Genetic Diversity and Health Properties of Polyphenols in Potato
Abstract
:1. Introduction
2. Diversity of Polyphenols in Potato
2.1. Phenolic Acids
2.2. Flavonoids
2.3. Anthocyanins
3. Health Benefits of Polyphenols in Potato
3.1. Antioxidant Property
3.2. Anti-Obesity Property
3.3. Antidiabetic Property
3.4. Anti-Inflammatory Properties
3.5. Anticancer Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aleti, G.; Nikolić, B.; Brader, G.; Pandey, R.V.; Antonielli, L.; Pfeiffer, S.; Oswald, A.; Sessitsch, A. Secondary metabolite genes encoded by potato rhizosphere microbiomes in the Andean highlands are diverse and vary with sampling site and vegetation stage. Sci. Rep. 2017, 7, 2330. [Google Scholar] [CrossRef] [Green Version]
- Aregbe, A.Y.; Mu, T.; Sun, H. Effect of different pretreatment on the microbial diversity of fermented potato revealed by high-throughput sequencing. Food Chem. 2019, 290, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Achaerandio, I.; Pujolà, M. Classification of potato cultivars to establish their processing aptitude. J. Sci. Food Agric. 2016, 96, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Lingling, C.; Yange, T.; Shuangqi, T.; Yanbo, W. Preparation of potato whole flour and its effects on quality of flour products: A review. Grain Oil Sci. Technol. 2018, 1, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Ezekiel, R.; Singh, N.; Sharma, S.; Kaur, A. Beneficial phytochemicals in potato—A review. Grain Oil Sci. Technol. 2013, 50, 487–496. [Google Scholar] [CrossRef]
- Burmeister, A.; Bondiek, S.; Apel, L.; Kühne, C.; Hillebrand, S.; Fleischmann, P. Comparison of carotenoid and anthocyanin profiles of raw and boiled Solanum tuberosum and Solanum phureja tubers. J. Food Compos. Anal. 2011, 24, 865–872. [Google Scholar] [CrossRef]
- Tian, J.; Chen, J.; Ye, X.; Chen, S.J.F.C. Health benefits of the potato affected by domestic cooking: A review. Food Chem. 2016, 202, 165–175. [Google Scholar] [CrossRef]
- Ercoli, S.; Cartes, J.; Cornejo, P.; Tereucán, G.; Winterhalter, P.; Contreras, B.; Ruiz, A. Stability of phenolic compounds, antioxidant activity and colour parameters of a coloured extract obtained from coloured-flesh potatoes. LWT 2021, 136, 110370. [Google Scholar] [CrossRef]
- Swer, T.L.; Chauhan, K.; Mukhim, C.; Bashir, K.; Kumar, A. Application of anthocyanins extracted from Sohiong (Prunus nepalensis L.) in food processing. LWT 2019, 114, 108360. [Google Scholar] [CrossRef]
- Brown, C. Breeding for phytonutrient enhancement of potato. Am. J. Potato Res. 2008, 85, 298–307. [Google Scholar] [CrossRef]
- Das, A.; Laha, S.; Mandal, S.; Pal, S.; Siddiqui, M.W. Preharvest biofortification of horticultural crops. In Preharvest Modulation of Postharvest Fruit and Vegetable Quality; Elsevier: Amsterdam, The Netherlands, 2018; pp. 381–434. [Google Scholar]
- Lemos, M.A.; Aliyu, M.M.; Hungerford, G. Influence of cooking on the levels of bioactive compounds in Purple Majesty potato observed via chemical and spectroscopic means. Food Chem. 2015, 173, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Barwal, S.; Raigond, P.; Sharma, R.; Joshi, A. Assessment of phytochemical diversity in Indian potato cultivars. Indian J. Hortic. 2015, 72, 447–450. [Google Scholar]
- Giusti, M.M.; Polit, M.F.; Ayvaz, H.; Tay, D.; Manrique, I. Characterization and quantitation of anthocyanins and other phenolics in native Andean potatoes. J. Agric. Food Chem. 2014, 62, 4408–4416. [Google Scholar] [CrossRef] [PubMed]
- Furrer, A.; Cladis, D.P.; Kurilich, A.; Manoharan, R.; Ferruzzi, M.G. Changes in phenolic content of commercial potato varieties through industrial processing and fresh preparation. Food Chem. 2017, 218, 47–55. [Google Scholar] [CrossRef]
- Šulc, M.; Kotíková, Z.; Paznocht, L.; Pivec, V.; Hamouz, K.; Lachman, J. Changes in anthocyanidin levels during the maturation of color-fleshed potato (Solanum tuberosum L.) tubers. Food Chem. 2017, 237, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, S.; Sharma, K.; Zha, J.; Guleria, S.; Koffas, M.A. Recent advances in the recombinant biosynthesis of polyphenols. Front. Microbiol. 2017, 8, 2259. [Google Scholar] [CrossRef]
- Valiñas, M.A.; Lanteri, M.L.; Ten Have, A.; Andreu, A.B. Chlorogenic acid, anthocyanin and flavan-3-ol biosynthesis in flesh and skin of Andean potato tubers (Solanum tuberosum subsp. andigena). Food Chem. 2017, 229, 837–846. [Google Scholar] [CrossRef]
- Reddivari, L.; Hale, A.L.; Miller, J.C. Determination of phenolic content, composition and their contribution to antioxidant activity in specialty potato selections. Am. J. Potato Res. 2007, 84, 275–282. [Google Scholar] [CrossRef]
- Ru, W.; Pang, Y.; Gan, Y.; Liu, Q.; Bao, J. Phenolic compounds and antioxidant activities of potato cultivars with white, yellow, red and purple flesh. Antioxidants 2019, 8, 419. [Google Scholar] [CrossRef] [Green Version]
- Piñeros-Niño, C.; Narváez-Cuenca, C.E.; Kushalappa, A.C.; Mosquera, T. Hydroxycinnamic acids in cooked potato tubers from Solanum tuberosum group Phureja. Food Sci. Nutr. 2017, 5, 380–389. [Google Scholar] [CrossRef] [Green Version]
- Aversano, R.; Contaldi, F.; Adelfi, M.G.; D’Amelia, V.; Diretto, G.; De Tommasi, N.; Vaccaro, C.; Vassallo, A.; Carputo, D. Comparative metabolite and genome analysis of tuber-bearing potato species. Phytochemistry 2017, 137, 42–51. [Google Scholar] [CrossRef] [PubMed]
- De Masi, L.; Bontempo, P.; Rigano, D.; Stiuso, P.; Carafa, V.; Nebbioso, A.; Piacente, S.; Montoro, P.; Aversano, R.; D’Amelia, V. Comparative phytochemical characterization, genetic profile, and antiproliferative activity of polyphenol-rich extracts from pigmented tubers of different Solanum tuberosum varieties. Molecules 2020, 25, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rytel, E.; Tajner-Czopek, A.; Kita, A.; Aniołowska, M.; Kucharska, A.; Sokół-Łętowska, A.; Hamouz, K. Content of polyphenols in coloured and yellow fleshed potatoes during dices processing. Am. J. Potato Res. 2014, 161, 224–229. [Google Scholar] [CrossRef]
- Dite Hunjek, D.; Pelaić, Z.; Čošić, Z.; Pedisić, S.; Repajić, M.; Levaj, B. Chemical constituents of fresh-cut potato as affected by cultivar, age, storage, and cooking. J. Food Sci. 2021, 86, 1656–1671. [Google Scholar] [CrossRef] [PubMed]
- Akyol, H.; Riciputi, Y.; Capanoglu, E.; Caboni, M.F.; Verardo, V. Phenolic compounds in the potato and its byproducts: An overview. Int. J. Mol. Sci. 2016, 17, 835. [Google Scholar] [CrossRef]
- Külen, O.; Stushnoff, C.; Holm, D.G. Effect of cold storage on total phenolics content, antioxidant activity and vitamin C level of selected potato clones. J. Sci. Food Agric. 2013, 93, 2437–2444. [Google Scholar] [CrossRef]
- Galani, J.H.Y.; Mankad, P.M.; Shah, A.K.; Patel, N.J.; Acharya, R.R.; Talati, J.G. Effect of storage temperature on vitamin C, total phenolics, UPLC phenolic acid profile and antioxidant capacity of eleven potato (Solanum tuberosum) varieties. Hortic. Plant J. 2017, 3, 73–89. [Google Scholar] [CrossRef]
- Tudela, J.A.; Cantos, E.; Espín, J.C.; Tomás-Barberán, F.A.; Gil, M.I. Induction of antioxidant flavonol biosynthesis in fresh-cut potatoes. Effect of domestic cooking. J. Agric. Food Chem. 2002, 50, 5925–5931. [Google Scholar] [CrossRef]
- Faller, A.; Fialho, E. The antioxidant capacity and polyphenol content of organic and conventional retail vegetables after domestic cooking. Food Res. Int. 2009, 42, 210–215. [Google Scholar] [CrossRef]
- Perla, V.; Holm, D.G.; Jayanty, S.S. Effects of cooking methods on polyphenols, pigments and antioxidant activity in potato tubers. LWT-Food Sci. Technol. 2012, 45, 161–171. [Google Scholar] [CrossRef]
- Kita, A.; Bąkowska-Barczak, A.; Hamouz, K.; Kułakowska, K.; Lisińska, G. The effect of frying on anthocyanin stability and antioxidant activity of crisps from red-and purple-fleshed potatoes (Solanum tuberosum L.). J. Food Compos. Anal. 2013, 32, 169–175. [Google Scholar] [CrossRef]
- Silveira, A.C.; Oyarzún, D.; Sepúlveda, A.; Escalona, V. Effect of genotype, raw-material storage time and cut type on native potato suitability for fresh-cut elaboration. Postharvest Biol. Technol. 2017, 128, 1–10. [Google Scholar] [CrossRef]
- Lachman, J.; Hamouz, K.; Musilová, J.; Hejtmánková, K.; Kotíková, Z.; Pazderů, K.; Domkářová, J.; Pivec, V.; Cimr, J. Effect of peeling and three cooking methods on the content of selected phytochemicals in potato tubers with various colour of flesh. Food Chem. 2013, 138, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Burgos, G. Concentración y Bioaccesibilidad de Carotenoides y Compuestos Fenólicos en Papas Cocidas; Universidad de La Laguna: Laguna, Spain, 2014. [Google Scholar]
- Navarre, D.A.; Shakya, R.; Holden, J.; Kumar, S. The effect of different cooking methods on phenolics and vitamin C in developmentally young potato tubers. Am. J. Potato Res. 2010, 87, 350–359. [Google Scholar] [CrossRef]
- Kalita, D.; Jayanty, S.S. Nutrient composition of continuous and kettle cooked potato chips from three potato cultivars. Curr. Res. Nutr. Food Sci. J. 2017, 5, 75–88. [Google Scholar] [CrossRef]
- Mäder, J.; Rawel, H.; Kroh, L.W. Composition of phenolic compounds and glycoalkaloids α-solanine and α-chaconine during commercial potato processing. J. Agric. Food Chem. 2009, 57, 6292–6297. [Google Scholar] [CrossRef]
- Leo, L.; Leone, A.; Longo, C.; Lombardi, D.A.; Raimo, F.; Zacheo, G. Antioxidant compounds and antioxidant activity in “early potatoes”. J. Agric. Food Chem. 2008, 56, 4154–4163. [Google Scholar] [CrossRef]
- Finotti, E.; Bertone, A.; Vivanti, V. Balance between nutrients and anti-nutrients in nine Italian potato cultivars. Food Chem. 2006, 99, 698–701. [Google Scholar] [CrossRef]
- Mattila, P.; Hellström, J. Phenolic acids in potatoes, vegetables, and some of their products. J. Food Compos. Anal. 2007, 20, 152–160. [Google Scholar] [CrossRef]
- Shakya, R.; Navarre, D.A. Rapid screening of ascorbic acid, glycoalkaloids, and phenolics in potato using high-performance liquid chromatography. J. Agric. Food Chem. 2006, 54, 5253–5260. [Google Scholar] [CrossRef]
- Navarre, D.A.; Goyer, A.; Shakya, R. Nutritional value of potatoes: Vitamin, phytonutrient, and mineral content. In Advances in Potato Chemistry and Technology; Elsevier: Amsterdam, The Netherlands, 2009; pp. 395–424. [Google Scholar]
- Han, K.-H.; Matsumoto, A.; Shimada, K.-I.; Sekikawa, M.; Fukushima, M. Effects of anthocyanin-rich purple potato flakes on antioxidant status in F344 rats fed a cholesterol-rich diet. Br. J. Nutr. 2007, 98, 914–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andre, C.M.; Oufir, M.; Guignard, C.; Hoffmann, L.; Hausman, J.-F.; Evers, D.; Larondelle, Y. Antioxidant profiling of native Andean potato tubers (Solanum tuberosum L.) reveals cultivars with high levels of β-carotene, α-tocopherol, chlorogenic acid, and petanin. J. Agric. Food Chem. 2007, 55, 10839–10849. [Google Scholar] [CrossRef] [PubMed]
- Deußer, H.; Guignard, C.; Hoffmann, L.; Evers, D. Polyphenol and glycoalkaloid contents in potato cultivars grown in Luxembourg. Food Chem. 2012, 135, 2814–2824. [Google Scholar] [CrossRef]
- Burgos, G.; Amoros, W.; Muñoa, L.; Sosa, P.; Cayhualla, E.; Sanchez, C.; Díaz, C.; Bonierbale, M. Total phenolic, total anthocyanin and phenolic acid concentrations and antioxidant activity of purple-fleshed potatoes as affected by boiling. J. Food Compos. Anal. 2013, 30, 6–12. [Google Scholar] [CrossRef]
- Ndungutse, V.; Ngoda, P.M.N.; Vasanthakaalam, H. Morphological and phytochemical composition of selected Potato (Solanum tuberosum L.) cultivars grown in Rwanda. Annals. Food Sci. Technol. 2019, 20, 393–401. [Google Scholar]
- Samaniego, I.; Espin, S.; Cuesta, X.; Arias, V.; Rubio, A.; Llerena, W.; Angós, I.; Carrillo, W. Analysis of environmental conditions effect in the phytochemical composition of potato (Solanum tuberosum) cultivars. Plants 2020, 9, 815. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.; Wrolstad, R.; Durst, R.; Yang, C.-P.; Clevidence, B. Breeding studies in potatoes containing high concentrations of anthocyanins. Am. J. Potato Res. 2003, 80, 241–249. [Google Scholar] [CrossRef]
- Hamouz, K.; Lachman, J.; Čepl, J.; Dvořák, P.; Pivec, V.; Prášilová, M. Site conditions and genotype influence polyphenol content in potatoes. Hortic. Sci. 2007, 34, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Campos, H.; Ortiz, O. The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Dutt, S.; Raigond, P.; Singh, B.; Manjul, A.S.; Chakrabarti, S.K. Potato proteins. In Potato; Springer: Berlin/Heidelberg, Germany, 2020; pp. 51–71. [Google Scholar]
- Blessington, T.; Nzaramba, M.N.; Scheuring, D.C.; Hale, A.L.; Reddivari, L.; Miller, J.C. Cooking methods and storage treatments of potato: Effects on carotenoids, antioxidant activity, and phenolics. Am. J. Potato Res. 2010, 87, 479–491. [Google Scholar] [CrossRef]
- Mulinacci, N.; Ieri, F.; Giaccherini, C.; Innocenti, M.; Andrenelli, L.; Canova, G.; Saracchi, M.; Casiraghi, M.C. Effect of cooking on the anthocyanins, phenolic acids, glycoalkaloids, and resistant starch content in two pigmented cultivars of Solanum tuberosum L. J. Agric. Food Chem. 2008, 56, 11830–11837. [Google Scholar] [CrossRef]
- Tierno, R.; Hornero-Méndez, D.; Gallardo-Guerrero, L.; López-Pardo, R.; de Galarreta, J.I.R. Effect of boiling on the total phenolic, anthocyanin and carotenoid concentrations of potato tubers from selected cultivars and introgressed breeding lines from native potato species. J. Food Compos. Anal. 2015, 41, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Kita, A.; Bąkowska-Barczak, A.; Lisińska, G.; Hamouz, K.; Kułakowska, K. Antioxidant activity and quality of red and purple flesh potato chips. LWT-Food Sci. Technol. 2015, 62, 525–531. [Google Scholar] [CrossRef]
- Tian, J.; Chen, J.; Lv, F.; Chen, S.; Chen, J.; Liu, D.; Ye, X. Domestic cooking methods affect the phytochemical composition and antioxidant activity of purple-fleshed potatoes. Food Chem. 2016, 197, 1264–1270. [Google Scholar] [CrossRef]
- Brown, C.; Durst, R.; Wrolstad, R.; De Jong, W. Variability of phytonutrient content of potato in relation to growing location and cooking method. Potato Res. 2008, 51, 259. [Google Scholar] [CrossRef]
- Lachman, J.; Hamouz, K.; Orsák, M.; Pivec, V.; Hejtmánková, K.; Pazderů, K.; Dvořák, P.; Čepl, J. Impact of selected factors–Cultivar, storage, cooking and baking on the content of anthocyanins in coloured-flesh potatoes. Food Chem. 2012, 133, 1107–1116. [Google Scholar] [CrossRef]
- Jayanty, S.S.; Diganta, K.; Raven, B. Effects of cooking methods on nutritional content in potato tubers. Am. J. Potato Res. 2019, 96, 183–194. [Google Scholar] [CrossRef]
- Visvanathan, R.; Jayathilake, C.; Chaminda Jayawardana, B.; Liyanage, R. Health--beneficial properties of potato and compounds of interest. J. Sci. Food Agric. 2016, 96, 4850–4860. [Google Scholar] [CrossRef]
- Kulasari, S.; Singh, M.F.; Bhandari, S. Polyphenols: Phytochemistry and health benefits. J. Pharmacogn. Phytochem. 2019, 8, 3344–3358. [Google Scholar]
- Kalita, D.; Jayanty, S.S. Comparison of polyphenol content and antioxidant capacity of colored potato tubers, pomegranate and blueberries. J. Food Processing Technol. 2014, 5, 8. [Google Scholar]
- Müller, L.; Caris-Veyrat, C.; Lowe, G.; Böhm, V. Lycopene and its antioxidant role in the prevention of cardiovascular diseases—a critical review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1868–1879. [Google Scholar] [CrossRef] [PubMed]
- Ramdath, D.D.; Padhi, E.; Hawke, A.; Sivaramalingam, T.; Tsao, R. The glycemic index of pigmented potatoes is related to their polyphenol content. Food Funct. 2014, 5, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Al-Weshahy, A.; Rao, A.V. Isolation and characterization of functional components from peel samples of six potatoes varieties growing in Ontario. Food Res. Int. 2009, 42, 1062–1066. [Google Scholar] [CrossRef]
- Amado, I.R.; Franco, D.; Sánchez, M.; Zapata, C.; Vázquez, J.A. Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem. 2014, 165, 290–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arun, K.; Chandran, J.; Dhanya, R.; Krishna, P.; Jayamurthy, P.; Nisha, P. A comparative evaluation of antioxidant and antidiabetic potential of peel from young and matured potato. Food Biosci. 2015, 9, 36–46. [Google Scholar] [CrossRef]
- Sepelev, I.; Galoburda, R. Chemical composition of raw potato peel, g 100 g. Res. Rural Dev. 2015, 131. Available online: https://llufb.llu.lv/conference/Research-for-Rural-Development/2015/LatviaResearchRuralDevel21st_volume1-130-136.pdf (accessed on 17 February 2022).
- Ombra, M.N.; Fratianni, F.; Granese, T.; Cardinale, F.; Cozzolino, A.; Nazzaro, F. In vitro antioxidant, antimicrobial and anti-proliferative activities of purple potato extracts (Solanum tuberosum cv Vitelotte noire) following simulated gastro-intestinal digestion. Nat. Prod. Res. 2015, 29, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.F.; Oraby, H.F. Fatty acids and bioactive lipids of potato cultivars: An overview. J. Oleo Sci. 2016, 65, 459–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raigond, P.; Kaundal, B.; Sood, A.; Devi, S.; Dutt, S.; Singh, B. Quantification of biguanide and related compounds (anti-diabetic) in vegetables and fruits. J. Food Compos. Anal. 2018, 74, 82–88. [Google Scholar] [CrossRef]
- Zeng, H.; Chen, J.; Zhai, J.; Wang, H.; Xia, W.; Xiong, Y.L. Reduction of the fat content of battered and breaded fish balls during deep-fat frying using fermented bamboo shoot dietary fiber. LWT 2016, 73, 425–431. [Google Scholar] [CrossRef]
- Burgos, G.; Zum Felde, T.; Andre, C.; Kubow, S. The potato and its contribution to the human diet and health. In The Potato Crop; Springer: Cham, Switzerland, 2020; pp. 37–74. [Google Scholar]
- Cho, A.-S.; Jeon, S.-M.; Kim, M.-J.; Yeo, J.; Seo, K.-I.; Choi, M.-S.; Lee, M.-K. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem. Toxicol. 2010, 48, 937–943. [Google Scholar] [CrossRef]
- Ku, S.K.; Sung, S.H.; Choung, J.J.; Choi, J.S.; Shin, Y.K.; Kim, J.W. Anti-obesity and anti-diabetic effects of a standardized potato extract in ob/ob mice. Exp. Ther. Med. 2016, 12, 354–364. [Google Scholar] [CrossRef] [Green Version]
- Reddivari, L.; Wang, T.; Wu, B.; Li, S. Potato: An anti-inflammatory food. Am. J. Potato Res. 2019, 96, 164–169. [Google Scholar] [CrossRef]
- Raigond, P.; Jayanty, S.S.; Dutt, S. New health-promoting compounds in potatoes. In Potato; Springer: Berlin/Heidelberg, Germany, 2020; pp. 213–228. [Google Scholar]
- Wang, Z.; Lam, K.L.; Hu, J.; Ge, S.; Zhou, A.; Zheng, B.; Zeng, S.; Lin, S. Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice. Food Sci. Nutr. 2019, 7, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Borch, D.; Juul-Hindsgaul, N.; Veller, M.; Astrup, A.; Jaskolowski, J.; Raben, A. Potatoes and risk of obesity, type 2 diabetes, and cardiovascular disease in apparently healthy adults: A systematic review of clinical intervention and observational studies. Am. J. Clin. Nutr. 2016, 104, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.-S.; Rhee, Y.-H.; Lee, H.-J.; Lee, E.-O.; Lee, M.-H.; Ahn, K.-S.; Lim, H.-T.; Kim, S.-H. Uncoupled protein 3 and p38 signal pathways are involved in anti-obesity activity of Solanum tuberosum L. cv. Bora Valley. J. Ethnopharmacol. 2008, 118, 396–404. [Google Scholar] [CrossRef]
- Kubow, S.; Hobson, L.; Iskandar, M.M.; Sabally, K.; Donnelly, D.J.; Agellon, L.B. Extract of I rish potatoes (Solanum tuberosum L.) decreases body weight gain and adiposity and improves glucose control in the mouse model of diet-induced obesity. Mol. Nutr. Food Res. 2014, 58, 2235–2238. [Google Scholar] [CrossRef] [PubMed]
- Ek, K.L.; Wang, S.; Copeland, L.; Brand-Miller, J.C. Discovery of a low-glycaemic index potato and relationship with starch digestion in vitro. Br. J. Nutr. 2014, 111, 699–705. [Google Scholar] [CrossRef] [Green Version]
- Andersen, S.S.; Heller, J.M.; Hansen, T.T.; Raben, A. Comparison of low glycaemic index and high glycaemic index potatoes in relation to satiety: A single-blinded, randomised crossover study in humans. Nutrients 2018, 10, 1726. [Google Scholar] [CrossRef] [Green Version]
- Farhadnejad, H.; Teymoori, F.; Asghari, G.; Mirmiran, P.; Azizi, F. The association of potato intake with risk for incident type 2 diabetes in adults. Can. J. Diabetes 2018, 42, 613–618. [Google Scholar] [CrossRef]
- Moser, S.; Aragon, I.; Furrer, A.; Van Klinken, J.-W.; Kaczmarczyk, M.; Lee, B.-H.; George, J.; Hamaker, B.R.; Mattes, R.; Ferruzzi, M.G. Potato phenolics impact starch digestion and glucose transport in model systems but translation to phenolic rich potato chips results in only modest modification of glycemic response in humans. Nutr. Res. 2018, 52, 57–70. [Google Scholar] [CrossRef]
- Zhang, Y.; Dingyun, Y.; Nanjia, L.; Donghui, D.; Xiaoqi, F.; Astell-Burt, T.; Pan, Z.; Liyuan, H.; Shiwei, D.; Zuquan, Z. Potatoes consumption and risk of type 2 diabetes: A meta-analysis. Iran. J. Public Health 2018, 47, 1627. [Google Scholar] [PubMed]
- Jokioja, J.; Linderborg, K.M.; Kortesniemi, M.; Nuora, A.; Heinonen, J.; Sainio, T.; Viitanen, M.; Kallio, H.; Yang, B. Anthocyanin-rich extract from purple potatoes decreases postprandial glycemic response and affects inflammation markers in healthy men. Food Chem. 2020, 310, 125797. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.-K.; Park, S.-J.; Eom, S.H.; Kang, M.H. Anti-diabetic and hypolipidemic effects of purple-fleshed potato in streptozotocin-induced diabetic rats. Food Sci. Biotechnol. 2013, 22, 1–6. [Google Scholar] [CrossRef]
- Ahmed, A.U. An overview of inflammation: Mechanism and consequences. Front. Biol. 2011, 6, 274–281. [Google Scholar] [CrossRef]
- Stankov, S.V. Definition of inflammation, causes of inflammation and possible anti-inflammatory strategies. Open Inflamm. J. 2012, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bibi, S.; Navarre, D.A.; Sun, X.; Du, M.; Rasco, B.; Zhu, M.-J. Beneficial effect of potato consumption on gut microbiota and intestinal epithelial health. Am. J. Potato Res. 2019, 96, 170–176. [Google Scholar] [CrossRef]
- Albishi, T.; John, J.A.; Al-Khalifa, A.S.; Shahidi, F. Antioxidant, anti-inflammatory and DNA scission inhibitory activities of phenolic compounds in selected onion and potato varieties. J. Funct. Foods 2013, 5, 930–939. [Google Scholar] [CrossRef]
- Camire, M.E.; Kubow, S.; Donnelly, D.J. Potatoes and human health. Crit. Rev. Food Sci. Nutr. 2009, 49, 823–840. [Google Scholar] [CrossRef]
- Basilicata, M.G.; Pepe, G.; Rapa, S.F.; Merciai, F.; Ostacolo, C.; Manfra, M.; Di Sarno, V.; De Vita, D.; Marzocco, S.; Campiglia, P. Anti-inflammatory and antioxidant properties of dehydrated potato-derived bioactive compounds in intestinal cells. Int. J. Mol. Sci. 2019, 20, 6087. [Google Scholar] [CrossRef] [Green Version]
- Cepeda, A.M.; Del Giacco, S.R.; Villalba, S.; Tapias, E.; Jaller, R.; Segura, A.M.; Reyes, G.; Potts, J.; Garcia-Larsen, V. A traditional diet is associated with a reduced risk of eczema and wheeze in Colombian children. Nutrients 2015, 7, 5098–5110. [Google Scholar] [CrossRef] [Green Version]
- Kaspar, K.L.; Park, J.S.; Brown, C.R.; Mathison, B.D.; Navarre, D.A.; Chew, B.P. Pigmented Potato Consumption Alters Oxidative Stress and Inflammatory Damage in Men. J. Nutr. 2011, 141, 108–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, E.; Koo, S. Anti-nociceptive and anti-inflammatory effects of the ethanolic extract of potato (Solanum tuberlosum). Food Agric. Immunol. 2005, 16, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Hassan, Y.I.; Renaud, J.; Liu, R.; Yang, C.; Sun, Y.; Tsao, R. Bioaccessibility, bioavailability, and anti-inflammatory effects of anthocyanins from purple root vegetables using mono-and co-culture cell models. Mol. Nutr. Food Res. 2017, 61, 1600928. [Google Scholar] [CrossRef]
- Sun, X.; Du, M.; Navarre, D.A.; Zhu, M.J. Purple Potato Extract Promotes Intestinal Epithelial Differentiation and Barrier Function by Activating AMP-Activated Protein Kinase. Mol. Nutr. Food Res. 2018, 62, 1700536. [Google Scholar] [CrossRef] [PubMed]
- Åsli, L.A.; Braaten, T.; Olsen, A.; Tjønneland, A.; Overvad, K.; Nilsson, L.M.; Renström, F.; Lund, E.; Skeie, G. Potato consumption and risk of pancreatic cancer in the HELGA cohort. Br. J. Nutr. 2018, 119, 1408–1415. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, R.; Tsao, R. Anthocyanin-rich phenolic extracts of purple root vegetables inhibit pro-inflammatory cytokines induced by H2O2 and enhance antioxidant enzyme activities in Caco-2 cells. J. Funct. Foods 2016, 22, 363–375. [Google Scholar] [CrossRef]
- Kubow, S.; Iskandar, M.M.; Melgar-Bermudez, E.; Sleno, L.; Sabally, K.; Azadi, B.; How, E.; Prakash, S.; Burgos, G.; Felde, T.Z. Effects of simulated human gastrointestinal digestion of two purple-fleshed potato cultivars on anthocyanin composition and cytotoxicity in colonic cancer and non-tumorigenic cells. Nutrients 2017, 9, 953. [Google Scholar] [CrossRef]
- Madiwale, G.P.; Reddivari, L.; Holm, D.G.; Vanamala, J. Storage elevates phenolic content and antioxidant activity but suppresses antiproliferative and pro-apoptotic properties of colored-flesh potatoes against human colon cancer cell lines. J. Agric. Food Chem. 2011, 59, 8155–8166. [Google Scholar] [CrossRef]
- Hayashi, K.; Hibasami, H.; Murakami, T.; Terahara, N.; Mori, M.; Tsukui, A. Induction of apoptosis in cultured human stomach cancer cells by potato anthocyanins and its inhibitory effects on growth of stomach cancer in mice. Food Sci. Technol. Res. 2006, 12, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Charepalli, V.; Reddivari, L.; Radhakrishnan, S.; Vadde, R.; Agarwal, R.; Vanamala, J.K. Anthocyanin-containing purple-fleshed potatoes suppress colon tumorigenesis via elimination of colon cancer stem cells. J. Nutr. Biochem. 2015, 26, 1641–1649. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Q.; He, M.; Mir, P.; Su, J.; Yang, Q. Inhibitory effect of antioxidant extracts from various potatoes on the proliferation of human colon and liver cancer cells. Nutr. Cancer 2011, 63, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Reddivari, L.; Vanamala, J.; Safe, S.H.; Miller, J.C., Jr. The bioactive compounds alpha-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells. Nutr. Cancer 2010, 62, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Reddivari, L.; Vanamala, J.; Chintharlapalli, S.; Safe, S.H.; Miller, J.C., Jr. Anthocyanin fraction from potato extracts is cytotoxic to prostate cancer cells through activation of caspase-dependent and caspase-independent pathways. Carcinogenesis 2007, 28, 2227–2235. [Google Scholar] [CrossRef] [Green Version]
- Kent, K.; Charlton, K.E.; Netzel, M.; Fanning, K. Food-based anthocyanin intake and cognitive outcomes in human intervention trials: A systematic review. J. Hum. Nutr. Diet. 2017, 30, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Lippert, E.; Ruemmele, P.; Obermeier, F.; Goelder, S.; Kunst, C.; Rogler, G.; Dunger, N.; Messmann, H.; Hartmann, A.; Endlicher, E. Anthocyanins prevent colorectal cancer development in a mouse model. Digestion 2017, 95, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Briguglio, G.; Costa, C.; Pollicino, M.; Giambò, F.; Catania, S.; Fenga, C. Polyphenols in cancer prevention: New insights. Int. J. Funct. Nutr. 2020, 1, 9. [Google Scholar] [CrossRef]
- Oertel, A.; Matros, A.; Hartmann, A.; Arapitsas, P.; Dehmer, K.J.; Martens, S.; Mock, H.-P. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. Planta 2017, 246, 281–297. [Google Scholar] [CrossRef]
- Gu, T.; Yuan, W.; Li, C.; Chen, Z.; Wen, Y.; Zheng, Q.; Yang, Q.; Xiong, X.; Yuan, A. α-Solanine Inhibits Proliferation, Invasion, and Migration, and Induces Apoptosis in Human Choriocarcinoma JEG-3 Cells In Vitro and In Vivo. Toxins 2021, 13, 210. [Google Scholar] [CrossRef]
- Vanamala, J.K.P. Potatoes for Targeting Colon Cancer Stem Cells. Am. J. Potato Res. 2019, 96, 177–182. [Google Scholar] [CrossRef]
- Nzaramba, M.N.; Reddivari, L.; Bamberg, J.B.; Miller Jr, J.C. Antiproliferative activity and cytotoxicity of Solanum jamesii tuber extracts on human colon and prostate cancer cells in vitro. J. Agric. Food Chem. 2009, 57, 8308–8315. [Google Scholar] [CrossRef]
- Wahyudi, I.A.; Ramadhan, F.R.; Wijaya, R.I.K.; Ardhani, R.; Utami, T.W. Analgesic, anti-inflammatory and anti-biofilm-forming activity of Potato (Solanum tuberosum L.) peel extract. Indones. J. Cancer Chemoprevention 2020, 11, 30–35. [Google Scholar] [CrossRef]
- Lal, M.K.; Tiwari, R.K.; Kumar, R.; Naga, K.C.; Kumar, A.; Singh, B.; Raigond, P.; Dutt, S.; Chourasia, K.N.; Kumar, D. Effect of potato apical leaf curl disease on glycemic index and resistant starch of potato (Solanum tuberosum L.) tubers. Food Chem. 2021, 359, 129939. [Google Scholar] [CrossRef]
- Tsang, C.; Moosawi, S.A.; Smail, N.F.; Dujaili, E.A. Anthocyanin-rich potato improves arterial compliance in healthy human adults. In Proceedings of the 2nd International Conference on Obesity, Barcelona, Spain, 6–8 November 2017. [Google Scholar]
- Chen, K.; Wei, X.; Zhang, J.; Pariyani, R.; Jokioja, J.; Kortesniemi, M.; Linderborg, K.M.; Heinonen, J.; Sainio, T.; Zhang, Y.; et al. Effects of anthocyanin extracts from bilberry (Vaccinium myrtillus L.) and purple potato (Solanum tuberosum L. Var.‘Synkea Sakari’) on the plasma metabolomic profile of zucker diabetic fatty rats. J. Agric. Food Chem. 2020, 68, 9436–9450. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.; Culley, D.; Yang, C.-P.; Durst, R.; Wrolstad, R. Variation of anthocyanin and carotenoid contents and associated antioxidant values in potato breeding lines. J. Am. Soc. Hortic. Sci. 2005, 130, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Lv, C.; Yang, L.; Wang, Y.; Zhang, Q.; Yu, S.; Kong, H.; Wang, M.; Xie, J.; Zhang, C. Solanine induces mitochondria-mediated apoptosis in human pancreatic cancer cells. BioMed Res. Int. 2014, 2014, 805926. [Google Scholar] [CrossRef] [PubMed]
Polyphenols | Polyphenols | Range (mg/100 g) | References |
---|---|---|---|
Phenolic acids | Chlorogenic acid | 3.49–73.4 | [18] |
0.77–7.98 | [21] | ||
41.86–141.58 | [37] | ||
17.3–148.1 | [38] | ||
2.14–2.92 | [36] | ||
2.06–79.91 | [20] | ||
314.9–2401 | [34] | ||
43–953 | [15] | ||
47–283 | [39] | ||
23.2–61.4 | [24] | ||
1.4–12.1 | [40] | ||
0.9–27.0 | [41] | ||
Cryptochlorogenic acid | 8.0–59.0 | [36] | |
0.09–1.50 | [21] | ||
3.1–163.3 | [38] | ||
Caffeic acid | 0.46–3.21 | [18] | |
0.1–0.2 | [42] | ||
1.1–172.4 | [38] | ||
5.0–50.0 | [39] | ||
20.3 | [43] | ||
Ferulic acid | 0.6–9.0 | [39] | |
0–3.9 | [38] | ||
Coumaric acid | 0–1.6 | [38] | |
0–9.2 | [39] | ||
Neochlorogenic acid | 3.0–11.0 | [36] | |
49.2–91.2 | [38] | ||
2.9–9.9 | [42] | ||
2.1–7.13 | [24] | ||
Vanillic acid | 0–22.4 | [38] | |
Protocatechuic acid | 0–7.6 | [38] | |
p-hydroxybenzoic acid | 0–7.8 | [38] | |
Gallic acid | 0–1.0 | [38] | |
414 | [44] | ||
Flavonoids | Quercetin | 0.025 | [42] |
0–4.78 | [45] | ||
Kaempferol | 0.5–1.7 | [36] | |
0–5.68 | [45] | ||
Catechin | 0–204 | [26] | |
0–1.4 | [46] | ||
0–1.5 | [38] | ||
43.0–204.0 | [39] | ||
29–211 | [44] | ||
Anthocyanins | Anthocyanins | 21.0–109.0 | [32] |
10–39 | [16] | ||
8.2–152.7 | [14] | ||
0–87.0 | [44] | ||
16.33 | [45] | ||
418.0 | [47] | ||
0.24–1.46 | [48] | ||
0.274–17.253 | [49] | ||
5.5–17.1 | [50] | ||
5.52–34.96 | [10] | ||
18.6–22.9 | [15] |
Cooking Method | Phenolic Acids | Flavonoids | Anthocyanins | References |
---|---|---|---|---|
Frying | 0–59.25% ↓ | - | 38–70% ↓ | [32] |
Boiling | 66.02% ↓ | - | 100.00% ↑ | [12] |
Baking | 18.18% ↓ | - | 103.19% ↑ | |
Microwaving | 35.40% ↓ | - | 209.58% ↑ | |
Steaming | 62.20% ↓ | - | 196.80% ↑ | |
Boiling | 18.47–69.66% ↑ | - | 0–23.15% ↓ | [47] |
Microwaving | - | - | 129.79–847.83% ↑ | [34] |
Baking | - | - | 85.62–557.14% ↑ | |
Boiling | ND | - | 16.25–20.04% ↓ | [55] |
Microwaving | ND | - | 18.01–29.73% ↓ | |
Boiling | 6.37–52.60% ↓ | - | - | [56] |
Boiling | 3.32% ↓ | - | - | [54] |
Baking | 37.27% ↑ | - | 36.36% ↑ | |
Microwaving | 49.08% ↑ | - | 47.48% ↑ | |
Frying | 46.86% ↑ | - | 46.12% ↑ | |
Boiling | 27.16–71.26% ↑ | 147% ↑ | - | [36] |
Baking | 49.04–119.76% ↑ | 178.3% ↑ | - | |
Microwaving | 2.35–52.00% ↑ | - | - | |
Steaming | 15.63–93.41% ↑ | 129.7% ↑ | - | |
Boiling | 81.4% ↑ | - | - | [30] |
Microwaving | 80.81% ↑ | - | - | |
Steaming | 22.8% ↑ | - | - | |
Boiling | - | - | 14.66% ↓ | [7] |
Frying | - | - | 83.02% ↓ | |
Baking | - | - | 25.67% ↓ | |
Microwaving | - | - | 14.01% ↓ | |
Steaming | - | - | 7.45% ↓ | |
boiling | 44% ↓ | 27% ↓ | - | [31] |
Microwaving | 52% ↓ | 47% ↓ | - | |
Baking | 53% ↓ | 52% ↓ | - | |
Boiling | - | 56.3% ↓ | - | [29] |
Steaming | - | 56.3% ↓ | - | |
Microwaving | - | 43.6% ↓ | - | |
Frying | - | 46.47% ↓ | - |
Active Ingredient | Biological Effects | Health Properties | References |
---|---|---|---|
Phenolic compounds | Up-regulate expression of cellular antioxidant enzymes; prevent oxidative damage to DNA and other biomolecules; inhibit the growth of few pathogenic fungi | Antioxidant | [63,114,115] |
Target stem cells of cancer; prevent the proliferation of cancer cells; cytotoxic to prostate cancer; inhibits prostate cancer, the proliferation of colon cancer; inhibits human colon and liver cancer cells | Anticancer | [108,109,111,116,117,118] | |
Reduce inflammation and edema volume increment | Anti-inflammatory | [119] | |
Reduce postprandial glycemic response; inhibit hepatic glucose-6-phosphatase; reduce gut glucose absorption; reduce oxidative stress and overall food intake | Antidiabetic | [80,84,90,120] | |
Suppress adipogenesis; inhibit lipid metabolism through down-regulation of expression of p38 mitogen-activated protein kinase (MAPK) and uncoupling protein 3 (UCP-3) | Anti-obesity | [83,84] | |
Anthocyanins | Reduce systolic and diastolic blood pressure; cytotoxic to prostate cancer; suppress (LNCaP) lymph node carcinoma of prostate and (PC3) prostate cancer cells | Antihypertensive | [80,110,111,121] |
Improve insulin sensitivity; reduce the values of GI by inhibiting α-glycosidase | Antidiabetic | [67,122] | |
Up-regulate the cellular antioxidant enzyme expression; inhibit lipid oxidation; protect DNA from oxidation damage | Antioxidant | [44,99,123] | |
Reduce 8-hydroxydeoxyguanosine (8-OHdG); interleukin6 (IL-6) and plasma concentration of CRP | Anti-inflammatory | [99] | |
Cytotoxic effect against various cancer cells; suppress the elevation and proliferation of colon tumor cells via suppression of Wnt/β-catenin signaling; inhibit metastasis-related proteins MMP- 2 and MMP-9 expression and caspase 3-dependent mitochondrial apoptosis; reduce interleukins IL6, IL-8, 1β, and (TNF)-α (tumor necrosis factor) induced by H2O2; suppress the proliferation and apoptosis of colon cancer cells, antiproliferative activity against breast cancer cells (MDA-MB-231 and MCF-7) and colon cancer cells (SW48 and CaCo-2); induce nuclear uptake of proapoptotic Endo G and AIF protein and induce mitochondrial release | Anticancer | [72,76,104,106,107,108,111,124] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasheed, H.; Ahmad, D.; Bao, J. Genetic Diversity and Health Properties of Polyphenols in Potato. Antioxidants 2022, 11, 603. https://doi.org/10.3390/antiox11040603
Rasheed H, Ahmad D, Bao J. Genetic Diversity and Health Properties of Polyphenols in Potato. Antioxidants. 2022; 11(4):603. https://doi.org/10.3390/antiox11040603
Chicago/Turabian StyleRasheed, Haroon, Daraz Ahmad, and Jinsong Bao. 2022. "Genetic Diversity and Health Properties of Polyphenols in Potato" Antioxidants 11, no. 4: 603. https://doi.org/10.3390/antiox11040603
APA StyleRasheed, H., Ahmad, D., & Bao, J. (2022). Genetic Diversity and Health Properties of Polyphenols in Potato. Antioxidants, 11(4), 603. https://doi.org/10.3390/antiox11040603