Extracellular Reactive Oxygen Species (ROS) Production in Fresh Donkey Sperm Exposed to Reductive Stress, Oxidative Stress and NETosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Statement of Ethics
2.2. Experimental Design
2.3. Experiment 1. Sperm Exposure to Reductive Stress and Oxidative Stress
2.3.1. Sperm Collection
2.3.2. Seminal Plasma (SP) Collection
2.3.3. Treatments
2.3.4. Evaluation of Sperm Motility
2.3.5. Evaluation of Sperm Viability
2.3.6. Determination of Extracellular H2O2 Production
2.4. Experiment 2. Determination of Extracellular H2O2 Production by NETosis
2.4.1. Samples
2.4.2. PMN Isolation
2.4.3. Treatments
2.4.4. Evaluation of NETosis
2.4.5. Determination of Extracellular H2O2 Production
2.5. Statistical Analysis
3. Results
3.1. Experiment 1: Exposure of Sperm to Reductive Stress
3.1.1. Sperm Motility
3.1.2. Sperm Viability
3.1.3. Extracellular Hydrogen Peroxide (H2O2) Production
3.2. Experiment 1: Exposure of Sperm to Oxidative Stress
3.2.1. Sperm Motility
3.2.2. Sperm Viability
3.2.3. Extracellular Hydrogen Peroxide (H2O2) Production
3.3. Experiment 2. Extracellular H2O2 Production by NETosis
3.3.1. Reacted Polymorphonuclear Neutrophils (PMN)
3.3.2. Extracellular Hydrogen Peroxide (H2O2) Production
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canisso, I.F.; Panzani, D.; Miró, J.; Ellerbrock, R.E. Key aspects of donkey and mule reproduction. Vet. Clin. N. Am. Equine Pract. 2019, 35, 607–642. [Google Scholar] [CrossRef] [PubMed]
- Miró, J.; Lobo, V.; Quintero-Moreno, A.; Medrano, A.; Peña, A.; Rigau, T. Sperm motility patterns and metabolism in Catalonian donkey semen. Theriogenology 2005, 63, 1706–1716. [Google Scholar] [CrossRef] [PubMed]
- Miró, J.; Papas, M. Post–Artificial Insemination endometrial inflammation and its control in donkeys. J. Equine Vet. Sci. 2018, 65, 38–43. [Google Scholar] [CrossRef]
- Vilés, K.; Rabanal, R.; Rodríguez-Prado, M.; Miró, J. Effect of ketoprofen treatment on the uterine inflammatory response after AI of jennies with frozen semen. Theriogenology 2013, 79, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Troedsson, M.H.T.; Loset, K.; Alghamdi, A.M.; Dahms, B.; Crabo, B.G. Interaction between equine semen and the endometrium: The inflammatory response to semen. Anim. Reprod. Sci. 2001, 68, 273–278. [Google Scholar] [CrossRef]
- O’Leary, S.; Jasper, M.J.; Warnes, G.M.; Armstrong, D.T.; Robertson, S.A. Seminal plasma regulates endometrial cytokine expression, leukocyte recruitment and embryo development in the pig. Reproduction 2004, 128, 237–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, J.L.; Ketheesan, N.; Summers, P.M. Leucocyte population changes in the reproductive tract of the ewe in response to insemination. Reprod. Fertil. Dev. 2006, 18, 627. [Google Scholar] [CrossRef]
- Chastant, S.; Saint-Dizier, M. Inflammation: Friend or foe of bovine reproduction? Anim. Reprod. 2019, 16, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Martinez, H.; Saravia, F.; Wallgren, M.; Martinez, E.A.; Sanz, L.; Roca, J.; Vazquez, J.M.; Calvete, J.J. Spermadhesin PSP-I/PSP-II heterodimer induces migration of polymorphonuclear neutrophils into the uterine cavity of the sow. J. Reprod. Immunol. 2010, 84, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Miró, J.; Marín, H.; Catalán, J.; Papas, M.; Gacem, S.; Yeste, M. Seminal plasma, sperm concentration, and sperm-PMN interaction in the donkey: An in vitro model to study endometrial inflammation at post-insemination. Int. J. Mol. Sci. 2020, 21, 3478. [Google Scholar] [CrossRef]
- Branzk, N.; Lubojemska, A.; Hardison, S.E.; Wang, Q.; Gutierrez, M.G.; Brown, G.D.; Papayannopoulos, V. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 2014, 15, 1017–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesa, M.A.; Vasquez, G. NETosis. Autoimmune Dis. 2013, 2013, 651497. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, F.; Carrau, T.; Gärtner, U.; Seipp, A.; Taubert, A.; Felmer, R.; Sanchez, R.; Hermosilla, C. Leukocytes coincubated with human sperm trigger classic neutrophil extracellular traps formation, reducing sperm motility. Fertil. Steril. 2016, 106, 1053–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotilainen, T.; Huhtinen, M.; Katila, T. Sperm-induced leukocytosis in the equine uterus. Theriogenology 1994, 41, 629–636. [Google Scholar] [CrossRef]
- Ball, B.A.; Vo, A.T.; Baumber, J. Generation of reactive oxygen species by equine spermatozoa. Am. J. Vet. Res. 2001, 62, 508–515. [Google Scholar] [CrossRef]
- Yeste, M.; Estrada, E.; Rocha, L.G.; Marín, H.; Rodríguez-Gil, J.E.; Miró, J. Cryotolerance of stallion spermatozoa is related to ROS production and mitochondrial membrane potential rather than to the integrity of sperm nucleus. Andrology 2015, 3, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Ortega Ferrusola, C.; González Fernández, L.; Salazar Sandoval, C.; Macías García, B.; Rodríguez Martínez, H.; Tapia, J.A.; Peña, F.J. Inhibition of the mitochondrial permeability transition pore reduces “apoptosis like” changes during cryopreservation of stallion spermatozoa. Theriogenology 2010, 74, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Gibb, Z.; Lambourne, S.R.; Aitken, R.J. The paradoxical relationship between stallion fertility and oxidative stress. Biol. Reprod. 2014, 91, 77–78. [Google Scholar] [CrossRef] [PubMed]
- Foster, A.P.; Cunningham, P.M. Differential superoxide anion generation by equine eosinophils and neutrophils. Vet. Immunol. Immunopathol. 1997, 59, 225–237. [Google Scholar] [CrossRef]
- Moore, T.; Wilcke, J.; Chilcoat, C.; Eyre, P.; Crisman, M. Functional characterization of equine neutrophils in response to calcium ionophore A23187 and phorbol myristate acetate ex vivo. Vet. Immunol. Immunopathol. 1997, 56, 233–246. [Google Scholar] [CrossRef]
- Baumber, J.; Vo, A.; Sabeur, K.; Ball, B.A. Generation of reactive oxygen species by equine neutrophils and their effect on motility of equine spermatozoa. Theriogenology 2002, 57, 1025–1033. [Google Scholar] [CrossRef]
- Muiño-Blanco, T.; Pérez-Pé, R.; Cebrián-Pérez, J.A. Seminal plasma proteins and sperm resistance to stress. Reprod. Domest. Anim. 2008, 43, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Panner Selvam, M.K.; Agarwal, A.; Henkel, R.; Finelli, R.; Robert, K.A.; Iovine, C.; Baskaran, S. The effect of oxidative and reductive stress on semen parameters and functions of physiologically normal human spermatozoa. Free Radic. Biol. Med. 2020, 152, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Baumber, J.; Ball, B.A.; Gravance, C.G.; Medina, V.; Davies-Morel, M.C.G. The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential, and membrane lipid peroxidation. J. Androl. 2000, 21, 895–902. [Google Scholar] [CrossRef]
- Castagné, V.; Lefèvre, K.; Natero, R.; Becker, D.A.; Clarke, P.G.H. An optimal redox status for the survival of axotomized ganglion cells in the developing retina. Neuroscience 1999, 93, 313–320. [Google Scholar] [CrossRef]
- Papas, M.; Arroyo, L.; Bassols, A.; Catalán, J.; Bonilla-Correal, S.; Gacem, S.; Yeste, M.; Miró, J. Activities of antioxidant seminal plasma enzymes (SOD, CAT, GPX and GSR) are higher in jackasses than in stallions and are correlated with sperm motility in jackasses. Theriogenology 2019, 140, 180–187. [Google Scholar] [CrossRef]
- Mateo-Otero, Y.; Zambrano, F.; Gacem, S.; Yeste, M.; Miró, J.; Fernandez-Fuertes, B. Sperm induce NETosis in jenny polymorphonuclear cells in a concentration and time dependent manner. J. Equine Vet. Sci. 2020, 89, 103037. [Google Scholar] [CrossRef]
- Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 2011, 11, 519–531. [Google Scholar] [CrossRef]
- Miró, J.; Vilés, K.; García, W.; Jordana, J.; Yeste, M. Effect of donkey seminal plasma on sperm movement and sperm-polymorphonuclear neutrophils attachment in vitro. Anim. Reprod. Sci. 2013, 140, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Mateo-Otero, Y.; Zambrano, F.; Catalán, J.; Sánchez, R.; Yeste, M.; Miro, J.; Fernandez-Fuertes, B. Seminal plasma, and not sperm, induces time and concentration-dependent neutrophil extracellular trap release in donkeys. Equine Vet. J. 2021, 00, 1–12. [Google Scholar] [CrossRef]
- Kenney, M.R. Minimal contamination techniques for breeding mares: Techniques and priliminary findings. Proc. Am. Assoc. Equine Pract. 1975, 327–336. [Google Scholar]
- Bamba, K. Evaluation of acrosomal integrity of boar spermatozoa by bright field microscopy using an eosin-nigrosin stain. Theriogenology 1988, 29, 1245–1251. [Google Scholar] [CrossRef]
- Siemsen, D.W.; Malachowa, N.; Schepetkin, I.A.; Whitney, A.R.; Kirpotina, L.N.; Lei, B.; Deleo, F.R.; Quinn, M.T. Neutrophil isolation from nonhuman species. Methods Mol. Biol. 2014, 1124, 19–37. [Google Scholar] [CrossRef]
- Yildiz, K.; Gokpinar, S.; Sursal, N.; Babur, C.; Ozen, D.; Azkur, A.K. Extracellular trap formation by donkey polymorphonuclear neutrophils against Toxoplasma gondii. J. Equine Vet. Sci. 2019, 73, 1–9. [Google Scholar] [CrossRef]
- Peña, F.J.; O’Flaherty, C.; Ortiz Rodríguez, J.M.; Martín Cano, F.E.; Gaitskell-Phillips, G.L.; Gil, M.C.; Ortega Ferrusola, C. Redox regulation and oxidative stress: The particular case of the stallion spermatozoa. Antioxidants 2019, 8, 567. [Google Scholar] [CrossRef] [Green Version]
- Darr, C.R.; Varner, D.D.; Teague, S.; Cortopassi, G.A.; Datta, S.; Meyers, S.A. Lactate and pyruvate are major sources of energy for stallion sperm with dose effects on mitochondrial function, motility, and ROS production. Biol. Reprod. 2016, 95, 34. [Google Scholar] [CrossRef] [PubMed]
- Davila Plaza, M.; Muñoz Martin, P.; Bolaños Gallardo, J.M.; Stout, T.A.E.; Gadella, B.M.; Tapia, J.A.; Balao da Silva, C.; Ortega Ferrusola, C.; Peña, F.J. Mitochondrial ATP is required for the maintenance of membrane integrity in stallion spermatozoa, whereas motility requires both glycolysis and oxidative phosphorylation. Reproduction 2016, 152, 683–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gacem, S.; Valverde, A.; Catalán, J.; Yánez-Ortiz, I.; Soler, C.; Miró, J. A new approach of sperm motility subpopulation structure in donkey and horse. Front. Vet. Sci. 2021, 8, 424. [Google Scholar] [CrossRef] [PubMed]
- Catalán, J.; Papas, M.; Gacem, S.; Noto, F.; Delgado-Bermúdez, A.; Rodríguez-Gil, J.E.; Miró, J.; Yeste, M. Effects of red-light irradiation on the function and survival of fresh and liquid-stored donkey semen. Theriogenology 2020, 149, 88–97. [Google Scholar] [CrossRef]
- Catalán, J.; Papas, M.; Trujillo-Rojas, L.; Blanco-Prieto, O.; Bonilla-Correal, S.; Rodríguez-Gil, J.E.; Miró, J.; Yeste, M. Red LED light acts on the mitochondrial electron chain of donkey sperm and its effects depend on the time of exposure to light. Front. Cell Dev. Biol. 2020, 8, 588621. [Google Scholar] [CrossRef] [PubMed]
- Catalán, J.; Papas, M.; Gacem, S.; Mateo-Otero, Y.; Rodríguez-Gil, J.E.; Miró, J.; Yeste, M. Red-light irradiation of horse spermatozoa increases mitochondrial activity and motility through changes in the motile sperm subpopulation structure. Biology 2020, 9, 254. [Google Scholar] [CrossRef] [PubMed]
- Moawad, A.R.; Fernandez, M.C.; Scarlata, E.; Dodia, C.; Feinstein, S.I.; Fisher, A.B.; O’Flaherty, C. Deficiency of peroxiredoxin 6 or inhibition of its phospholipase A2 activity impair the in vitro sperm fertilizing competence in mice. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rota, A.; Panzani, D.; Sabatini, C.; Camillo, F. Donkey jack (Equus asinus) semen cryopreservation: Studies of seminal parameters, post breeding inflammatory response, and fertility in donkey jennies. Theriogenology 2012, 78, 1846–1854. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, H.D.; Welch, G.R. Effects of hypothermic liquid storage and cryopreservation on basal and induced plasma membrane phospholipid disorder and acrosome exocytosis in boar spermatozoa. Reprod. Fertil. Dev. 2005, 17, 467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houston, B.; Curry, B.; Aitken, R.J. Human spermatozoa possess an IL4I1 L-amino acid oxidase with a potential role in sperm function. Reproduction 2015, 149, 587–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aitken, J.B.; Naumovski, N.; Curry, B.; Grupen, C.G.; Gibb, Z.; Aitken, R.J. Characterization of an L-amino acid oxidase in equine spermatozoa. Biol. Reprod. 2015, 92, 1–13. [Google Scholar] [CrossRef]
- Upreti, G.C.; Jensen, K.; Munday, R.; Duganzich, D.M.; Vishwanath, R.; Smith, J.F. Studies on aromatic amino acid oxidase activity in ram spermatozoa: Role of pyruvate as an antioxidant. Anim. Reprod. Sci. 1998, 51, 275–287. [Google Scholar] [CrossRef]
- Aitken, R.; Koppers, A.J. Apoptosis and DNA damage in human spermatozoa. Asian J. Androl. 2011, 13, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Roca, J.; Parrilla, I.; Gil, M.A.; Cuello, C.; Martinez, E.A.; Rodriguez-Martinez, H. Non-viable sperm in the ejaculate: Lethal escorts for contemporary viable sperm. Anim. Reprod. Sci. 2016, 169, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Morrell, J.M.; Winblad, C.; Georgakas, A.; Stuhtmann, G.; Humblot, P.; Johannisson, A. Reactive oxygen species in stallion semen can be affected by season and colloid centrifugation. Anim. Reprod. Sci. 2013, 140, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.A.; Wolf, C.A.; Viu, M.A.O.; Gambarini, M.L. Addition of glutathione to an extender for frozen equine semen. J. Equine Vet. Sci. 2013, 33, 1148–1152. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.A.; Piersanti, R.L.; Wolf, C.A.; Viu, M.A.O.; Gambarini, M.L. Glutathione for the freezing of cooled equine semen, using different protocols. Anim. Reprod. 2018, 11, 104–109. [Google Scholar]
- Dutta, S.; Majzoub, A.; Agarwal, A. Oxidative stress and sperm function: A systematic review on evaluation and management. Arab J. Urol. 2019, 17, 87–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papas, M.; Catalan, J.; Barranco, I.; Arroyo, L.; Bassols, A.; Yeste, M.; Miró, J. Total and specific activities of superoxide dismutase (SOD) in seminal plasma are related with the cryotolerance of jackass spermatozoa. Cryobiology 2020, 92, 109–116. [Google Scholar] [CrossRef]
- Moretti, E.; Collodel, G.; Fiaschi, A.I.; Micheli, L.; Iacoponi, F.; Cerretani, D. Nitric oxide, malondialdheyde and non-enzymatic antioxidants assessed in viable spermatozoa from selected infertile men. Reprod. Biol. 2017, 17, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Fiaschi, T.; Chiarugi, P. Oxidative stress, tumor microenvironment, and metabolic reprogramming: A diabolic liaison. Int. J. Cell Biol. 2012, 762825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castiglione Morelli, M.A.; Ostuni, A.; Giangaspero, B.; Cecchini, S.; Carluccio, A.; Boni, R. Relationships between seminal plasma metabolites, semen characteristics and sperm kinetics in donkey (Equus asinus). Animals 2021, 11, 201. [Google Scholar] [CrossRef]
- Papas, M.; Catalan, J.; Bonilla-Correal, S.; Gacem, S.; Miró, J.; Yeste, M. Seminal plasma has limited counteracting effects following induction of oxidative stress in donkey spermatozoa. Reprod. Fertil. Dev. 2020, 32, 619–628. [Google Scholar] [CrossRef]
- Kennedy, A.D.; Deleo, F.R. Neutrophil apoptosis and the resolution of infection. Immunol. Res. 2009, 43, 25–61. [Google Scholar] [CrossRef]
- Savill, J.S.; Wyllie, A.H.; Henson, J.E.; Walport, M.J.; Henson, P.M.; Haslett, C. Macrophage phagocytosis of aging neutrophils in inflammation: Programmed cell death in the neutrophil leads to its recognition by macrophages. J. Clin. Investig. 1989, 83, 865–875. [Google Scholar] [CrossRef] [Green Version]
- Manosudprasit, A.; Kantarci, A.; Hasturk, H.; Stephens, D.; Van Dyke, T.E. Spontaneous PMN apoptosis in type 2 diabetes and the impact of periodontitis. J. Leukoc. Biol. 2017, 102, 1431–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miró, J.; Gutiérrez-Reinoso, M.; Aguiar da Silva, J.; Fernandes, C.; Rebordão, M.R.; Alexandre-Pires, G.; Catalán, J.; Ferreira-Dias, G. Collagen and eosinophils in jenny’s endometrium: Do they differ with endometrial classification? Front. Vet. Sci. 2020, 7, 631. [Google Scholar] [CrossRef] [PubMed]
- Remijsen, Q.; Berghe, T.V.; Wirawan, E.; Asselbergh, B.; Parthoens, E.; De Rycke, R.; Noppen, S.; Delforge, M.; Willems, J.; Vandenabeele, P. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 2011, 21, 290–304. [Google Scholar] [CrossRef] [Green Version]
- Araźna, M.; Pruchniak, M.P.; Demkow, U. Reactive oxygen species, granulocytes, and NETosis. Adv. Exp. Med. Biol. 2015, 836, 1–7. [Google Scholar] [CrossRef]
- Stoiber, W.; Obermayer, A.; Steinbacher, P.; Krautgartner, W.D. The role of reactive oxygen species (ROS) in the formation of extracellular traps (ETs) in humans. Biomolecules 2015, 5, 702–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, T.A.; Abed, U.; Goosmann, C.; Hurwitz, R.; Schulze, I.; Wahn, V.; Weinrauch, Y.; Brinkmann, V.; Zychlinsky, A. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 2007, 176, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Behnen, M.; Möller, S.; Brozek, A.; Klinger, M.; Laskay, T. Extracellular acidification inhibits the ROS-dependent formation of neutrophil extracellular traps. Front. Immunol. 2017, 8, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alghamdi, A.S.; Foster, D.N. Seminal DNase frees spermatozoa entangled in neutrophil extracellular traps. Biol. Reprod. 2005, 73, 1174–1181. [Google Scholar] [CrossRef]
Parameter | Incubation Time | GSH Concentration | |||||
---|---|---|---|---|---|---|---|
Control | 2 mM | 4 mM | 6 mM | 8 mM | 10 mM | ||
VCL (µm/s) | 0 min | 217.05 ± 15.87 a,1 | 215.20 ± 15.02 a,1 | 216.39 ± 21.43 a,1 | 215.58 ± 14.79 a,1 | 213.17 ± 21.01 a,1 | 238.79 ± 14.66 a,1 |
30 min | 200.15 ± 22.28 a,1,2 | 195.60 ± 11.89 a,1 | 206.31 ± 15.46 a,1 | 196.55 ± 22.39 a,1 | 182.97 ± 25.66 a,1,2 | 170.67 ± 24.31 a,2 | |
60 min | 156.64 ± 12.80 a,2 | 180.38 ± 20.14 a,1 | 170.12 ± 21.63 a,1 | 183.45 ± 16.87 a,1 | 181.28 ± 21.96 a,1,2 | 195.84 ± 24.81 a,1,2 | |
120 min | 155.60 ± 18.77 a,2 | 186.70 ± 14.20 a,1 | 173.22 ± 9.72 a,1 | 189.96 ± 28.20 a,1 | 156.98 ± 13.22 a,2 | 156.29 ± 15.83 a,2 | |
VSL (µm/s) | 0 min | 80.68 ± 2.37 a,1 | 82.30 ± 5.91 a,1 | 84.67 ± 5.17 a,1 | 83.38 ± 2.61 a,1 | 80.77 ± 5.80 a,1 | 88.24 ± 5.33 a,1 |
30 min | 78.37 ± 4.47 a,1 | 78.99 ± 2.04 a,1 | 82.48 ± 1.65 a,1,2 | 71.68 ± 8.34 a,1 | 58.79 ± 7.20 a,1,2 | 63.45 ± 8.09 a,2 | |
60 min | 60.96 ± 5.56 a,1 | 68.60 ± 6.05 a,1 | 60.90 ± 9.28 a,2 | 64.44 ± 5.76 a,1 | 58.77 ± 7.45 a,1,2 | 68.01 ± 8.01 a,1,2 | |
120 min | 65.40 ± 7.04 a,1 | 71.73 ± 3.22 a,1 | 63.63 ± 7.24 a,1,2 | 66.79 ± 15.92 a,1 | 51.90 ± 6.35 a,2 | 48.37 ± 5.43 a,2 | |
VAP (µm/s) | 0 min | 113.58 ± 6.16 a,1 | 112.78 ± 9.07 a,1 | 114.13 ± 10.00 a,1 | 111.58 ± 5.76 a,1 | 107.90 ± 9.10 a,1 | 120.83 ± 6.54 a,1 |
30 min | 107.14 ± 9.62 a,1,2 | 105.92 ± 2.58 a,1 | 106.83 ± 4.72 a,1,2 | 96.37 ± 12.06 a,1 | 84.47 ± 12.31 a,1,2 | 83.08 ± 10.96 a,2 | |
60 min | 81.07 ± 5.28 a,2 | 92.39 ± 9.73 a,1 | 82.99 ± 12.00 a,2 | 85.29 ± 8.37 a,1 | 85.48 ± 9.67 a,1,2 | 90.76 ± 11.20 a,1,2 | |
120 min | 83.48 ± 8.21 a,2 | 89.85 ± 5.75 a,1 | 83.80 ± 6.50 a,2 | 87.68 ± 15.96 a,1 | 72.10 ± 6.39 a,2 | 68.19 ± 8.61 a,2 | |
LIN (%) | 0 min | 34.97 ± 1.52 a,1 | 35.28 ± 1.46 a,1 | 36.36 ± 0.60 a,1 | 35.71 ± 1.04 a,1 | 34.52 ± 0.80 a,1 | 34.72 ± 0.26 a,1 |
30 min | 36.48 ± 1.57 a,1 | 37.25 ± 2.66 a,1 | 36.68 ± 1.88 a,1 | 34.13 ± 1.44 ab,1 | 28.57 ± 0.99 b,1 | 33.57 ± 3.44 ab,1,2 | |
60 min | 35.03 ± 2.70 a,1 | 35.10 ± 1.06 a,1 | 32.21 ± 1.67 a,1 | 31.64 ± 1.30 a,1 | 29.24 ± 1.48 a,1 | 32.15 ± 0.67 a,1,2 | |
120 min | 37.76 ± 2.92 a,1 | 34.68 ± 1.02 ab,1 | 33.56 ± 2.16 ab,1 | 31.19 ± 4.82 ab,1 | 29.02 ± 2.69 b,1 | 27.64 ± 1.47 b,2 | |
STR (%) | 0 min | 65.16 ± 1.31 a,1 | 66.17 ± 0.87 a,1 | 67.88 ± 0.54 a,1 | 67.87 ± 0.56 a,1 | 66.95 ± 1.24 a,1 | 67.31 ± 0.83 a,1 |
30 min | 66.55 ± 1.30 a,1 | 67.52 ± 2.44 a,1 | 69.53 ± 1.69 a,1 | 67.52 ± 2.35 a,1 | 61.26 ± 0.82 a,1 | 67.23 ± 3.30 a,1 | |
60 min | 65.18 ± 3.11 a,1 | 66.64 ± 0.44 a,1 | 64.29 ± 1.93 a,1 | 66.75 ± 1.32 a,1 | 61.41 ± 3.81 a,1 | 67.98 ± 1.41 a,1 | |
120 min | 68.78 ± 3.23 a,1 | 70.73 ± 1.80 a,1 | 67.47 ± 4.22 a,1 | 65.57 ± 8.39 a,1 | 61.69 ± 3.97 a,1 | 63.32 ± 4.37 a,1 | |
WOB (%) | 0 min | 51.44 ± 1.43 a,1 | 51.33 ± 1.71 a,1,2 | 51.45 ± 1.17 a,1 | 50.60 ± 1.49 a,1 | 49.33 ± 0.68 a,1 | 49.78 ± 0.38 a,1 |
30 min | 52.36 ± 1.38 a,1 | 52.79 ± 1.96 a,1 | 50.50 ± 1.43 a,1 | 48.62 ± 1.67 ab,1,2 | 44.94 ± 1.30 b,1 | 47.75 ± 2.43 ab,1,2 | |
60 min | 50.78 ± 1.74 a,1 | 50.31 ± 0.97 a,1,2 | 47.92 ± 1.08 a,1 | 46.07 ± 0.83 a,1,2 | 47.40 ± 1.09 a,1 | 46.98 ± 0.84 a,1,2 | |
120 min | 52.23 ± 1.88 a,1 | 47.48 ± 2.23 ab,2 | 48.76 ± 0.59 ab,1 | 45.70 ± 1.78 b,2 | 47.24 ± 0.81 ab,1 | 43.59 ± 1.96 b,2 | |
ALH (µm) | 0 min | 2.56 ± 0.14 a,1 | 2.58 ± 0.16 a,1 | 2.63 ± 0.22 a,1 | 2.73 ± 0.19 a,1 | 2.77 ± 0.24 a,1 | 2.96 ± 0.15 a,1 |
30 min | 2.34 ± 0.24 a,1,2 | 2.40 ± 0.17 a,1 | 2.63 ± 0.17 a,1 | 2.59 ± 0.24 a,1 | 2.44 ± 0.26 a,1,2 | 2.25 ± 0.29 a,1,2 | |
60 min | 2.00 ± 0.16 a,1,2 | 2.29 ± 0.20 a,1 | 2.22 ± 0.21 a,1 | 2.45 ± 0.17 a,1 | 2.40 ± 0.24 a,1,2 | 2.58 ± 0.29 a,1,2 | |
120 min | 1.93 ± 0.22 a,2 | 2.45 ± 0.17 a,1 | 2.24 ± 0.07 a,1 | 2.51 ± 0.32 a,1 | 2.12 ± 0.15 a,2 | 2.20 ± 0.20 a,2 | |
BCF (Hz) | 0 min | 34.39 ± 1.42 a,1 | 33.21 ± 3.26 a,1 | 33.27 ± 2.16 a,1 | 31.41 ± 2.26 a,1 | 28.45 ± 1.49 a,1 | 32.58 ± 1.06 a,1 |
30 min | 35.00 ± 2.38 a,1 | 34.77 ± 1.55 a,1 | 31.43 ± 0.60 ab,1 | 28.21 ± 3.29 abc,1,2 | 22.44 ± 2.19 c,1,2 | 24.09 ± 2.25 bc,2 | |
60 min | 28.13 ± 1.49 ab,1 | 29.75 ± 2.70 a,1 | 26.33 ± 3.35 ab,1 | 22.67 ± 2.22 ab,2 | 20.62 ± 2.14 b,2 | 21.67 ± 1.69 ab,2 | |
120 min | 31.29 ± 1.86 a,1 | 28.78 ± 2.04 ab,1 | 27.64 ± 1.60 abc,1 | 27.12 ± 2.19 abc,1,2 | 23.04 ± 1.28 bc,1,2 | 20.55 ± 1.99 c,2 |
Parameter | Incubation Time | H2O2 Concentration | ||||
---|---|---|---|---|---|---|
Control | 0.5 mM | 1 mM | 5 mM | 10 mM | ||
VCL (µm/s) | 0 min | 217.05 ± 15.87 a,1 | 207.18 ± 12.71 a,1 | 198.34 ± 15.79 a,1 | 200.12 ± 19.14 a,1 | 200.68 ± 13.72 a,1 |
30 min | 200.15 ± 22.28 a,1 | 173.46 ± 15.47 ab,1,2 | 170.15 ± 4.75 ab,1,2 | 154.00 ± 10.13 b,2 | 152.15 ± 11.91 b,2 | |
60 min | 156.64 ± 12.80 a,2 | 158.57 ± 12.00 a,2 | 146.71 ± 8.83 a,2 | 152.04 ± 13.70 a,2 | 164.64 ± 15.75 a,1,2 | |
120 min | 155.60 ± 18.77 a,2 | 154.92 ± 15.31 a,2 | 167.50 ± 12.09 a,1,2 | 160.25 ± 16.59 a,2 | 169.35 ± 11.85 a,1,2 | |
VSL (µm/s) | 0 min | 80.68 ± 2.37 a,1 | 78.03 ± 2.08 a,1 | 76.12 ± 3.37 a,1 | 76.52 ± 5.10 a,1 | 72.05 ± 2.40 a,1,2 |
30 min | 78.37 ± 4.47 a,1 | 69.56 ± 3.33 ab,1 | 74.73 ± 4.44 ab,1 | 66.62 ± 4.12 ab,1 | 56.47 ± 4.02 b,2 | |
60 min | 60.96 ± 5.56 a,2 | 67.32 ± 3.36 a,1 | 63.29 ± 2.09 a,1 | 68.86 ± 7.00 a,1 | 72.61 ± 6.91 a,1,2 | |
120 min | 65.40 ± 7.04 a,1,2 | 62.58 ± 6.28 a,1 | 74.44 ± 7.67 a,1 | 68.07 ± 8.25 a,1 | 78.77 ± 5.25 a,1 | |
VAP (µm/s) | 0 min | 113.58 ± 6.16 a,1 | 108.23 ± 5.43 a,1 | 104.02 ± 6.23 a,1 | 104.42 ± 8.38 a,1 | 103.43 ± 5.96 a,1 |
30 min | 107.14 ± 9.62 a,1 | 92.98 ± 5.55 ab,1,2 | 94.95 ± 3.21 ab,1,2 | 86.27 ± 4.41 ab,1 | 79.06 ± 5.80 b,2 | |
60 min | 81.07 ± 5.28 a,2 | 86.72 ± 4.68 a,1,2 | 81.46 ± 3.70 a,2 | 85.99 ± 8.26 a,1 | 90.97 ± 8.25 a,1,2 | |
120 min | 83.48 ± 5.28 a,2 | 81.37 ± 4.68 a,2 | 92.09 ± 3.70 a,1,2 | 86.20 ± 8.26 a,1 | 94.32 ± 8.25 a,1,2 | |
LIN (%) | 0 min | 34.97 ± 1.52 a,1 | 34.94 ± 1.24 a,1 | 35.72 ± 1.65 a,1 | 34.97 ± 0.82 a,2 | 33.46 ± 1.65 a,2 |
30 min | 36.48 ± 1.57 a,1 | 36.71 ± 1.58 a,1 | 40.58 ± 2.68 a,1 | 39.94 ± 2.14 a,1,2 | 34.51 ± 2.65 a,2 | |
60 min | 35.03 ± 2.70 a,1 | 40.24 ± 1.24 a,1 | 40.98 ± 0.84 a,1 | 42.22 ± 1.99 a,1 | 42.12 ± 3.12 a,1 | |
120 min | 37.76 ± 2.92 a,1 | 36.87 ± 3.50 a,1 | 41.35 ± 3.45 a,1 | 39.34 ± 4.26 a,1,2 | 43.57 ± 3.93 a,1 | |
STR (%) | 0 min | 65.16 ± 1.31 a,1 | 65.42 ± 1.00 a,1 | 66.39 ± 1.52 a,1 | 65.97 ± 0.26 a,1 | 63.27 ± 1.40 a,2 |
30 min | 66.55 ± 1.30 a,1 | 66.80 ± 1.10 a,1 | 71.07 ± 2.81 a,1 | 68.81 ± 1.94 a,1 | 63.96 ± 1.42 a,2 | |
60 min | 65.18 ± 3.11 b,1 | 70.34 ± 0.97 ab,1 | 70.19 ± 1.79 ab,1 | 71.65 ± 1.93 ab,1 | 73.34 ± 3.38 a,1 | |
120 min | 68.78 ± 3.23 ab,1 | 67.96 ± 3.64 b,1 | 73.13 ± 3.40 ab,1 | 70.40 ± 4.01 ab,1 | 75.85 ± 3.37 a,1 | |
WOB (%) | 0 min | 51.44 ± 1.43 a,1 | 51.23 ± 1.21 a,1 | 51.58 ± 1.52 a,1 | 50.96 ± 1.31 a,1 | 50.53 ± 1.71 a,1 |
30 min | 52.36 ± 1.38 a,1 | 52.48 ± 1.60 a,1 | 54.73 ± 1.68 a,1 | 55.55 ± 1.91 a,1 | 51.80 ± 2.69 a,1 | |
60 min | 50.78 ± 1.74 a,1 | 54.86 ± 1.26 a,1 | 56.07 ± 0.70 a,1 | 56.43 ± 1.19 a,1 | 55.49 ± 2.11 a,1 | |
120 min | 52.23 ± 1.88 a,1 | 51.69 ± 2.34 a,1 | 54.27 ± 2.86 a,1 | 53.03 ± 2.99 a,1 | 55.20 ± 3.08 a,1 | |
ALH (µm) | 0 min | 2.56 ± 0.14 a,1 | 2.51 ± 0.14 a,1 | 2.44 ± 0.18 a,1 | 2.45 ± 0.23 a,1 | 2.43 ± 0.15 a,1 |
30 min | 2.34 ± 0.24 a,1,2 | 2.15 ± 0.20 ab,1,2 | 2.06 ± 0.05 ab,1,2 | 1.86 ± 0.12 b,2 | 1.87 ± 0.14 b,2 | |
60 min | 2.00 ± 0.16 a,2,3 | 1.95 ± 0.14 a,2 | 1.79 ± 0.09 a,2 | 1.81 ± 0.12 a,2 | 1.98 ± 0.16 a,2 | |
120 min | 1.93 ± 0.22 a,3 | 1.92 ± 0.16 a,2 | 2.02 ± 0.10 a,2 | 1.96 ± 0.16 a,2 | 1.98 ± 0.13 a,2 | |
BCF (Hz) | 0 min | 34.39 ± 1.42 a,1 | 32.23 ± 2.03 a,1 | 32.46 ± 1.94 a,1 | 31.76 ± 2.47 a,1 | 32.01 ± 1.72 a,1,2 |
30 min | 35.00 ± 2.38 a,1 | 32.29 ± 1.10 a,1 | 34.61 ± 1.42 a,1 | 32.33 ± 1.29 a,1 | 27.94 ± 3.34 a,2 | |
60 min | 28.13 ± 1.49 a,1 | 32.00 ± 0.81 a,1 | 32.33 ± 0.81 a,1 | 34.66 ± 2.09 a,1 | 34.01 ± 1.68 a,1,2 | |
120 min | 31.29 ± 1.86 a,1 | 31.27 ± 2.46 a,1 | 36.27 ± 3.54 a,1 | 33.28 ± 3.36 a,1 | 38.17 ± 2.71 a,1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yánez-Ortiz, I.; Catalán, J.; Mateo-Otero, Y.; Dordas-Perpinyà, M.; Gacem, S.; Yeste, N.; Bassols, A.; Yeste, M.; Miró, J. Extracellular Reactive Oxygen Species (ROS) Production in Fresh Donkey Sperm Exposed to Reductive Stress, Oxidative Stress and NETosis. Antioxidants 2021, 10, 1367. https://doi.org/10.3390/antiox10091367
Yánez-Ortiz I, Catalán J, Mateo-Otero Y, Dordas-Perpinyà M, Gacem S, Yeste N, Bassols A, Yeste M, Miró J. Extracellular Reactive Oxygen Species (ROS) Production in Fresh Donkey Sperm Exposed to Reductive Stress, Oxidative Stress and NETosis. Antioxidants. 2021; 10(9):1367. https://doi.org/10.3390/antiox10091367
Chicago/Turabian StyleYánez-Ortiz, Iván, Jaime Catalán, Yentel Mateo-Otero, Marta Dordas-Perpinyà, Sabrina Gacem, Natalia Yeste, Anna Bassols, Marc Yeste, and Jordi Miró. 2021. "Extracellular Reactive Oxygen Species (ROS) Production in Fresh Donkey Sperm Exposed to Reductive Stress, Oxidative Stress and NETosis" Antioxidants 10, no. 9: 1367. https://doi.org/10.3390/antiox10091367
APA StyleYánez-Ortiz, I., Catalán, J., Mateo-Otero, Y., Dordas-Perpinyà, M., Gacem, S., Yeste, N., Bassols, A., Yeste, M., & Miró, J. (2021). Extracellular Reactive Oxygen Species (ROS) Production in Fresh Donkey Sperm Exposed to Reductive Stress, Oxidative Stress and NETosis. Antioxidants, 10(9), 1367. https://doi.org/10.3390/antiox10091367