii Whole Fruits
3.2.3. Model Fitting
0.002X2 × X3 − 0.018X12 − 0.017X22 − 0.022X32 [R2 = 0.980; R2Adj = 0.949]
− 0.014X2 × X3 + 0.039X12 − 0.001X22 − 0.020X32 [R2 = 0.879; R2Adj = 0.697]
− 0.001X12 − 0.011X22 − 0.020X32 [R2 = 0.959; R2Adj = 0.897]
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reyes-Agüero, J.; Aguirre-Rivera, J.; Hernández, H. Systematyc notes and a detailed description of Opuntia ficus-indica (L) Mill. (CACTACEAE). Agrociencia 2015, 39, 395–408. [Google Scholar]
- Cano, M.; Gómez-Maqueo, A.; García-Cayuela, T.; Welti-Chanes, J. Characterization of carotenoid profile of Spanish Sanguinos and Verdal prickly pear (Opuntia ficus-indica, spp.) tissues. Food Chem. 2017, 237, 612–622. [Google Scholar] [CrossRef]
- García-Cayuela, T.; Gómez-Maqueo, A.; Guajardo-Flores, D.; Welti-Chanes, J.; Cano, M.P. Characterization and quantification of individual betalain and phenolic compounds in Mexican and Spanish prickly pear (Opuntia ficus-indica L. Mill) tissues: A comparative study. J. Food Compos. Anal. 2019, 76, 1–13. [Google Scholar] [CrossRef]
- Ministerio de Agricultura, Pesca y Alimentación. Análisis Provincial de Superficie, Arboles Diseminados, Rendimiento y Producción, 2018 (Chumbera); MAPA: Madrid, Spain, 2019. Available online: https://www.mapa.gob.es/estadistica/pags/anuario/2019-Avance/CAPITULOSPDF/CAPITULO07/pdfc07_9.19.1.pdf (accessed on 15 August 2019).
- Betancourt, C.; Cejudo-Bastante, M.J.; Heredia, F.J.; Hurtado, N. Pigment composition and antioxidant capacity of betacyanins and betaxanthins fractions of Opuntia dillenii (Ker Gawl) Haw cactus fruit. Food Res. Int. 2017, 101, 173–179. [Google Scholar] [CrossRef]
- Gómez-López, I.; Lobo-Rodrigo, G.; Portillo, M.P.; Cano, M.P. Characterization, Stability, and Bioaccessibility of Betalain and Phenolic Compounds from Opuntia stricta var. Dillenii Fruits and Products of Their Industrialization. Foods 2021, 10, 1593. [Google Scholar] [CrossRef] [PubMed]
- Medina, E.D.; Rodríguez-Rodríguez, E.M.; Romero, C.D. Chemical characterization of Opuntia Dillenii and Opuntia ficus indica fruits. Food Chem. 2007, 103, 38–45. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Carle, R. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci. Tech. 2005, 15, 19–38. [Google Scholar] [CrossRef]
- Missaoui, M.; D’Antuono, I.; D’Imperio, M.; Linsalata, V.; Boukhchina, S.; Logrieco, A.F.; Cardinali, A. Characterization of Micronutrients, Bioaccessibility and Antioxidant Activity of Prickly Pear Cladodes as Functional Ingredient. Molecules 2020, 25, 2176. [Google Scholar] [CrossRef]
- Gómez-Maqueo, A.; Antunes-Ricardo, M.; Welti-Chanes, J.; Cano, M.P. Digestive Stability and Bioaccessibility of Antioxidants in Prickly Pear Fruits from the Canary Islands: Healthy Foods and Ingredients. Antioxidants 2020, 9, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Ponce, H.A.; Martínez-Saldaña, M.C.; Rincón-Sánchez, A.R.; Sumaya-Martínez, M.T.; Buist-Homan, M.; Faber, K.N.; Moshage, H.; Jaramillo-Juárez, F. Hepatoprotective Effect of Opuntia robusta and Opuntia streptacantha Fruits against Acetaminophen-Induced Acute Liver Damage. Nutrients 2016, 8, 607. [Google Scholar] [CrossRef] [Green Version]
- Santos Díaz, M.; Barba de la Rosa, A.P.; Héliès-Toussaint, C.; Guéraud, F.; Nègre-Salvayre, A. Opuntia spp.: Characterization and Benefits in Chronic Diseases. Oxid. Med. Cell. Longev. 2017, 2017, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antunes-Ricardo, M.; Rodríguez-Rodríguez, C.; Gutiérrez-Uribe, J.A.; Cepeda-Cañedo, E.; Serna-Saldívar, S.O. Bioaccessibility, intestinal permeability and plasma stability of Isorhamnetin glycosides from Opuntia ficus-indica (L.). Int. J. Mol. Sci. 2017, 18, 1816. [Google Scholar] [CrossRef] [Green Version]
- Shirazinia, R.; Rahimi, V.B.; Kehkhaie, A.R.; Sahebkar, A.; Rakhshandeh, H.; Askari, V.R. Opuntia Dillenii: A forgotten plant with promising pharmacological properties. J. Pharmacopunct. 2019, 22, 16–27. [Google Scholar] [CrossRef]
- Mahloko, L.M.; Silungwe, H.; Mashau, M.E.; Kgatla, T.E. Bioactive compounds, antioxidant activity and physical characteristics of wheat-prickly pear and banana biscuits. Heliyon 2019, 5, e02479. [Google Scholar] [CrossRef] [Green Version]
- Karatuanithi, A.; Ventakatachalam, S. Ultrasonic-assisted solvent extraction of phenolic compounds from Opuntia ficus-indica peel: Phytochemical identification and comparison with soxhlet extraction. Food Process Eng. 2019, 42, e13126. [Google Scholar] [CrossRef]
- Melgar, B.; Dias, M.I.; Barros, L.; Ferreira, I.C.F.R.; Rodriguez-Lopez, A.D.; Garcia-Castello, E.M. Ultrasound and Microwave Assisted Extraction of Opuntia Fruit Peels Biocompounds: Optimization and Comparison Using RSM-CCD. Molecules 2019, 24, 3618. [Google Scholar] [CrossRef] [Green Version]
- Roriz, C.L.; Xavier, V.; Heleno, S.A.; Pinela, J.; Dias, M.I.; Calhelha, R.C.; Morales, P.; Ferreira, I.C.F.R.; Barros, L. Chemical and Bioactive Features of Amaranthus caudatus L. Flowers and Optimized Ultrasound-Assisted Extraction of Betalains. Foods 2021, 10, 779. [Google Scholar] [CrossRef]
- Goula, M.A.; Ververi, M.; Adamopoulou, A.; Karides, K. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegeTable oils. Ultrason. Sonochemistry 2017, 34, 821–830. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.; Meullemiestre, A.; Fabiano-Tixier, A.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochemistry 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Montiel-Sánchez, M.; García-Cayuela, T.; Gómez-Maqueo, A.; García, H.S.; Cano, M.P. In vitro gastrointestinal stability, bioaccessibility and potential biological activities of betalains and phenolic compounds in cactus berry fruits (Myrtillocactus geometrizans). Food Chem. 2021, 342, 128087. [Google Scholar] [CrossRef]
- Kaderides, K.; Goula, A.M.; Adamopoulos, K.G. A process for turning pomegranate peels into a valuable food ingredient using ultrasound-assisted extraction and encapsulation. Food Sci. Emerg. Technol. 2015, 31, 204–215. [Google Scholar] [CrossRef]
- Melgar, B.; Dias, M.I.; Ciric, A.; Sokovic, M.; Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Barros, L.; Ferreira, I. By-product recovery of Opuntia spp. peels: Betalainic and phenolic profiles and bioactive properties. Ind. Crop. Prod. 2017, 107, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Maqueo, A.; García-Cayuela, T.; Welti-Chanes, J.; Cano, M.P. Enhancement of anti-inflammatory and antioxidant activities of prickly pear fruits by high hydrostatic pressure: A chemical and microstructural approach. Innov. Food Sci. Emerg. Technol. 2019, 54, 132–142. [Google Scholar] [CrossRef]
- Laqui-Vilca, C.; Aguilar-Tuesta, S.; Mamani-Navarro, W.; Montaño-Bustamante, J.; Condezo-Hoyos, L. Ultrasound-assisted optimal extraction and thermal stability of betalains from colored quinoa (Chenopodium quinoa Willd) hulls. Ind. Crop. Prod. 2018, 111, 606–614. [Google Scholar] [CrossRef]
- Maran, J.P.; Manikandan, S.; Nivetha, C.V.; Dinesh, R. Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arab. J. Chem. 2017, 10, S1145–S1157. [Google Scholar] [CrossRef] [Green Version]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Herbach, K.M.; Stintzing, F.C.; Carle, R. Betalain Stability and Degradation—Structural and Chromatic Aspects. J. Food Sci. 2016, 71, R41–R50. [Google Scholar] [CrossRef]
- Righi Pessoa da Silva, H.; da Silva, C.; Bolanho, B.C. Ultrasonic-assisted extraction of betalains from red beet (Beta vulgaris L.). J. Food Process Eng. 2018, 41, e12833. [Google Scholar] [CrossRef]
- Fernando, G.S.N.; Wood, K.; Papaioannou, E.H.; Marshall, L.J.; Sergeeva, N.N.; Boesch, C. Application of an Ultrasound-Assisted Extraction Method to Recover Betalains and Polyphenols from Red Beetroot Waste. ACS Sustain. Chem. Eng. 2021, 9, 8736–8747. [Google Scholar] [CrossRef]
- Cejudo-Bastante, M.J.; Hurtado, N.; Delgado, A.; Heredia, F.J. Impact of pH and temperature on the colour and betalain content of Colombian yellow pitaya peel (Selenicereus megalanthus). J. Food Sci. Technol. 2016, 53, 2405–2413. [Google Scholar] [CrossRef] [Green Version]
- Cejudo-Bastante, M.J.; Hurtado, N.; Heredia, F.J. Potential use of new Colombian sources of betalains. Colorimetric study of red prickly pear (Opuntia dillenii) extracts under different technological conditions. Int. Food Res. J. 2015, 71, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Maqueo, A.; Welti-Chanes, J.; Cano, M.P. Release mechanisms of bioactive compounds in fruits submitted to high hydrostatic pressure: A dynamic microstructural analysis based on prickly pear cells. Int. Food Res. J. 2020, 130, 108909. [Google Scholar] [CrossRef]
- Pham, D.C.; Nguyen, H.C.; Nguyen, T.H.L.; Ho, H.L.; Trinh, T.K.; Riyaphan, J.; Weng, C.F. Optimization of ultrasound-assisted extraction of flavonoids from Celastrus hindsii leaves using response surface methodology and evaluation of their antioxidant and antitumor activities. BioMed Res. Int. 2020, 2020, 3497107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Qu, J.; Luo, S.; Feng, S.; Li, T.; Yuan, M.; Huang, Y.; Liao, J.; Yang, R.; Ding, C. Optimization of Ultrasound-Assisted Extraction of Flavonoids from Olive (Olea europaea) Leaves, and Evaluation of Their Antioxidant and Anticancer Activities. Molecules 2018, 23, 2513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Md Yusof, A.H.; Abd Gani, S.S.; Zaidan, U.H.; Halmi, M.I.E.; Zainudin, B.H. Optimization of an Ultrasound-Assisted Extraction Condition for Flavonoid Compounds from Cocoa Shells (Theobroma cacao) Using Response Surface Methodology. Molecules 2019, 24, 711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, R.; Pinela, J.; Abreu, R.M.V.; Añibarro-Ortega, M.; Pires, T.C.S.P.; Saldanha, A.L.; Alves, M.J.; Nogueira, A.; Ferreira, I.C.F.R.; Barros, L. Extraction of Anthocyanins from Red Raspberry for Natural Food Colorants Development: Processes Optimization and In Vitro Bioactivity. Processes 2020, 8, 1447. [Google Scholar] [CrossRef]
Variables | Factors | Levels | |
---|---|---|---|
−1 | 1 | ||
Temperature (°C) | X1 | 20 | 50 |
Amplitude (%) | X2 | 20 | 50 |
Ethanol in solvent (%) | X3 | 15 | 80 |
Run number | Factor X1: Temperature (°C) | Factor X2: Amplitude (%) | Factor X3: Ethanol in solvent (%) |
1 | 35 | 10 | 47.5 |
2 | 20 | 20 | 80 |
3 | 35 | 35 | 100 |
4 | 20 | 20 | 15 |
5 | 50 | 50 | 80 |
6 | 10 | 35 | 47.5 |
7 | 50 | 50 | 15 |
8 | 60 | 35 | 47.5 |
9 | 50 | 20 | 15 |
10 | 20 | 50 | 15 |
11 | 35 | 35 | 47.5 |
12 | 35 | 60 | 47.5 |
13 | 20 | 50 | 80 |
14 | 35 | 35 | 0 |
15 | 35 | 35 | 47.5 |
16 | 50 | 20 | 80 |
Run | Extraction Independet Variables | Extraction Yield % (w/w) | Bioactive Compound Content (mg/g Dry Weigth) | In Vitro Biological Activities | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Amplitude (%) | EtOH in Solvent (%, v/v) | Temperatura (°C) | Total Major Betalains 1 | Total Phenolic Acids 2 | Total Major Flavonoids 3 | Total Major Betalains 1 | Total Phenolic Acids 2 | Total Major Flavonoids 3 | Antioxidant Activity. (µmol Trolox eq./g Dry Weight) | Hyaluronidase Inhibition (%) | |
1 | 10 | 47.5 | 35 | 102.91 ± 0.91 d | 197.13 ± 3.80 d | 106.91 ± 2.10 de | 10.34 ± 0.09 d | 1.84 ± 0.09 d | 0.35 ± 0.01 de | 506.84 ± 15.01 cd | 29.66 ± 1.48 b |
2 | 20 | 80 | 20 | 29.42 ± 1.36 b | 181.03 ± 0.52 c | 62.05 ± 4.03 b | 2.96 ± 0.14 b | 1.68 ± 0.10 c | 0.20 ± 0.02 b | 582.07 ± 29.35 fg | 21.72 ± 1.09 ab |
3 | 35 | 100 | 35 | 0.43 ± 0.08 a | 109.64 ± 7.65 a | 21.43 ± 2.01 a | 0.04 ± 0.01 a | 1.02 ± 0.07 a | 0.07 ± 0.00 a | 477.05 ± 22.94 bc | 12.40 ± 0.62 a |
4 | 20 | 15 | 20 | 102.38 ± 8.99 d | 222.29 ± 5.95 de | 92.46 ± 8.08 cd | 10.29 ± 0.90 d | 2.07 ± 0.05 e | 0.30 ± 0.03 cd | 489.84 ± 14.70 bc | 38.37 ± 1.92 c |
5 | 50 | 80 | 50 | 47.29 ± 4.95 c | 180.77 ± 4.39 c | 87.09 ± 7.14 c | 4.75 ± 0.50 c | 1.68 ± 0.04 c | 0.28 ± 0.02 c | 560.80 ± 28.04 e | 37.03 ± 1.85 c |
6 | 35 | 47.5 | 10 | 100.69 ± 2.00 d | 231.92 ± 3.95 de | 111.37 ± 0.31 e | 10.12 ± 0.12 d | 2.16 ± 0.03 e | 0.36 ± 0.00 de | 548.11 ± 20.08 de | 27.15 ± 1.36 b |
7 | 50 | 15 | 50 | 106.60 ± 1.26 d | 224.53 ± 2.06 de | 111.30 ± 4.42 e | 10.71 ± 0.01 d | 2.09 ± 0.02 e | 0.36 ± 0.01 de | 544.75 ± 14.37 d | 41.53 ± 2.08 d |
8 | 35 | 47.5 | 60 | 105.12 ± 1.99 d | 227.48 ± 8.01 de | 119.57 ± 1.16 e | 10.57 ± 0.19 d | 2.12 ± 0.07 e | 0.39 ± 0.00 de | 618.85 ± 0.57 g | 27.86 ± 1.29 b |
9 | 20 | 15 | 50 | 111.34 ± 9.72 d | 217.91 ± 14.58 de | 109.42 ± 4.38 e | 11.59 ± 0.11 d | 2.03 ± 0.14 e | 0.36 ± 0.01 de | 330.71 ± 9.63 a | 45.43 ± 1.41 e |
10 | 50 | 15 | 20 | 115.29 ± 3.05 d | 249.91 ± 0.45 e | 116.83 ± 0.80 e | 11.06 ± 0.10 d | 2.32 ± 0.08 e | 0.38 ± 0.00 de | 473.93 ± 8.06 bc | 41.17 ± 4.97 d |
11 | 35 | 47.5 | 35 | 110.05 ± 1.45 d | 242.28 ± 5.70 de | 121.20 ± 1.86 e | 11.43 ± 0.23 d | 2.25 ± 0.05 e | 0.40 ± 0.01 de | 532.20 ± 1.01 d | 36.17 ± 3.94 c |
12 | 60 | 47.5 | 35 | 103.77 ± 1.95 d | 211.91 ± 3.10 de | 111.24 ± 2.07 e | 10.43 ± 0.03 d | 1.97 ± 0.19 de | 0.36 ± 0.01 de | 565.44 ± 28.40 e | 33.01 ± 4.44 bc |
13 | 50 | 80 | 20 | 30.10 ± 0.12 b | 164.50 ± 4.38 b | 77.20 ± 0.67 bc | 3.03 ± 0.01 b | 1.53 ± 0.00 b | 0.25 ± 0.00 bc | 452.26 ± 37.94 b | 45.00 ± 2.25 e |
14 | 35 | 0 | 35 | 114.78 ± 3.65 d | 196.59 ± 7.26 d | 106.23 ± 6.31 de | 11.54 ± 0.37 d | 1.87 ± 0.07 d | 0.35 ± 0.02 de | 564.44 ± 6.18 e | 45.91 ± 3.52 e |
15 | 35 | 47.5 | 35 | 102.89 ± 4.07 d | 184.92 ± 11.92 c | 108.86 ± 11.07 e | 10.34 ± 0.41 d | 1.72 ± 0.11 c | 0.36 ± 0.04 de | 566.85 ± 48.85 e | 29.98 ± 4.04 b |
16 | 20 | 80 | 50 | 47.15 ± 5.24 c | 185.96 ± 4.97 c | 76.81 ± 0.61 bc | 4.74 ± 0.53 c | 1.73 ± 0.05 c | 0.25 ± 0.00 bc | 621.58 ± 33.03 f | 22.24 ± 8.38 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-López, I.; Lobo-Rodrigo, G.; Portillo, M.P.; Cano, M.P. Ultrasound-Assisted “Green” Extraction (UAE) of Antioxidant Compounds (Betalains and Phenolics) from Opuntia stricta var. Dilenii’s Fruits: Optimization and Biological Activities. Antioxidants 2021, 10, 1786. https://doi.org/10.3390/antiox10111786
Gómez-López I, Lobo-Rodrigo G, Portillo MP, Cano MP. Ultrasound-Assisted “Green” Extraction (UAE) of Antioxidant Compounds (Betalains and Phenolics) from Opuntia stricta var. Dilenii’s Fruits: Optimization and Biological Activities. Antioxidants. 2021; 10(11):1786. https://doi.org/10.3390/antiox10111786
Chicago/Turabian StyleGómez-López, Iván, Gloria Lobo-Rodrigo, María P. Portillo, and M. Pilar Cano. 2021. "Ultrasound-Assisted “Green” Extraction (UAE) of Antioxidant Compounds (Betalains and Phenolics) from Opuntia stricta var. Dilenii’s Fruits: Optimization and Biological Activities" Antioxidants 10, no. 11: 1786. https://doi.org/10.3390/antiox10111786
APA StyleGómez-López, I., Lobo-Rodrigo, G., Portillo, M. P., & Cano, M. P. (2021). Ultrasound-Assisted “Green” Extraction (UAE) of Antioxidant Compounds (Betalains and Phenolics) from Opuntia stricta var. Dilenii’s Fruits: Optimization and Biological Activities. Antioxidants, 10(11), 1786. https://doi.org/10.3390/antiox10111786