Phenolic Fingerprinting and Bioactivity Profiling of Extracts and Isolated Compounds from Gypothamnium pinifolium Phil.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Extraction and Isolation Procedure
2.4. UHPLC–DAD–MS Instrument
2.5. Total Phenolic (TPC) and Total Flavonoid (TFC) Content
2.6. Antioxidant Activity
2.6.1. Radical DPPH Inhibition
2.6.2. ABTS•+ Scavenging Capacity
2.6.3. Ferric-Reducing Antioxidant Power Assay (FRAP)
2.6.4. Reactive Oxygen Species (ROS) Scavenging Capacity
2.7. Animals
2.8. Isolation of Rat Aorta and Vascular Reactivity Assays
2.9. Cholinesterase Inhibition
2.10. Tyrosinase Inhibition Assay
2.11. Docking Studies
2.12. Statistical Analysis
2.13. Antiproliferative Activity
2.14. Continuous Live Cell Imaging
3. Results and Discussion
3.1. Isolation and Structural Characterization of Secondary Metabolites
3.2. UHPLC–MS Analysis of G. pinifolium Extracts
3.2.1. Phenolic Coumarins and Derivatives
3.2.2. Terpenes
3.3. Total Phenolic and Flavonoid Contents and Antioxidant Activity
3.4. Vascular Relaxation Produced by G. pinifolium
3.5. Enzymatic Inhibitory Activity
3.6. Docking Studies
3.6.1. Torpedo Californica Acetylcholinesterase (TcAChE) Docking Results
3.6.2. Butyrylcholinesterase (hBChE) Docking Results
3.6.3. Tyrosinase Docking Results
3.7. Antiproliferative Activity
3.8. Continuous Live-Cell Imaging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siddiqi, K. Noncommunicable diseases. In Public Health: An Action Guide to Improving Health; Walley, J., Wright, J., Eds.; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- WHO. Noncommunicable Diseases. 2019. Available online: https://www.who.int/health-topics/noncommunicable-diseases#tab=tab_1 (accessed on 21 June 2022).
- Camps, J.; García-Heredia, A. Oxidative Stress and Inflammation in Non-Communicable Diseases-Molecular Mechanisms and Perspectives in Therapeutics; Springer: London, UK, 2014; Volume 824, ISBN 9783319073194. [Google Scholar]
- Ciumărnean, L.; Milaciu, M.V.; Runcan, O.; Vesa, S.C.; Răchisan, A.L.; Negrean, V.; Perné, M.-G.; Donca, V.I.; Alexescu, T.-G.; Para, I.; et al. The Effects of Flavonoids in Cardiovascular Diseases. Molecules 2020, 25, 4320. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D.; Rodríguez-Iturbe, B. Mechanisms of disease: Oxidative stress and inflammation in the pathogenesis of hypertension. Nat. Clin. Pract. Nephrol. 2006, 2, 582–593. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Cha, M.; Lee, B.H. Neuroprotective Effect of Antioxidants in the Brain. Int. J. Mol. Sci. 2020, 21, 7152. [Google Scholar] [CrossRef]
- Tong, Y.; Bai, L.; Gong, R.; Chuan, J.; Duan, X.; Zhu, Y. Shikonin Protects PC12 Cells Against β-Amyloid Peptide-Induced Cell Injury Through Antioxidant and Antiapoptotic Activities. Sci. Rep. 2018, 8, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, L.; Baltz, R.H. Natural product discovery: Past, present, and future. J. Ind. Microbiol. Biotechnol. 2016, 43, 155–176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-J.; Gan, R.-Y.; Li, S.; Zhou, Y.; Li, A.-N.; Xu, D.-P.; Li, H.-B. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mocan, A.; Zengin, G.; Simirgiotis, M.; Schafberg, M.; Mollica, A.; Vodnar, D.C.; Crişan, G.; Rohn, S. Functional constituents of wild and cultivated Goji (L. barbarum L.) leaves: Phytochemical characterization, biological profile, and computational studies. J. Enzyme Inhib. Med. Chem. 2017, 32, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Barrientos, R.; Fernández-Galleguillos, C.; Pastene, E.; Simirgiotis, M.; Romero-Parra, J.; Ahmed, S.; Echeverría, J. Metabolomic Analysis, Fast Isolation of Phenolic Compounds, and Evaluation of Biological Activities of the Bark from Weinmannia trichosperma Cav. (Cunoniaceae). Front. Pharmacol. 2020, 11, 780. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Bórquez, J.; Neves-Vieira, M.; Brito, I.; Alfaro-Lira, S.; Winterhalter, P.; Echiburú-Chau, C.; Jerz, G.; Cárdenas, A. Fast isolation of cytotoxic compounds from the native Chilean species Gypothamnium pinifolium Phil. collected in the Atacama Desert, northern Chile. Ind. Crops Prod. 2015, 76, 69–76. [Google Scholar] [CrossRef]
- Simirgiotis, J.M.; Quispe, C.; Bórquez, J.; Areche, C.; Sepúlveda, B. Fast Detection of Phenolic Compounds in Extracts of Easter Pears (Pyrus communis) from the Atacama Desert by Ultrahigh-Performance Liquid Chromatography and Mass Spectrometry (UHPLC–Q/Orbitrap/MS/MS). Molecules 2016, 21, 92. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Aspee, F.; Quispe, C.; Soriano, M.; Del, P.C.; Fuentes Gonzalez, J.; Hüneke, E.; Theoduloz, C.; Schmeda-Hirschmann, G. Antioxidant activity and characterization of constituents in copao fruits (Eulychnia acida Phil., Cactaceae) by HPLC-DAD-MS/MSn. Food Res. Int. 2014, 62, 286–298. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Bórquez, J.; Schmeda-Hirschmann, G. Antioxidant capacity, polyphenolic content and tandem HPLC-DAD-ESI/MS profiling of phenolic compounds from the South American berries Luma apiculata and L. chequén. Food Chem. 2013, 139, 289–299. [Google Scholar] [CrossRef]
- Larrazábal-Fuentes, M.J.; Fernández-Galleguillos, C.; Palma-Ramírez, J.; Romero-Parra, J.; Sepúlveda, K.; Galetovic, A.; González, J.; Paredes, A.; Bórquez, J.; Simirgiotis, M.J.; et al. Chemical Profiling, Antioxidant, Anticholinesterase, and Antiprotozoal Potentials of Artemisia copa Phil. (Asteraceae). Front. Pharmacol. 2020, 11, 594174. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrinia, N.; Proteggente, A.; Pannalaa, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Uysal, S.; Ceylan, R.; Aktumsek, A. Phenolic constituent, antioxidative and tyrosinase inhibitory activity of Ornithogalum narbonense L. from Turkey: A phytochemical study. Ind. Crops Prod. 2015, 70, 1–6. [Google Scholar] [CrossRef]
- Morales-Vela, K.; Pérez-Sánchez, F.C.; Padron, J.M.; Márquez-Fernández, O. Antiproliferative activity of Cucurbitaceae species. Med. Chem. 2019, 80, 127. [Google Scholar] [CrossRef] [Green Version]
- Brito, I.; Bórquez, J.; Simirgiotis, M.; Neves-Vieira, M.; Jerz, G.; Winterhalter, P.; Bolte, M.; Cárdenas, A. Crystal structure of 2-nor-1,2-secolycoserone, C24H32O4. Z. Krist. New Cryst. Struct. 2014, 229, 399–400. [Google Scholar] [CrossRef]
- Bohlmann, F.; Jakupovic, J.; Misra, L.N.; Castro, V. 5-Methylcumarin-Derivate aus Lycoseris Zatifolia. Liebigs Ann. Chem. 1985, 1985, 1367–1376. [Google Scholar] [CrossRef]
- Zdero, C.; Bohlmann, F.; Niemeyer, H.M. Diterpenes and 5-methylcoumarines from Gypothamnium pinifolium Plazia Daphnoides. Phytochemistry 1988, 27, 2953–2959. [Google Scholar] [CrossRef]
- Dai, J.-M.; Li, Y.-H.; Pu, X.-Y.; Yang, C.; Sun, J.-X.; Ruan, R.; Li, X.-N.; Tian, K.; Huang, X.-Z. Chemical constituents from the whole herb of Hemiphragma heterophyllum. J. Asian Nat. Prod. Res. 2019, 21, 551–558. [Google Scholar] [CrossRef]
- Bai, R.R.; Wu, X.M.; Xu, J.Y. Current natural products with antihypertensive activity. Chin. J. Nat. Med. 2015, 13, 721–729. [Google Scholar] [CrossRef]
- Kostova, I. Studying plant-derived coumarins for their pharmacological and therapeutic properties as potential anticancer drugs. Expert Opin. Drug Discov. 2007, 2, 1605–1618. [Google Scholar] [CrossRef]
- Zhu, J.J.; Jiang, J.G. Pharmacological and Nutritional Effects of Natural Coumarins and Their Structure-Activity Relationships. Mol. Nutr. Food Res. 2018, 62, 1701073. [Google Scholar] [CrossRef]
- Phan, T.X.; Ton, H.T.; Gulyás, H.; Pórszász, R.; Tóth, A.; Russo, R.; Kay, M.W.; Sahibzada, N.; Ahern, G.P. TRPV1 expressed throughout the arterial circulation regulates vasoconstriction and blood pressure. J. Physiol. 2020, 598, 5639–5659. [Google Scholar] [CrossRef] [PubMed]
- Tirapelli, C.R.; Ambrosio, S.R.; De Oliveira, A.M.; Tostes, R.C. Hypotensive action of naturally occurring diterpenes: A therapeutic promise for the treatment of hypertension. Fitoterapia 2010, 81, 690–702. [Google Scholar] [CrossRef]
- De Souza, N.J.; Dohadwalla, A.N. Reden Forskolin: A labdane diterpenoid with antihypertensive, positive inotropic, platelet aggregation inhibitory, and adenylate cyclase activating properties. Med. Res. Rev. 1983, 3, 201–219. [Google Scholar] [CrossRef] [PubMed]
- Tandon, J.S.; Balachandran, S.; Vishwakarma, R.A. Epi-deoxycoleonol, a new antihypertensive labdane diterpenoid from Coleus forskohlii. Bioorg. Med. Chem. Lett. 1992, 2, 249–254. [Google Scholar] [CrossRef]
- Aćimović, M.; Jeremić, K.; Salaj, N.; Gavarić, N.; Kiprovski, B.; Sikora, V.; Zeremski, T. Marrubium vulgare L.: A phytochemical and pharmacological overview. Molecules 2020, 25, 2898. [Google Scholar] [CrossRef]
- El Bardai, S.; Morel, N.; Wibo, M.; Fabre, N.; Llabres, G.; Lyoussi, B.; Quetin-Leclercq, J. The vasorelaxant activity of marrubenol and marrubiin from Marrubium vulgare. Planta Med. 2003, 69, 75–77. [Google Scholar] [CrossRef]
- El Bardai, S.; Wibo, M.; Hamaide, M.C.; Lyoussi, B.; Quetin-Leclercq, J.; Morel, N. Characterisation of marrubenol, a diterpene extracted from Marrubium vulgare, as an L-type calcium channel blocker. Br. J. Pharmacol. 2003, 140, 1211–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrientos, R.E.; Ahmed, S.; Cortés, C.; Fernández-Galleguillos, C.; Romero-Parra, J.; Simirgiotis, M.J.; Echeverría, J. Chemical Fingerprinting and Biological Evaluation of the Endemic Chilean Fruit Greigia sphacelata (Ruiz and Pav.) Regel (Bromeliaceae) by UHPLC-PDA-Orbitrap-Mass Spectrometry. Molecules 2020, 25, 3750. [Google Scholar] [CrossRef] [PubMed]
- Areche, C.; Parra, J.R.; Sepulveda, B.; Garc, O.; Simirgiotis, M.J. UHPLC-MS Metabolomic Fingerpringint, Antioxidant, and Enzyme Inhibition Activities of Himantormia lugubris from Antarctica. Metabolites 2022, 12, 560. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, C.; Herrera-García, C.D.; Espinosa-García, V.; Couttolenc, A.; Andrade-Torres, A.; Padrón, J.M.; Trigos, Á. The antiproliferative potential of fungi associated with coral and algae collected from a Veracruz Reef System, Gulf of Mexico. Lat. Am. J. Aquat. Res. 2021, 49, 843–849. [Google Scholar] [CrossRef]
- Couttolenc, A.; Padrón, J.M.; Shnyreva, A.V.; Sergeeva, A.I.; Kurakov, A.V.; Trigos, Á. In vitro antiproliferative and antioxidant activity of three fungal strains from the White sea. Polar Sci. 2021, 29, 100724. [Google Scholar] [CrossRef]
- García-Davis, S.; Reyes, C.P.; Lagunes, I.; Padrón, J.M.; Fraile-Nuez, E.; Fernández, J.J.; Díaz-Marrero, A.R. Bioprospecting Antiproliferative Marine Microbiota from Submarine Volcano Tagoro. Front. Mar. Sci. 2021, 8, 1–18. [Google Scholar] [CrossRef]
- Castillo, Q.A.; Padrón, J.M.; Keramane, M. Koanolides B–D, new sesquiterpene lactones from Koanophyllon gibbosum. Phytochem. Lett. 2022, 47, 63–66. [Google Scholar] [CrossRef]
- Castillo, Q.A.; Padrón, J.M.; Wojtas, L.; Keramane, M.; Germosén, E.A. Koanolide A, antiproliferative germacrane-type sesquiterpene lactone from Koanophyllon gibbosum. Tetrahedron Lett. 2019, 60, 1640–1642. [Google Scholar] [CrossRef]
- Castro, S.J.; Casero, C.N.; Padrón, J.M.; Nicotra, V.E. Selective Antiproliferative Withanolides from Species in the Genera Eriolarynx and Deprea. J. Nat. Prod. 2019, 82, 1338–1344. [Google Scholar] [CrossRef] [PubMed]
- Castillo, Q.A.; Padrón, J.M.; Emiliano, A. Secondary Metabolites from Pterocaulon alopecuroides and their Antiproliferative Activities. Pharmacogn. J. 2019, 11, 493–495. [Google Scholar] [CrossRef]
- Almada-Taylor, G.; Díaz-Rubio, L.; Salazar-Aranda, R.; Waksman de Torres, N.; Uranga-Solis, C.; Delgadillo-Rodríguez, J.; Ramos, M.A.; Padrón, J.M.; Hernández-Martínez, R.; Córdova-Guerrero, I. Biological activities of extracts from aerial parts of Salvia pachyphylla epling ex munz. Plants 2018, 7, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Sivakumar, K.; Shin, W.S.; Xie, F.; Wang, Q. Synthesis and anti-angiogenesis activity of coumarin derivatives. Bioorg. Med. Chem. Lett. 2006, 16, 4596–4599. [Google Scholar] [CrossRef] [PubMed]
- Klenkar, J.; Molnar, M. Natural and synthetic coumarins as potential anticancer agents. J. Chem. Pharm. Res. 2015, 7, 1223–1238. [Google Scholar]
Peak # | Retention Time (min) | UV Max | Tentative Identification | Elemental Composition [M-H] | Measured Mass (m/z) | Theoretical Mass (m/z) | Accuracy (δ ppm) | MSn Ions (δ ppm) |
---|---|---|---|---|---|---|---|---|
1 | 10.68 | - | Diferulic acid | C20H17O8− | 385.08936 | 385.07776 | 4.1 | -- |
2 | 14.39 | - | Vanillin | C8H8O3− | 151.03960 | 151.03495 | 4.2 | -- |
3 | 18.57 | - | Camphoric acid | C10H15O4− | 199.09649 | 199.09676 | 1.4 | -- |
4 | 20.72 | 266 | Jacareubin | C18H13O6− | 325.06863 | 325.06798 | 2.1 | -- |
5 | 20.89 | 266 | 6-Hydroxy-aphyllodenticulide | C19H21O4− | 313.14478 | 313.14344 | 4.3 | 269.15475 |
6 | 21.05 | 266 | 4-Hydroxy-aphyllodenticulide | C19H21O4− | 313.14490 | 313.14344 | 4.7 | 269.15468 |
7 | 21.26 | 271 | 6,12′-Dihydroxy-2-nor-1,2-secolycoserone | C24H31O6− | 415.21307 | 415.21152 | 3.8 | 343.11902, 315.16046 |
8 | 21.44 | 275 | Pinoresinol | C20H21O6− | 357.13477 | 357.13326 | 4.2 | 338.35379 |
9 | 21.62 | 264 | 3,4-Divanillyltetrahydrofuran | C20H23O5− | 343.15549 | 343.15400 | 4.3 | 336.19431 |
10 | 21.88 | 282 | 12′-Hydroxylycoserone | C25H29O6− | 425.19739 | 425.19587 | 3.5 | 325.18454, 125.09155, 225.20520 |
11 | 22.05 | 270 | Gypothamniol | C25H29O5− | 409.20239 | 409.20095 | 3.5 | 315.1643 |
12 | 22.25 | 255 | Ent-labda-8,13-E-diene-15-ol | C19H22O6− | 289.25639 | 289.25635 | 1.2 | -- |
13 | 22.54 | 264 | 12′-Hydroxy-2-nor-1,2-secolycoserone | C24H31O5− | 399.21817 | 399.21660 | 3.9 | 331.53766, 243.17702 |
14 | 22.91 | 273 | 7′,8′,10′-Trihydro-lycoserone | C25H27O4− | 391.19122 | 391.19039 | 2.1 | 299.12909 |
15 | 23.02 | 266 | Aphyllodenticulide * | C19H21O4− | 313.14389 | 313.14344 | 1.5 | 269.15681 |
16 | 23.29 | 263 | 8-epi-gypothamniol | C25H29O5− | 409.20245 | 409.20095 | 3.7 | 325.18430 |
17 | 23.78 | 273 | 10′,11′-Dehydro-lycoserone | C25H27O5− | 407.18686 | 407.18978 | 3.8 | 407.18683 |
18 | 23.98 | 272 | 6,11′-Dihydroxy -lycoserone | C25H29O5− | 441.19209 | 441.19078 | 3.1 | 331.86105, 320.18945 |
19 | 24.24 | 279 | Lycoserone (1′-b-H -lycoserone) | C25H29O5− | 409.20245 | 409.20095 | 3.7 | 392.59332, 307.17134 |
20 | 24.93 | 282 | Cyclolycoserone | C25H31O5− | 411.21790 | 411.21660 | 3.1 | 396.61743, 352.60742, 334.64893, 331.85318 |
21 | 25.09 | 282 | Epi-cyclolycoserone (1′-b-H -cyclolycoserone) | C25H31O5− | 411.21793 | 411.21660 | 3.2 | 396.61743, 352.60742, 334.64893, 331.85318 |
22 | 25.72 | 282 | 10′-Hydroxylycoserone | C25H29O6− | 425.19742 | 425.19587 | 3.6 | 382.48810, 265.14792 |
23 | 26.56 | 282 | 11′-Hydroxylycoserone | C25H29O6− | 425.19736 | 425.19587 | 3.5 | 405.61282, 399.21716, 377.62582, 307.19763 |
24 | 27.07 | 274 | Epi-lycoserone (1′-a-H -lycoserone) | C25H29O5− | 409.20197 | 409.20095 | 2.5 | 334.62164 |
25 | 27.60 | 276 | 9-Reduced-10′-11′ dehydro-lycoserone | C25H33O5− | 413.23389 | 413.23225 | 4.0 | 321.24384, 317.00323 |
26 | 29.09 | 271 | 2-nor-1,2-secolycoserone * | C24H31O4− | 383.22314 | 383.22169 | 3.8 | 241.12337, 141.0156, 160.84164, 107.05024 |
Assay | TPC A | TFC B | DPPH C | ABTS C | FRAP D | ORAC E |
---|---|---|---|---|---|---|
n-hexane extract | 517.4 ± 12.5 | 72.3 ± 3.70 | 269.55 ± 2.06 | 411.95 ± 6.37 | 347.12 ± 1.15 | 287.3 ± 1.54 |
EtOAc extract | 538.4 ± 4.70 | 465.8 ± 27.5 | 140.23 ± 1.85 | 112.30 ± 0.46 | 267.19 ± 1.36 | 256.82 ± 1.67 |
BHT | - | - | 25.09 ± 0.55 | - | - | - |
Trolox | - | - | - | 2.33 ± 0.11 | - | - |
Assay | AChE Inhibition | BChE Inhibition | Tyrosinase Inhibition |
---|---|---|---|
n-hexane extract | 4.58 ± 0.04 | 23.44 ± 0.03 | 9.25 ± 0.15 |
Ethyl acetate extract | 6.43 ± 0.03 | 33.25 ± 0.02 | 12.32 ± 0.21 |
2-nor-1,2-secolycoserone (1) | 1.21 ± 0.03 | 11.23 ± 0.02 | 3.23 ± 0.12 |
ent-labda-8,13-E-diene-15-ol (2) | 5.45 ± 0.02 | 18.34 ± 0.08 | 17.25 ± 0.18 |
Galantamine | 0.55 ± 0.03 | 3.82 ± 0.02 | - |
Kojic acid | - | - | 0.76 ± 0.05 |
Quercetin | - | - | - |
Compound | Acetylcholinesterase Binding Energy | Butyrylcholinesterase Binding Energy | Tyrosinase Binding Energy |
---|---|---|---|
Cyclolycoserone | −11.973 | −9.724 | −7.047 |
8-epi-gypothaminol | −12.683 | −8.442 | −5.079 |
2-nor-1,2-secolycoserone | −13.396 | −9.738 | −5.663 |
Ent-labda-8,13-E-diene-15-ol | −10.097 | −8.206 | −5.495 |
6-Hydroxyaphyllodenticulide | −10.983 | −8.615 | −5.237 |
Galantamine | −12.989 | −7.125 | - |
Kojic acid | - | - | −6.050 |
Compound | A549 | HBL-100 | HeLa | SW1573 | T-47D | WiDr |
---|---|---|---|---|---|---|
1 | 23 ± 7.2 | 31 ± 0.3 | 21 ± 4.5 | 25 ± 5.6 | 30 ± 0.1 | 36 ± 4.1 |
2 | 4.5 ± 0.1 | 10 ± 1.3 | 4.8 ± 0.3 | 5.4 ± 0.6 | 5.1 ± 0.3 | 9.0 ± 3.4 |
Cisplatin | 4.9 ± 0.2 | 1.9 ± 0.2 | 1.8 ± 0.5 | 2.7 ± 0.4 | 17 ± 3.3 | 23 ± 4.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrientos, R.E.; Ibáñez, E.; Puerta, A.; Padrón, J.M.; Paredes, A.; Cifuentes, F.; Romero-Parra, J.; Palacios, J.; Bórquez, J.; Simirgiotis, M.J. Phenolic Fingerprinting and Bioactivity Profiling of Extracts and Isolated Compounds from Gypothamnium pinifolium Phil. Antioxidants 2022, 11, 2313. https://doi.org/10.3390/antiox11122313
Barrientos RE, Ibáñez E, Puerta A, Padrón JM, Paredes A, Cifuentes F, Romero-Parra J, Palacios J, Bórquez J, Simirgiotis MJ. Phenolic Fingerprinting and Bioactivity Profiling of Extracts and Isolated Compounds from Gypothamnium pinifolium Phil. Antioxidants. 2022; 11(12):2313. https://doi.org/10.3390/antiox11122313
Chicago/Turabian StyleBarrientos, Ruth E., Elena Ibáñez, Adrián Puerta, José M. Padrón, Adrián Paredes, Fredi Cifuentes, Javier Romero-Parra, Javier Palacios, Jorge Bórquez, and Mario J. Simirgiotis. 2022. "Phenolic Fingerprinting and Bioactivity Profiling of Extracts and Isolated Compounds from Gypothamnium pinifolium Phil." Antioxidants 11, no. 12: 2313. https://doi.org/10.3390/antiox11122313
APA StyleBarrientos, R. E., Ibáñez, E., Puerta, A., Padrón, J. M., Paredes, A., Cifuentes, F., Romero-Parra, J., Palacios, J., Bórquez, J., & Simirgiotis, M. J. (2022). Phenolic Fingerprinting and Bioactivity Profiling of Extracts and Isolated Compounds from Gypothamnium pinifolium Phil. Antioxidants, 11(12), 2313. https://doi.org/10.3390/antiox11122313