Bilirubin Links HO-1 and UGT1A1*28 Gene Polymorphisms to Predict Cardiovascular Outcome in Patients Receiving Maintenance Hemodialysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical and Laboratory Data Collection
2.3. Genotyping Methods
2.4. Outcome Data Collection
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Patients
3.2. Serum Bilirubin and Oxidative Stress in HD Patients
3.3. CVD Events and All-Cause Mortality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Jager, D.J.; Grootendorst, D.C.; Jager, K.J.; van Dijk, P.C.; Tomas, L.M.; Ansell, D.; Collart, F.; Finne, P.; Heaf, J.G.; De Meester, J.; et al. Cardiovascular and noncardiovascular mortality among patients starting dialysis. JAMA 2009, 302, 1782–1789. [Google Scholar] [CrossRef] [PubMed]
- Rattazzi, M.; Puato, M.; Faggin, E.; Bertipaglia, B.; Grego, F.; Pauletto, P. New markers of accelerated atherosclerosis in end-stage renal disease. J. Nephrol. 2003, 16, 11–20. [Google Scholar] [PubMed]
- Clermont, G.; Lecour, S.; Lahet, J.-J.; Siohan, P.; Vergely, C.; Chevet, D.; Rifle, G.; Rochette, L. Alteration in plasma antioxidant capacities in chronic renal failure and hemodialysis patients: A possible explanation for the increased cardiovascular risk in these patients. Cardiovasc. Res. 2000, 47, 618–623. [Google Scholar] [CrossRef]
- Stocker, R.; Yamamoto, Y.; McDonagh, A.F.; Glazer, A.N.; Ames, B.N. Bilirubin is an antioxidant of possible physiological importance. Science 1987, 235, 1043–1046. [Google Scholar] [CrossRef] [PubMed]
- Stocker, R.; Keaney, J.F., Jr. Role of oxidative modifications in atherosclerosis. Physiol. Rev. 2004, 84, 1381–1478. [Google Scholar] [CrossRef] [PubMed]
- Willis, D.; Moore, A.R.; Frederick, R.; Willoughby, D.A. Heme oxygenase: A novel target for the modulation of inflammatory response. Nat. Med. 1996, 2, 87–90. [Google Scholar] [CrossRef]
- Nakagami, T.; Toyomura, K.; Kinoshita, T.; Morisawa, S. A beneficial role of bile pigments as an endogenous tissue protector: Anti-complement effects of biliverdin and conjugated bilirubin. Biochim. Biophys. Acta 1993, 1158, 189–193. [Google Scholar] [CrossRef]
- Neuzil, J.; Stocker, R. Free and albumin-bound bilirubin are efficient co-antioxidants for alpha-tocopherol, inhibiting plasma and low density lipoprotein lipid peroxidation. J. Biol. Chem. 1994, 269, 16712–16719. [Google Scholar] [CrossRef]
- Wu, T.W.; Fung, K.P.; Wu, J.; Yang, C.C.; Weisel, R.D. Antioxidation of human low density lipoprotein by unconjugated and conjugated bilirubins. Biochem. Pharmacol. 1996, 51, 859–862. [Google Scholar] [CrossRef]
- Schwertner, H.A. Association of smoking and low serum bilirubin antioxidant concentrations. Atherosclerosis 1998, 136, 383–387. [Google Scholar] [CrossRef]
- Vítek, L.; Jirsa, M.; Brodanová, M.; Kalab, M.; Marecek, Z.; Danzig, V.; Novotný, L.; Kotal, P. Gilbert syndrome and ischemic heart disease: A protective effect of elevated bilirubin levels. Atherosclerosis 2002, 160, 449–456. [Google Scholar] [CrossRef]
- Schwertner, H.A.; Jackson, W.G.; Tolan, G. Association of low serum concentration of bilirubin with increased risk of coronary artery disease. Clin. Chem. 1994, 40, 18–23. [Google Scholar] [CrossRef]
- Djoussé, L.; Levy, D.; Cupples, L.A.; Evans, J.C.; D’Agostino, R.B.; Ellison, R.C. Total serum bilirubin and risk of cardiovascular disease in the Framingham offspring study. Am. J. Cardiol. 2001, 87, 1196–1200; A1194, 1197. [Google Scholar] [CrossRef]
- Perlstein, T.S.; Pande, R.L.; Beckman, J.A.; Creager, M.A. Serum total bilirubin level and prevalent lower-extremity peripheral arterial disease: National Health and Nutrition Examination Survey (NHANES) 1999 to 2004. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Kimm, H.; Yun, J.E.; Jo, J.; Jee, S.H. Low serum bilirubin level as an independent predictor of stroke incidence: A prospective study in Korean men and women. Stroke 2009, 40, 3422–3427. [Google Scholar] [CrossRef]
- Tenhunen, R.; Marver, H.S.; Schmid, R. Microsomal heme oxygenase. Characterization of the enzyme. J. Biol. Chem. 1969, 244, 6388–6394. [Google Scholar] [CrossRef]
- Maines, M.D. Heme oxygenase: Function, multiplicity, regulatory mechanisms, and clinical applications. Faseb. j. 1988, 2, 2557–2568. [Google Scholar] [CrossRef] [PubMed]
- Idriss, N.K.; Blann, A.D.; Lip, G.Y. Hemoxygenase-1 in cardiovascular disease. J. Am. Coll. Cardiol. 2008, 52, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Kutty, R.K.; Kutty, G.; Rodriguez, I.R.; Chader, G.J.; Wiggert, B. Chromosomal localization of the human heme oxygenase genes: Heme oxygenase-1 (HMOX1) maps to chromosome 22q12 and heme oxygenase-2 (HMOX2) maps to chromosome 16p13.3. Genomics 1994, 20, 513–516. [Google Scholar] [CrossRef]
- Exner, M.; Schillinger, M.; Minar, E.; Mlekusch, W.; Schlerka, G.; Haumer, M.; Mannhalter, C.; Wagner, O. Heme oxygenase-1 gene promoter microsatellite polymorphism is associated with restenosis after percutaneous transluminal angioplasty. J. Endovasc. Ther. 2001, 8, 433–440. [Google Scholar] [CrossRef]
- Chen, Y.H.; Hung, S.C.; Tarng, D.C. Length polymorphism in heme oxygenase-1 and cardiovascular events and mortality in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2013, 8, 1756–1763. [Google Scholar] [CrossRef]
- Lin, J.P.; Cupples, L.A.; Wilson, P.W.; Heard-Costa, N.; O’Donnell, C.J. Evidence for a gene influencing serum bilirubin on chromosome 2q telomere: A genomewide scan in the Framingham study. Am. J. Hum. Genet. 2003, 72, 1029–1034. [Google Scholar] [CrossRef][Green Version]
- Kronenberg, F.; Coon, H.; Gutin, A.; Abkevich, V.; Samuels, M.E.; Ballinger, D.G.; Hopkins, P.N.; Hunt, S.C. A genome scan for loci influencing anti-atherogenic serum bilirubin levels. Eur. J. Hum. Genet. 2002, 10, 539–546. [Google Scholar] [CrossRef][Green Version]
- Bosma, P.J.; Chowdhury, J.R.; Bakker, C.; Gantla, S.; de Boer, A.; Oostra, B.A.; Lindhout, D.; Tytgat, G.N.; Jansen, P.L.; Oude Elferink, R.P.; et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N. Engl. J. Med. 1995, 333, 1171–1175. [Google Scholar] [CrossRef]
- Monaghan, G.; Ryan, M.; Seddon, R.; Hume, R.; Burchell, B. Genetic variation in bilirubin UPD-glucuronosyltransferase gene promoter and Gilbert’s syndrome. Lancet 1996, 347, 578–581. [Google Scholar] [CrossRef]
- Beutler, E.; Gelbart, T.; Demina, A. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: A balanced polymorphism for regulation of bilirubin metabolism? Proc. Natl. Acad. Sci. USA. 1998, 95, 8170–8174. [Google Scholar] [CrossRef]
- Chen, Y.H.; Hung, S.C.; Tarng, D.C. Serum bilirubin links UGT1A1*28 polymorphism and predicts long-term cardiovascular events and mortality in chronic hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2011, 6, 567–574. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Rosenberg, N.A. Use of unlinked genetic markers to detect population stratification in association studies. Am. J. Hum. Genet. 1999, 65, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.; Mikkelsen, B.B.; Nielsen, J.B.; Andersen, H.R.; Grandjean, P. Plasma malondialdehyde as biomarker for oxidative stress: Reference interval and effects of life-style factors. Clin. Chem. 1997, 43, 1209–1214. [Google Scholar] [CrossRef] [PubMed]
- Daugirdas, J.T. Second generation logarithmic estimates of single-pool variable volume Kt/V: An analysis of error. J. Am. Soc. Nephrol. 1993, 4, 1205–1213. [Google Scholar] [CrossRef]
- Kaneda, H.; Ohno, M.; Taguchi, J.; Togo, M.; Hashimoto, H.; Ogasawara, K.; Aizawa, T.; Ishizaka, N.; Nagai, R. Heme oxygenase-1 gene promoter polymorphism is associated with coronary artery disease in Japanese patients with coronary risk factors. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1680–1685. [Google Scholar] [CrossRef]
- Wu, M.M.; Chiou, H.Y.; Chen, C.L.; Wang, Y.H.; Hsieh, Y.C.; Lien, L.M.; Lee, T.C.; Chen, C.J. GT-repeat polymorphism in the heme oxygenase-1 gene promoter is associated with cardiovascular mortality risk in an arsenic-exposed population in northeastern Taiwan. Toxicol. Appl. Pharmacol. 2010, 248, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Lüblinghoff, N.; Winkler, K.; Winkelmann, B.R.; Seelhorst, U.; Wellnitz, B.; Boehm, B.O.; März, W.; Hoffmann, M.M. Genetic variants of the promoter of the heme oxygenase-1 gene and their influence on cardiovascular disease (the Ludwigshafen Risk and Cardiovascular Health study). BMC. Med. Genet. 2009, 10, 36. [Google Scholar] [CrossRef]
- Lin, J.P.; O’Donnell, C.J.; Schwaiger, J.P.; Cupples, L.A.; Lingenhel, A.; Hunt, S.C.; Yang, S.; Kronenberg, F. Association between the UGT1A1*28 allele, bilirubin levels, and coronary heart disease in the Framingham Heart Study. Circulation 2006, 114, 1476–1481. [Google Scholar] [CrossRef] [PubMed]
- Taha, H.; Skrzypek, K.; Guevara, I.; Nigisch, A.; Mustafa, S.; Grochot-Przeczek, A.; Ferdek, P.; Was, H.; Kotlinowski, J.; Kozakowska, M. Role of heme oxygenase-1 in human endothelial cells: Lesson from the promoter allelic variants. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1634–1641. [Google Scholar] [CrossRef] [PubMed]
- Boaz, M.; Matas, Z.; Biro, A.; Katzir, Z.; Green, M.; Fainaru, M.; Smetana, S. Serum malondialdehyde and prevalent cardiovascular disease in hemodialysis. Kidney Int. 1999, 56, 1078–1083. [Google Scholar] [CrossRef]
- Gosmanova, E.O.; Le, N.A. Cardiovascular Complications in CKD Patients: Role of Oxidative Stress. Cardiol. Res. Pract. 2011, 2011, 156326. [Google Scholar] [CrossRef]
- Lim, P.S.; Chan, E.C.; Lu, T.C.; Yu, Y.L.; Kuo, S.Y.; Wang, T.H.; Wei, Y.H. Lipophilic antioxidants and iron status in ESRD patients on hemodialysis. Nephron 2000, 86, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Uzum, A.; Toprak, O.; Gumustas, M.K.; Ciftci, S.; Sen, S. Effect of vitamin E therapy on oxidative stress and erythrocyte osmotic fragility in patients on peritoneal dialysis and hemodialysis. J. Nephrol. 2006, 19, 739–745. [Google Scholar] [PubMed]
- Vaziri, N.D. Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension. Curr. Opin. Nephrol. Hypertens. 2004, 13, 93–99. [Google Scholar] [CrossRef]
- Libetta, C.; Sepe, V.; Esposito, P.; Galli, F.; Dal Canton, A. Oxidative stress and inflammation: Implications in uremia and hemodialysis. Clin. Biochem. 2011, 44, 1189–1198. [Google Scholar] [CrossRef]
- Fukui, M.; Tanaka, M.; Yamazaki, M.; Hasegawa, G.; Nishimura, M.; Iwamoto, N.; Ono, T.; Imai, S.; Nakamura, N. Low serum bilirubin concentration in haemodialysis patients with Type 2 diabetes. Diabet. Med. 2011, 28, 96–99. [Google Scholar] [CrossRef]
- do Sameiro-Faria, M.; Kohlova, M.; Ribeiro, S.; Rocha-Pereira, P.; Teixeira, L.; Nascimento, H.; Reis, F.; Miranda, V.; Bronze-da-Rocha, E.; Quintanilha, A.; et al. Potential cardiovascular risk protection of bilirubin in end-stage renal disease patients under hemodialysis. Biomed. Res. Int. 2014, 2014, 175286. [Google Scholar] [CrossRef]
- Boon, A.C.; Lam, A.K.; Gopalan, V.; Benzie, I.F.; Briskey, D.; Coombes, J.S.; Fassett, R.G.; Bulmer, A.C. Endogenously elevated bilirubin modulates kidney function and protects from circulating oxidative stress in a rat model of adenine-induced kidney failure. Sci. Rep. 2015, 5, 15482. [Google Scholar] [CrossRef]
- Raggi, P.; Boulay, A.; Chasan-Taber, S.; Amin, N.; Dillon, M.; Burke, S.K.; Chertow, G.M. Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J. Am. Coll. Cardiol. 2002, 39, 695–701. [Google Scholar] [CrossRef]
- Floege, J.; Ketteler, M. Vascular calcification in patients with end-stage renal disease. Nephrol. Dial. Transplant. 2004, 19 (Suppl. S5), V59–V66. [Google Scholar] [CrossRef]
- Tanaka, M.; Fukui, M.; Tomiyasu, K.; Akabame, S.; Nakano, K.; Hasegawa, G.; Oda, Y.; Nakamura, N. Low serum bilirubin concentration is associated with coronary artery calcification (CAC). Atherosclerosis 2009, 206, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Sung, K.C.; Shin, J.; Lim, Y.H.; Wild, S.H.; Byrne, C.D. Relation of conjugated bilirubin concentrations to the presence of coronary artery calcium. Am. J. Cardiol. 2013, 112, 1873–1879. [Google Scholar] [CrossRef]
- Boon, A.C.; Bulmer, A.C.; Coombes, J.S.; Fassett, R.G. Circulating bilirubin and defense against kidney disease and cardiovascular mortality: Mechanisms contributing to protection in clinical investigations. Am. J. Physiol. Renal Physiol. 2014, 307, F123–F136. [Google Scholar] [CrossRef] [PubMed]
Combined Genotypes of HO-1 and UGT1A1 Polymorphisms | ||||
---|---|---|---|---|
Parameters | Group 1 (n = 37) | Group 2 (n = 729) | Group 3 (n = 314) | p Value |
Age, years | 59 ± 15 | 58 ± 14 | 60 ± 13 | 0.067 |
Men, n (%) | 15 (40.5) | 365 (50.1) | 172 (54.8) | 0.160 |
Current smoker, n (%) | 13 (35.1) | 232 (31.8) | 74 (23.6) | 0.076 |
Hypertension, n (%) | 15 (40.5) | 413 (56.7) | 192 (61.1) | 0.053 |
Diabetes mellitus, n (%) | 10 (27.0) | 223 (30.6) | 105 (33.4) | 0.562 |
Previous CVD disease, n (%) | 9 (24.3) | 210 (28.8) | 98 (31.2) | 0.583 |
HD duration, months | 50 ± 32 | 49 ± 11 | 51 ± 25 | 0.471 |
Body mass index, kg/m2 | 22.3 ± 2.9 | 21.8 ± 3.3 | 22.1 ± 3.1 | 0.513 |
Systolic BP, mmHg | 137 ± 22 | 139 ± 23 | 138 ± 22 | 0.665 |
Diastolic BP, mmHg | 77 ± 11 | 78 ± 11 | 77 ± 10 | 0.832 |
Total cholesterol, mg/dL | 159 ± 39 | 172 ± 35 | 174 ± 41 | 0.542 |
Triglyceride, mg/dL | 114 ± 46 | 166 ± 120 | 156 ± 103 | 0.417 |
LDL-cholesterol, mg/dL | 100 ± 21 | 111 ± 27 | 115 ± 34 | 0.378 |
ALT, U/L | 22 ± 2 | 25 ± 4 | 20 ± 3 | 0.567 |
AST, U/L | 24 ± 5 | 27 ± 5 | 21 ± 4 | 0.612 |
GGT, U/L | 29 ± 7 | 31 ± 4 | 30 ± 5 | 0.705 |
Albumin, g/dL | 3.9 ± 0.3 | 3.9 ± 0.3 | 3.9 ± 0.4 | 0.973 |
Hs-CRP, mg/L | 5.60 (1.33, 7.01) | 4.73 (1.27, 5.15) | 5.44 (1.51, 6.93) | 0.108 |
Hemoglobin, g/dL | 10.4 ± 1.9 | 10.3 ± 1.5 | 10.3 ± 1.5 | 0.912 |
Ferritin, μg/L | 369 (204, 497) | 362 (206, 624) | 351 (197, 607) | 0.614 |
Transferrin saturation, % | 28 ± 14 | 33 ± 16 | 33 ± 15 | 0.177 |
Genotype Group 1 vs. Group 3 (Reference) | Genotype Group 2 vs. Group 3 (Reference) | |
---|---|---|
Adjusted HR (95% CI) | Adjusted HR (95% CI) | |
Cardiovascular events | 0.35 (0.15−0.89)
p = 0.024 | 0.63 (0.50−0.83)
p < 0.001 |
All-cause mortality | 0.40 (0.16−0.99) p = 0.049 | 0.81 (0.68−1.01) p = 0.060 |
Bilirubin Middle tertile vs. lower tertile (reference) | Bilirubin Upper tertile vs. lower tertile (reference) | |
Adjusted HR (95% CI) | Adjusted HR (95% CI) | |
Cardiovascular events | 0.72 (0.50−0.96) p = 0.045 | 0.40 (0.30−0.53) p < 0.001 |
All-cause mortality | 0.90 (0.59−1.01) p = 0.079 | 0.57 (0.41−0.98) p = 0.023 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, Y.; Chen, T.-W.; Huang, T.-P.; Chen, Y.-H.; Tarng, D.-C. Bilirubin Links HO-1 and UGT1A1*28 Gene Polymorphisms to Predict Cardiovascular Outcome in Patients Receiving Maintenance Hemodialysis. Antioxidants 2021, 10, 1403. https://doi.org/10.3390/antiox10091403
Ho Y, Chen T-W, Huang T-P, Chen Y-H, Tarng D-C. Bilirubin Links HO-1 and UGT1A1*28 Gene Polymorphisms to Predict Cardiovascular Outcome in Patients Receiving Maintenance Hemodialysis. Antioxidants. 2021; 10(9):1403. https://doi.org/10.3390/antiox10091403
Chicago/Turabian StyleHo, Yang, Tzen-Wen Chen, Tung-Po Huang, Ying-Hwa Chen, and Der-Cherng Tarng. 2021. "Bilirubin Links HO-1 and UGT1A1*28 Gene Polymorphisms to Predict Cardiovascular Outcome in Patients Receiving Maintenance Hemodialysis" Antioxidants 10, no. 9: 1403. https://doi.org/10.3390/antiox10091403
APA StyleHo, Y., Chen, T.-W., Huang, T.-P., Chen, Y.-H., & Tarng, D.-C. (2021). Bilirubin Links HO-1 and UGT1A1*28 Gene Polymorphisms to Predict Cardiovascular Outcome in Patients Receiving Maintenance Hemodialysis. Antioxidants, 10(9), 1403. https://doi.org/10.3390/antiox10091403