Sustainable Dyeing and Functionalization of Different Fibers Using Orange Peel Extract’s Antioxidants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of Orange Peel Extract
2.2. Utilization of Orange Peel Extract for Dyeing Fabrics of Different Chemical Compositions
2.3. Characterization of Dyed Fabrics
3. Results and Discussion
3.1. Extract Characterization
3.2. Using Orange Peel Extract for Dyeing Multifiber Fabric
3.3. Using Orange Peel Extract for Dyeing WO, PA, and CA Fabrics
3.3.1. Effect of Extract Concentration on Fabric K/S Values
3.3.2. Effect of Dyeing Temperature on Fabric K/S Values
3.3.3. Time Required for Attaining Dye Exhaustion Equilibrium
3.4. Mechanism of Extract Adsorption onto Studied Fabrics
3.5. Functional Properties of WO, PA, and CA Dyed with Orange Peel Extract
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Style That’s Sustainable: A New Fast-Fashion Formula. Available online: https://www.mckinsey.com/business-functions/sustainability/our-insights/style-thats-sustainable-a-new-fast-fashion-formula (accessed on 10 May 2022).
- Textiles in Europe’s Circular Economy. Available online: https://www.eea.europa.eu/publications/textiles-in-europes-circular-economy (accessed on 10 May 2022).
- Dyeing for Fashion: Why the Clothes Industry is Causing 20% of Water Pollution. Available online: https://www.euronews.com/green/2022/02/26/dyeing-for-fashion-why-the-fashion-industry-is-causing-20-of-water-pollution (accessed on 10 May 2022).
- Proposal for a Decision of the European Parliament and of the Council on a General Union Environment Action Programme to 2030. Available online: https://ec.europa.eu/environment/pdf/8EAP/2020/10/8EAP-draft.pdf (accessed on 10 May 2022).
- Ivanovska, A.; Veljović, S.; Reljić, M.; Lađarević, J.; Pavun, L.; Kostić, M. Closing the loop: Dyeing and adsorption potential of mulberry wood waste. J. Nat. Fibers, 2021; in press. [Google Scholar] [CrossRef]
- Scarano, P.; Tartaglia, M.; Zuzolo, D.; Prigioniero, A.; Guarino, C.; Sciarrillo, R. Recovery and valorization of bioactive and functional compounds from the discarded of Opuntia ficus-indica (L.) mill. fruit peel. Agronomy 2022, 12, 388. [Google Scholar] [CrossRef]
- Mansour, R.; Dhouib, S.; Sakli, F. UV protection and dyeing properties of wool fabrics dyed with aqueous extracts of madder roots, chamomiles, pomegranate peels, and apple tree branches barks. J. Nat. Fibers 2022, 19, 610–620. [Google Scholar] [CrossRef]
- Joshi, S.; Kambo, N.; Dubey, S.; Shukla, P.; Pandey, R. Effect of onion (Allium cepa L.) peel extract-based nanoemulsion on anti-microbial and UPF properties of cotton and cotton blended fabrics. J. Nat. Fibers, 2021; in press. [Google Scholar] [CrossRef]
- Khan, A.A.; Adeel, S.; Azeem, M.; Iqbal, N. Exploring natural colorant behavior of husk of durum (Triticum durum Desf.) and bread (Triticum aestivum L.) wheat species for sustainable cotton fabric dyeing. Environ. Sci. Pollut. R. 2021, 28, 51632–51641. [Google Scholar] [CrossRef]
- Hossain, M.Y.; Liang, Y.; Pervez, M.N.; Ye, X.; Dong, X.; Hassan, M.M.; Cai, Y. Effluent-free deep dyeing of cotton fabric with cacao husk extracts using the Taguchi optimization method. Cellulose 2021, 28, 517–532. [Google Scholar] [CrossRef]
- Teli, M.D.; Pandit, P. A novel natural source Sterculia foetida fruit shell waste as colorant and ultraviolet protection for linen. J. Nat. Fibers 2018, 15, 337–343. [Google Scholar] [CrossRef]
- Yilmaz, F. Application of Glycyrrhiza glabra L. root as a natural antibacterial agent in finishing of textile. Ind. Crop. Prod. 2020, 157, 112899. [Google Scholar] [CrossRef]
- Bhavsar, P.; Dalla Fontana, G.; Tonin, C.; Patrucco, A.; Zoccola, M. Superheated water hydrolyses of waste silkworm pupae protein hydrolysate: A novel application for natural dyeing of silk fabric. Dyes Pigments 2020, 183, 108678. [Google Scholar] [CrossRef]
- Verma, M.; Gahlot, N.; Singh, S.S.J.; Rose, N.M. UV protection and antibacterial treatment of cellulosic fibre (cotton) using chitosan and onion skin dye. Carbohydr. Polym. 2021, 257, 117612. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sheikh, J. Cleaner functional dyeing of wool using Kigelia africana natural dye and Terminalia chebula bio-mordant. Sustain. Chem. Pharm. 2020, 17, 100286. [Google Scholar] [CrossRef]
- Savic, I.M.; Savic Gajic, I.M. Optimization study on extraction of antioxidants from plum seeds (Prunus domestica L.). Optim. Eng. 2021, 22, 141–158. [Google Scholar] [CrossRef]
- Savic, I.M.; Savic Gajic, I.M.; Milovanovic, M.G.; Zerajic, S.; Gajic, D.G. Optimization of ultrasound-assisted extraction and encapsulation of antioxidants from orange peels in alginate-chitosan microparticles. Antioxidants 2022, 11, 297. [Google Scholar] [CrossRef]
- Alizadeh, S.R.; Ebrahimzadeh, M.A. O-Glycoside quercetin derivatives: Biological activities, mechanisms of action, and structure–activity relationship for drug design, a review. Phytother. Res. 2022, 36, 778–807. [Google Scholar] [CrossRef] [PubMed]
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Chien, W.-J.; Saputri, D.S.; Lin, H.-Y. Valorization of Taiwan’s Citrus depressa Hayata peels as a source of nobiletin and tangeretin using simple ultrasonic-assisted extraction. Curr. Res. Food Sci. 2022, 5, 278–287. [Google Scholar] [CrossRef]
- Mitra, S.; Lami, M.S.; Uddin, T.M.; Das, R.; Islam, F.; Anjum, J.; Hossain, M.J.; Emran, T.B. Prospective multifunctional roles and pharmacological potential of dietary flavonoid narirutin. Biomed. Pharmacother. 2022, 150, 112932. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Jin, H.; Xiao, J.; Yin, X.; Liu, X.; Li, D.; Huang, Q. The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent. Food Res. Int. 2018, 111, 351–360. [Google Scholar] [CrossRef]
- Shahid-Ul-Islam; Butola, B.S. A synergistic combination of shrimp shell derived chitosan polysaccharide with Citrus sinensis peel extract for the development of colourful and bioactive cellulosic textile. Int. J. Biol. Macromol. 2020, 158, 94–103. [Google Scholar] [CrossRef]
- Prima, E.C.; Hidayat, N.N.; Yuliarto, B.; Suyatman; Dipojono, H.K. A combined spectroscopic and TDDFT study of natural dyes extracted from fruit peels of Citrus reticulata and Musa acuminata for dye-sensitized solar cells. Spectrochim. Acta A 2017, 171, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Ding, Q.; Zhang, H. Eco-friendly dyeing of cotton fabric using natural dye from orange peel. J. Text. Inst. 2022, 113, 360–366. [Google Scholar] [CrossRef]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apicult. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Yang, R.; He, C.; Pan, B.; Wang, Z. Color-matching model of digital rotor spinning viscose mélange yarn based on the Kubelka–Munk theory. Text. Res. J. 2022, 92, 574–584. [Google Scholar] [CrossRef]
- Glaser, T.K.; Plohl, O.; Vesel, A.; Ajdnik, U.; Ulrih, N.P.; Hrnčič, M.K.; Bren, U.; Fras Zemljič, L. Functionalization of polyethylene (PE) and polypropylene (PP) material using chitosan nanoparticles with incorporated resveratrol as potential active packaging. Materials 2019, 12, 2118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Routaboul, J.M.; Kerhoas, L.; Debeaujon, I.; Pourcel, L.; Caboche, M.; Einhorn, J.; Lepiniec, L. Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 2006, 224, 96–107. [Google Scholar] [CrossRef]
- Milbury, P.E.; Chen, C.Y.; Dolnikowski, G.G.; Blumberg, J.B. Determination of flavonoids and phenolics and their distribution in almonds. J. Agric. Food Chem. 2006, 54, 5027–5033. [Google Scholar] [CrossRef] [PubMed]
- Sawalha, S.M.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Quantification of main phenolic compounds in sweet and bitter orange peel using CE–MS/MS. Food Chem. 2009, 116, 567–574. [Google Scholar] [CrossRef]
- Wang, K.W.; Zhang, H. Positive electrospray ionization tandem mass spectrometry of polymethoxylated flavones. Rapid Commun. Mass Spectrom. 2009, 23, 2107–2111. [Google Scholar] [CrossRef]
- Hou, X.; Chen, X.; Cheng, Y.; Xu, H.; Chen, L.; Yang, Y. Dyeing and UV-protection properties of water extracts from orange peel. J. Clean. Prod. 2013, 52, 410–419. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, J.; Wang, L.; Jing, H.; Ma, C.; Kou, X.; Wang, H. Inhibitory mechanisms and interaction of tangeretin, 5-demethyltangeretin, nobiletin, and 5-demethylnobiletin from citrus peels on pancreatic lipase: Kinetics, spectroscopies, and molecular dynamics simulation. Int. J. Biol. Macromol. 2020, 164, 1927–1938. [Google Scholar] [CrossRef]
- Li, Y.-D.; Guan, J.-P.; Tang, R.-C.; Qiao, Y.-F. Application of natural flavonoids to impart antioxidant and antibacterial activities to polyamide fiber for health care applications. Antioxidants 2019, 8, 301. [Google Scholar] [CrossRef] [Green Version]
- Atrahimovich, D.; Avni, D.; Khatib, S. Flavonoids-macromolecules interactions in human diseases with focus on alzheimer, atherosclerosis and cancer. Antioxidants 2021, 10, 423. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, X.; Xu, H.; Sang, L.; Wang, D. Selective adsorption of flavonoids on chitosan resin grafted by quercetin. In Proceedings of the 2012 International Conference on Biomedical Engineering and Biotechnology (iCBEB 2012), Macau, China, 28–30 May 2012. [Google Scholar] [CrossRef]
- Xiao, Z.; He, L.; Hou, X.; Wei, J.; Ma, X.; Gao, Z.; Yuan, Y.; Xiao, J.; Li, P.; Yue, T. Relationships between structure and antioxidant capacity and activity of glycosylated flavonols. Foods 2021, 10, 849. [Google Scholar] [CrossRef]
- Herrero-Martínez, J.M.; Sanmartin, M.; Rosés, M.; Bosch, E.; Ràfols, C. Determination of dissociation constants of flavonoids by capillary electrophoresis. Electrophoresis 2005, 26, 1886–1895. [Google Scholar] [CrossRef] [PubMed]
- Muzolf-Panek, M.; Gliszczyńska-Świgło, A.; Szymusiak, H.; Tyrakowska, B. The influence of stereochemistry on the antioxidant properties of catechin epimers. Eur. Food Res. Technol. 2012, 235, 1001–1009. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.-C.; Tang, H.; Yang, C. Adsorption isotherms and mordant dyeing properties of tea polyphenols on wool, silk, and nylon. Ind. Eng. Chem. Res. 2010, 49, 8894–8901. [Google Scholar] [CrossRef]
- Mašulović, A.D.; Lađarević, J.M.; Ivanovska, A.M.; Stupar, S.L.; Vukčević, M.M.; Kostić, M.M.; Mijin, D.Ž. Structural insight into the fiber dyeing ability: Pyridinium arylazo pyridone dyes. Dyes Pigments 2021, 195, 109741. [Google Scholar] [CrossRef]
- Zhao, C.; Li, P.; Smith, M.D.; Pellechia, P.J.; Shimizu, K.D. Experimental study of the cooperativity of CH−π interactions. Org. Lett. 2014, 16, 3520–3523. [Google Scholar] [CrossRef]
- Ivanovska, A.; Lađarević, J.; Asanović, K.; Barać, N.; Mihajlovski, K.; Kostić, M.; Mangovska, B. Quality of cotton and cotton/elastane single jersey knitted fabrics before and after softening and in situ synthesis of Cu-based nanoparticles. J. Nat. Fibbers, 2022; in press. [Google Scholar] [CrossRef]
- Corciova, A.; Ciobanu, C.; Poiata, A.; Mircea, C.; Nicolescu, A.; Drobota, M.; Varganici, C.-D.; Pinteala, T.; Marangoci, N. Antibacterial and antioxidant properties of hesperidin: β-cyclodextrin complexes obtained by different techniques. J. Incl. Phenom. Macrocycl. Chem. 2015, 81, 71–84. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Chen, Y.; Ma, X.; Xia, M. Chitosan and procyanidin composite films with high antioxidant activity and pH responsivity for cheese packaging. Food Chem. 2021, 338, 128013. [Google Scholar] [CrossRef]
- Naqvi, S.A.Z.; Irfan, A.; Zaheer, S.; Sultan, A.; Shajahan, S.; Rubab, S.L.; Ain, Q.U.; Acevedo, R. Proximate composition of orange peel, pea peel and rice husk wastes and their potential use as antimicrobial agents and antioxidants. Vegetos 2021, 34, 470–476. [Google Scholar] [CrossRef]
Compound | Retention Time, min | Molecular Ion Peak, m/z | MS/MS Fragment Ion Peaks, m/z | Mode | Reference |
---|---|---|---|---|---|
Procyanidin-trimer | 5.96 | 867 | 579, 289 | Positive | [29] |
Catechin | 6.12 | 289 | 245, 205 | Negative | [30] |
Rutin | 8.74 | 609 | 300, 271 | Negative | [30] |
Hesperidin | 8.78 | 609 | 301 | Negative | [31] |
Narirutin | 8.88 | 579 | 271 | Negative | [31] |
Quercetin-3-O-glucoside | 8.54 | 463 | 301 | Negative | [30] |
Quercetin | 10.78 | 301 | 179, 151 | Negative | [30] |
Nobiletin | 12.68 | 403 | 388, 373, 342 | Positive | [32] |
Tangeretin | 13.90 | 373 | 358, 343, 312 | Positive | [32] |
Dyebath pH | Fabric | K/S before Washing | K/S after Washing |
---|---|---|---|
2.5 | WO | 21.22 | 23.00 |
PA | 10.71 | 13.44 | |
CA | 18.13 | 17.73 | |
4.5 | WO | 19.77 | 23.21 |
PA | 9.68 | 11.60 | |
CA | 17.73 | 17.50 | |
6.5 | WO | 18.08 | 19.47 |
PA | 5.86 | 6.81 | |
CA | 17.07 | 16.84 | |
8.5 | WO | 17.43 | 19.15 |
PA | 7.45 | 7.49 | |
CA | 18.02 | 17.44 | |
10.5 | WO | 8.16 | 9.24 |
PA | 7.13 | 6.74 | |
CA | 18.15 | 17.71 |
Fabric | Before Washing | After Washing | ||||
---|---|---|---|---|---|---|
L | a* | b* | L | a* | b* | |
WO 55 °C | 77.04 | 2.15 | 20.88 | 75.88 | 2.30 | 22.08 |
PA 35 °C | 87.39 | −0.97 | 21.95 | 89.17 | −1.15 | 21.38 |
CA 25 °C | 91.54 | −1.91 | 14.80 | 93.43 | −2.08 | 11.24 |
Fabric | Before Washing | After Washing | ||
---|---|---|---|---|
Bacterial reduction, % | ||||
S. aureus | E. coli | S. aureus | E. coli | |
WO 55 °C | / | / | / | / |
PA 35 °C | / | / | / | / |
CA 25 °C | 99.99 | 99.99 | 99.99 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanovska, A.; Gajić, I.S.; Lađarević, J.; Milošević, M.; Savić, I.; Mihajlovski, K.; Kostić, M. Sustainable Dyeing and Functionalization of Different Fibers Using Orange Peel Extract’s Antioxidants. Antioxidants 2022, 11, 2059. https://doi.org/10.3390/antiox11102059
Ivanovska A, Gajić IS, Lađarević J, Milošević M, Savić I, Mihajlovski K, Kostić M. Sustainable Dyeing and Functionalization of Different Fibers Using Orange Peel Extract’s Antioxidants. Antioxidants. 2022; 11(10):2059. https://doi.org/10.3390/antiox11102059
Chicago/Turabian StyleIvanovska, Aleksandra, Ivana Savić Gajić, Jelena Lađarević, Marija Milošević, Ivan Savić, Katarina Mihajlovski, and Mirjana Kostić. 2022. "Sustainable Dyeing and Functionalization of Different Fibers Using Orange Peel Extract’s Antioxidants" Antioxidants 11, no. 10: 2059. https://doi.org/10.3390/antiox11102059
APA StyleIvanovska, A., Gajić, I. S., Lađarević, J., Milošević, M., Savić, I., Mihajlovski, K., & Kostić, M. (2022). Sustainable Dyeing and Functionalization of Different Fibers Using Orange Peel Extract’s Antioxidants. Antioxidants, 11(10), 2059. https://doi.org/10.3390/antiox11102059