Anthocyanins and Carotenoids Characterization in Flowers and Leaves of Cyclamen Genotypes Linked with Bioactivities Using Multivariate Analysis Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material and Sample Preparation
2.3. Color Measurements
2.4. Chlorophyll Content
Chl b (mg/g) = (18.61 × A645–3.96 × A663) × V/g
2.5. HPLC-PDA Analysis of Carotenoids
2.6. HPLC-PDA Analysis of Anthocyanins
HPLC-DAD-ESI+ for Anthocyanins Identification
2.7. Determination of Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
2.8. Antioxidant Activity
2.8.1. Free-Radical-Scavenging Assay (DPPH)
2.8.2. ABTS Radical Scavenging Activity
2.8.3. Determination of Ferric Reducing/Antioxidant Power (FRAP)
2.9. Antimicrobial Activity—In Vitro Qualitative Study
2.10. Cytotoxicity Assay
2.11. Multivariate Statistics
3. Results and Discussion
3.1. Colorimetric Evaluation and Classification
3.2. Chlorophyll Content
3.3. Qualitative and Quantitative Analysis of Individual Carotenoids in Cyclamen Leaves
3.4. Qualitative and Quantitative Analysis of Individual Anthocyanins in Cyclamen Flowers
3.5. Total Phenolic Content (TPC), Total Flavonoid Content (TFC) and Antioxidant Assays
3.6. Antimicrobial Activity—In Vitro Qualitative Study
3.7. Cytotoxicity Assay
3.8. Multivariate Statistics
3.8.1. PCA and Correlations of the Phenolic Content with Bioactive Compounds and Antioxidant Activities
3.8.2. HCA
3.8.3. Dendrograms of HCA and Heatmap
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. World Health Organization-Traditional Medicine; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Grey-Wilson. Cyclamen (A Guide for Gardeners, Horticulturists and Botanists); Grey-Wilson: London, UK, 2015. [Google Scholar]
- Kathe, W.; Honnef, S.; Heym, A. Medicinal and Aromatic Plants in Albania, Bosnia-Herzegovina, Bulgaria, Croatia and Romania; Bundesamt für Naturschutz BfN Skripten: Bonn, Germany, 2003. [Google Scholar]
- Schweizer, F.; Hasinger, O. Cyclamen purpurascens. 2014. Available online: https://www.iucnredlist.org/species/196750/2475951 (accessed on 13 May 2022).
- Bou Dagher Kharrat, M.; El Zein, H. Cyclamen Libanoticum. 2020. Available online: https://www.iucnredlist.org/species/79150453/79150456 (accessed on 13 May 2022).
- Ali-Shtayeh, M.S.; Yaniv, Z.; Mahajna, J. Ethnobotanical survey in the Palestinian area: A classification of the healing potential of medicinal plants. J. Ethnopharmacol. 2000, 73, 221–232. [Google Scholar] [CrossRef]
- Ali-Shtayeh, M.S.; Jamous, R.M.; Al-Shafie, J.H.; Elgharabah, W.A.; Kherfan, F.A.; Qarariah, K.H.; Khdair, I.S.; Soos, I.M.; Musleh, A.A.; Isa, B.A.; et al. Traditional knowledge of wild edible plants used in Palestine (Northern West Bank): A comparative study. J. Ethnobiol. Ethnomed. 2008, 4, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blasdale, W.C. Cyclamen Persicum. Its Natural and Cultivated Forms; Stanford University Press: London, UK, 1953; p. 49. [Google Scholar]
- Oliver-Bever, B. Vegetable Drugs for Cancer Therapy. Q. J. Crude Drug Res. 1971, 11, 1665–1683. [Google Scholar] [CrossRef]
- Cornea-Cipcigan, M.; Pamfil, D.; Sisea, C.R.; Gavriș, C.P.; da Graça Ribeiro Campos, M.; Margaoan, R. A review on Cyclamen species: Ttranscription factors vs. pharmacological effects. Acta Pol. Pharm. Drug Res. 2019, 76, 919–938. [Google Scholar]
- Cornea-Cipcigan, M.; Pamfil, D.; Sisea, C.R.; Mărgăoan, R. Gibberellic Acid Can Improve Seed Germination and Ornamental Quality of Selected Cyclamen Species Grown Under Short and Long Days. Agronomy 2020, 10, 516. [Google Scholar] [CrossRef] [Green Version]
- Kojičić, K.; Arsenijević, A.; Marković, M.; Stankov-Jovanović, V.; Simić, Z.; Tadić, V.; Cupara, S. Chemical and pharmacological characterization of aqueous and ethanolic extracts of Cyclamen hederifolium Ait. (Primulaceae) tuber. Vojnosanit. Pregl. 2021, 78, 532–541. [Google Scholar] [CrossRef]
- Pawar, H.A.; Shenoy, A.V.; Narawade, P.D.; Soni, P.Y.; Shanbhag, P.P.; Rajal, V.A. Preservatives from nature: A review. Int. J. Pharm. Phytopharmacol. Res. 2011, 1, 78–88. [Google Scholar]
- Krinsky, N.I.; Johnson, E.J. Carotenoid actions and their relation to health and disease. Mol. Asp. Med. 2005, 26, 459–516. [Google Scholar] [CrossRef]
- Rowles, J.L.; Erdman, J.W. Carotenoids and their role in cancer prevention. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2020, 1865, 158613. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Mărgăoan, R.; Mărghitaş, L.A.; Dezmirean, D.S.; Dulf, F.V.; Bunea, A.; Socaci, S.A.; Bobiş, O. Predominant and Secondary Pollen Botanical Origins Influence the Carotenoid and Fatty Acid Profile in Fresh Honeybee-Collected Pollen. J. Agric. Food Chem. 2014, 62, 6306–6316. [Google Scholar] [CrossRef]
- Swapnil, P.; Meena, M.; Singh, S.K.; Dhuldhaj, U.P.; Harish; Marwal, A. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Curr. Plant Biol. 2021, 26, 100203. [Google Scholar] [CrossRef]
- Stephensen, C.B. Vitamin A, Infection, and Immune Function. Annu. Rev. Nutr. 2001, 21, 167–192. [Google Scholar] [CrossRef]
- Telfer, A.; Pascal, A.; Gall, A. Carotenoids in Photosynthesis. In Carotenoids; Britton, G., Liaaen-Jensen, S., Pfander, H., Eds.; Birkhäuser: Basel, Switzerland, 2008; Volume 4. [Google Scholar]
- Graßmann, J. Terpenoids as Plant Antioxidants. In Vitamins & Hormones; Litwack, G., Ed.; Academic Press: Cambridge, MA, USA, 2005; Volume 72, pp. 505–535. [Google Scholar]
- Giovannucci, E.; Ascherio, A.; Rimm, E.B.; Stampfer, M.J.; Colditz, G.A.; Willett, W.C. Intake of Carotenoids and Retino in Relation to Risk of Prostate Cancer. JNCI J. Natl. Cancer Inst. 1995, 87, 1767–1776. [Google Scholar] [CrossRef] [PubMed]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. The role of carotenoids in the prevention of human pathologies. Biomed. Pharmacother. 2004, 58, 100–110. [Google Scholar] [CrossRef]
- Hu, F.; Wang Yi, B.; Zhang, W.; Liang, J.; Lin, C.; Li, D.; Wang, F.; Pang, D.; Zhao, Y. Carotenoids and breast cancer risk: A meta-analysis and meta-regression. Breast Cancer Res. Treat. 2012, 131, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chung, S.-J.; McCullough, M.L.; Song, W.O.; Fernandez, M.L.; Koo, S.I.; Chun, O.K. Dietary Carotenoids Are Associated with Cardiovascular Disease Risk Biomarkers Mediated by Serum Carotenoid Concentrations. J. Nutr. 2014, 144, 1067–1074. [Google Scholar] [CrossRef]
- Arathi, B.P.; Sowmya, P.R.-R.; Vijay, K.; Baskaran, V.; Lakshminarayana, R. Metabolomics of carotenoids: The challenges and prospects—A review. Trends Food Sci. Technol. 2015, 45, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Gálvez, A.; Viera, I.; Roca, M. Carotenoids and Chlorophylls as Antioxidants. Antioxidants 2020, 9, 505. [Google Scholar] [CrossRef]
- Mărgăoan, R.; Zăhan, M.; Mărghitaş, L.A.; Dezmirean, D.S.; Erler, S.; Bobiş, O. Antiproliferative activity and apoptotic effects of Filipendula ulmaria pollen against C26 mice colon tumour cells. J. Apic. Sci. 2016, 60, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Tarone, A.G.; Cazarin, C.B.B.; Marostica Junior, M.R. Anthocyanins: New techniques and challenges in microencapsulation. Food Res. Int. 2020, 133, 109092. [Google Scholar] [CrossRef]
- Neill, S.O.; Gould, K.S.; Kilmartin, P.A.; Mitchell, K.A.; Markham, K.R. Antioxidant activities of red versus green leaves in Elatostema rugosum. Plant Cell Environ. 2002, 25, 539–547. [Google Scholar] [CrossRef]
- Li, P.; Feng, D.; Yang, D.; Li, X.; Sun, J.; Wang, G.; Tian, L.; Jiang, X.; Bai, W. Protective effects of anthocyanins on neurodegenerative diseases. Trends Food Sci. Technol. 2021, 117, 205–217. [Google Scholar] [CrossRef]
- Osterc, G.; Cunja, V.; Mikulic-Petkovsek, M.; Schmitzer, V.; Stampar, F.; Bavcon, J. Foliage identification of different autochtonous common cyclamen genotypes (Cyclamen purpurascens Mill.) using various biochemical parameters. Sci. Hortic. 2014, 173, 37–44. [Google Scholar] [CrossRef]
- Osterc, G.; Mikulic Petkovsek, M.; Stampar, F.; Ravnjak, B.; Bavcon, J. Impact of specific environmental characteristics of the site of origin (shady, sunny) on anthocyanin and flavonol contents of replanted plants at common cyclamen (Cyclamen purpurascens Mill.). Acta Physiol. Plant. 2017, 39, 64. [Google Scholar] [CrossRef]
- Osterc, G.; Petkovsek, M.M.; Stampar, F.; Kiprovski, B.; Ravnjak, B.; Bavcon, J. Characterization of Various Color Parameters (Anthocyanins and Flavonols) of Leaves and Flowers in Different Autochthonous Genotypes of Cyclamen purpurascens. J. Amer. Soc. Hort. Sci. 2018, 143, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Akita, Y.; Kitamura, S.; Hase, Y.; Narumi, I.; Ishizaka, H.; Kondo, E.; Kameari, N.; Nakayama, M.; Tanikawa, N.; Morita, Y.; et al. Isolation and characterization of the fragrant cyclamen O-methyltransferase involved in flower coloration. Planta 2011, 234, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Mikami, R.; Akita, Y. Characterization of 5-O-glucosyltransferase involved in anthocyanin biosynthesis in Cyclamen purpurascens. Plant Biotechnol. 2021, 38, 263–268. [Google Scholar] [CrossRef]
- Nakayama, M.; Tanikawa, N.; Morita, Y.; Ban, Y. Comprehensive analyses of anthocyanin and related compounds to understand flower color change in ion-beam mutants of cyclamen (Cyclamen spp.) and carnation (Dianthus caryophyllus). Plant Biotechnol. 2012, 12, 215–221. [Google Scholar] [CrossRef]
- Arslan, S.; Ozgun, O. Cyclamen trochopteranthum: Cytotoxic activity and possible adverse interactions including drugs and carcinogens. Chin. J. Integr. Med. 2012. [Google Scholar] [CrossRef]
- Altunkeyik, H.; Gülcemal, D.; Masullo, M.; Alankus-Caliskan, O.; Piacente, S.; Karayildirim, T. Triterpene saponins from Cyclamen hederifolium. Phytochemistry 2012, 73, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Karagur, E.R.; Ozay, C.; Mammadov, R.; Akca, H. Anti-invasive effect of Cyclamen pseudibericum extract on A549 non-small cell lung carcinoma cells via inhibition of ZEB1 mediated by miR-200c. J. Nat. Med. 2018, 72, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Mihci-Gaidi, G.; Ozbey, S.; Orhan, I.; Sener, B.; Miyamoto, T.; Mirjolet, J.-F.; Duchamp, O.; Mitaine-Offer, A.-C.; Lacaille-Dubois, M.-A. Triterpene Saponins from Cyclamen trocopteranthum. Planta Med. 2010, 76, 818–821. [Google Scholar] [CrossRef]
- Mihci-Gaidi, G.; Pertuit, D.; Miyamoto, T.; Mirjolet, J.-F.; Duchamp, O.; Mitaine-Offer, A.-C.; Lacaille-Dubois, M.-A. Triterpene Saponins from Cyclamen persicum. Nat. Prod. Commun. 2010, 5, 1023–1025. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, M.; Bozcu, H.; Tokgun, O.; Karagur, E.R.; Akyurt, O.; Akca, H. Cyclamen exerts cytotoxicity in solid tumor cell lines: A step toward new anticancer agents? Asian Pac. J. Cancer Prev. 2013, 14, 5911–5913. [Google Scholar] [CrossRef] [Green Version]
- Siriamornpun, S.; Kaisoon, O.; Meeso, N. Changes in colour, antioxidant activities and carotenoids (lycopene, β-carotene, lutein) of marigold flower (Tagetes erecta L.) resulting from different drying processes. J. Funct. Foods 2012, 4, 757–766. [Google Scholar] [CrossRef]
- Amin Jaradat, N.; Al-Masri, M.; Hussen, F.; Zaid, A.N.; Ali, I.; Tammam, A.; Mostafa Odeh, D.; Hussein Shakarneh, O.; Rajabi, A. Preliminary Phytochemical and Biological Screening of Cyclamen coum a Member of Palestinian Flora. Pharm. Sci. 2017, 23, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Akita, Y.; Ishizaka, H.; Nakayama, M.; Shimada, A.; Kitamura, S.; Hase, Y.; Narumi, I.; Tanaka, A. Comparative analysis of floral pigmentation between wild-type and white-flowered varieties of Cyclamen graecum. J. Hortic. Sci. Biotechnol. 2010, 85, 437–443. [Google Scholar] [CrossRef]
- Marcus, Y. Extraction by Subcritical and Supercritical Water, Methanol, Ethanol and Their Mixtures. Separations 2018, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Oniszczuk, A.; Podgórski, R.; Oniszczuk, T.; Żukiewicz-Sobczak, W.; Nowak, R.; Waksmundzka-Hajnos, M. Extraction methods for the determination of phenolic compounds from Equisetum arvense L. Herb. Ind. Crop. Prod. 2014, 61, 377–381. [Google Scholar] [CrossRef]
- Clydesdale, F.M.; Ahmed, E.M. Colorimetry—Methodology and applications. CRC Crit. Rev. Food Sci. Nutr. 1978, 10, 243–301. [Google Scholar] [CrossRef] [PubMed]
- Clapa, D.; Bunea, C.; Borsai, O.; Pintea, A.; Hârța, M.; Ştefan, R.; Fira, A. The Role of Sequestrene 138 in Highbush Blueberry (Vaccinium corymbosum L.) Micropropagation. HortSci. Horts 2018, 53, 1487–1493. [Google Scholar] [CrossRef] [Green Version]
- Bunea, C.-I.; Pop, N.; Babeş, A.C.; Matea, C.; Dulf, F.V.; Bunea, A. Carotenoids, total polyphenols and antioxidant activity of grapes (Vitis vinifera) cultivated in organic and conventional systems. Chem. Cent. J. 2012, 6, 66. [Google Scholar] [CrossRef] [Green Version]
- Attard, E. A rapid microtitre plate Folin-Ciocalteu method for the assessment of polyphenols. Open Life Sci. 2013, 8, 48–53. [Google Scholar] [CrossRef]
- Criste, A.; Urcan, A.C.; Bunea, A.; Pripon Furtuna, F.R.; Olah, N.K.; Madden, R.H.; Corcionivoschi, N. Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea Buckthorn (Hippophae Rhamnoides L.) Varieties. Molecules 2020, 25, 1170. [Google Scholar] [CrossRef] [Green Version]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Szőllősi, R.; Szőllősi Istvánné Varga, I. Total antioxidant power in some species of Labiatae: Adaptation of FRAP method. Acta Biol. Szeged. 2002, 46, 125–127. [Google Scholar]
- Matuschek, E.; Brown, D.F.J.; Kahlmeter, G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin. Microbiol. Infect. 2014, 20, O255–O266. [Google Scholar] [CrossRef] [Green Version]
- Bouari, C.; Bolfa, P.; Borza, G.; Nadăş, G.; Cătoi, C.; Fiţ, N. Antimicrobial activity of Mentha piperita and Saturenja hortensis in a murine model of cutaneous protothecosis. J. Mycol. Méd. 2014, 24, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Marian, E.; Duteanu, N.; Vicas, L.; Rusu, G.; Jurca, T.; Muresan, M.; Micle, O.; Hangan, A.C.; Stan, R.L.; Ionescu, C.; et al. Synthesis, characterization of inclusion compounds of amygdalin with β-cyclodextrin and sod-like activity and cytotoxicity on hela tumor cells. Arab. J. Chem. 2020, 13, 6828–6837. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Cervantes-Paz, B.; Yahia, E.M.; de Jesús Ornelas-Paz, J.; Victoria-Campos, C.I.; Ibarra-Junquera, V.; Pérez-Martínez, J.D.; Escalante-Minakata, P. Antioxidant activity and content of chlorophylls and carotenoids in raw and heat-processed Jalapeño peppers at intermediate stages of ripening. Food Chem. 2014, 146, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Klančnik, K.; Levpušček, M.; Gaberščik, A. Variegation and red abaxial epidermis define the leaf optical properties of Cyclamen purpurascens. Flora 2016, 224, 87–95. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. Update on natural food pigments—A mini-review on carotenoids, anthocyanins, and betalains. Food Res. Int. 2019, 124, 200–205. [Google Scholar] [CrossRef]
- Gong, X.; Smith, J.R.; Swanson, H.M.; Rubin, L.P. Carotenoid Lutein Selectively Inhibits Breast Cancer Cell Growth and Potentiates the Effect of Chemotherapeutic Agents through ROS-Mediated Mechanisms. Molecules 2018, 23, 905. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.S.; Shin, M.; Kim, S.; Lee, S.B. Recent Advances in Studies on the Therapeutic Potential of Dietary Carotenoids in Neurodegenerative Diseases. Oxidative Med. Cell. Longev. 2018, 2018, 4120458. [Google Scholar] [CrossRef]
- Stringham, N.T.; Holmes, P.V.; Stringham, J.M. Supplementation with macular carotenoids reduces psychological stress, serum cortisol, and sub-optimal symptoms of physical and emotional health in young adults. Nutr. Neurosci. 2018, 21, 286–296. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Colletti, A. Effects of Carotenoids on Health: Are All the Same? Results from Clinical Trials. Curr. Pharm. Des. 2017, 23, 2422–2427. [Google Scholar] [CrossRef]
- Mohammadzadeh Honarvar, N.; Saedisomeolia, A.; Abdolahi, M.; Shayeganrad, A.; Taheri Sangsari, G.; Hassanzadeh Rad, B.; Muench, G. Molecular Anti-inflammatory Mechanisms of Retinoids and Carotenoids in Alzheimer’s Disease: A Review of Current Evidence. J. Mol. Neurosci. 2017, 61, 289–304. [Google Scholar] [CrossRef]
- Lima, V.C.; Rosen, R.B.; Farah, M. Macular pigment in retinal health and disease. Int. J. Retin. Vitr. 2016, 2, 19. [Google Scholar] [CrossRef] [Green Version]
- Santos, P.D.d.F.; Rubio, F.T.V.; da Silva, M.P.; Pinho, L.S.; Favaro-Trindade, C.S. Microencapsulation of carotenoid-rich materials: A review. Food Res. Int. 2021, 147, 110571. [Google Scholar] [CrossRef]
- Dall’Osto, L.; Cazzaniga, S.; North, H.; Marion-Poll, A.; Bassi, R. The Arabidopsis aba4-1 Mutant Reveals a Specific Function for Neoxanthin in Protection against Photooxidative Stress. Plant Cell 2007, 19, 1048–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araki, M.; Kaku, N.; Harada, M.; Ando, Y.; Yamaguchi, R.; Shindo, K. Production of Auroxanthins from Violaxanthin and 9-cis-Violaxanthin by Acidic Treatment and the Antioxidant Activities of Violaxanthin, 9-cis-Violaxanthin, and Auroxanthins. J. Agric. Food Chem. 2016, 64, 9352–9355. [Google Scholar] [CrossRef]
- Bakó, E.; Deli, J.; Tóth, G. HPLC study on the carotenoid composition of Calendula products. J. Biochem. Biophys. Methods 2002, 53, 241–250. [Google Scholar] [CrossRef]
- Muthukrishnan, S.D.; Kaliyaperumal, A.; Subramaniyan, A. Identification and determination of flavonoids, carotenoids and chlorophyll concentration in Cynodon dactylon (L.) by HPLC analysis. Nat. Prod. Res. 2015, 29, 785–790. [Google Scholar] [CrossRef]
- Zeb, A.; Ullah, F. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves. Front. Chem. 2017, 5, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chew, E.Y.; Clemons, T.E.; SanGiovanni, J.P.; Danis, R.; Ferris Iii, F.L.; Elman, M.; Antoszyk, A.; Ruby, A.; Orth, D.; Bressler, S.; et al. Lutein + Zeaxanthin and Omega-3 Fatty Acids for Age-Related Macular Degeneration: The Age-Related Eye Disease Study 2 (AREDS2) Randomized Clinical Trial. JAMA J. Am. Med Assoc. 2013, 309, 2005–2015. [Google Scholar] [CrossRef]
- Feng, L.; Nie, K.; Jiang, H.; Fan, W. Effects of lutein supplementation in age-related macular degeneration. PLoS ONE 2020, 14, e0227048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajizadeh-Sharafabad, F.; Tarighat-Esfanjani, A.; Ghoreishi, Z.; Sarreshtedari, M. Lutein supplementation combined with a low-calorie diet in middle-aged obese individuals: Effects on anthropometric indices, body composition and metabolic parameters. Br. J. Nutr. 2021, 126, 1028–1039. [Google Scholar] [CrossRef]
- De Carvalho, L.M.J.; Gomes, P.B.; Godoy, R.L.d.O.; Pacheco, S.; do Monte, P.H.F.; de Carvalho, J.L.V.; Nutti, M.R.; Neves, A.C.L.; Vieira, A.C.R.A.; Ramos, S.R.R. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Res. Int. 2012, 47, 337–340. [Google Scholar] [CrossRef] [Green Version]
- Hallmann, E. The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types. J. Sci. Food Agric. 2012, 92, 2840–2848. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.P.; Coronel, J.; Amengual, J. The role of β-carotene and vitamin A in atherogenesis: Evidences from preclinical and clinical studies. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2020, 1865, 158635. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, S.; Ohmiya, A. Regulation of carotenoid biosynthesis in petals and leaves of chrysanthemum (Chrysanthemum morifolium). Physiol. Plant 2006, 128, 436–447. [Google Scholar] [CrossRef]
- Wei, Z.; Arazi, T.; Hod, N.; Zohar, M.; Isaacson, T.; Doron-Faigenboim, A.; Reznik, N.; Yedidia, I. Transcriptome Profiling of Ornithogalum dubium Leaves and Flowers to Identify Key Carotenoid Genes for CRISPR Gene Editing. Plants 2020, 9, 540. [Google Scholar] [CrossRef] [Green Version]
- Kishimoto, S.; Oda-Yamamizo, C.; Ohmiya, A. Regulation of Carotenoid Pigmentation in Corollas of Petunia. Plant Mol. Biol. Rep. 2018, 36, 632–642. [Google Scholar] [CrossRef]
- Wang, J.; Mazza, G. Inhibitory Effects of Anthocyanins and Other Phenolic Compounds on Nitric Oxide Production in LPS/IFN-γ-Activated RAW 264.7 Macrophages. J. Agric. Food Chem. 2002, 50, 850–857. [Google Scholar] [CrossRef]
- Olivas-Aguirre, F.J.; Rodrigo-García, J.; Martínez-Ruiz, N.D.R.; Cárdenas-Robles, A.I.; Mendoza-Díaz, S.O.; Álvarez-Parrilla, E.; González-Aguilar, G.A.; De la Rosa, L.A.; Ramos-Jiménez, A.; Wall-Medrano, A. Cyanidin-3-O-glucoside: Physical-Chemistry, Foodomics and Health Effects. Molecules 2016, 21, 1264. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.-N.; Chu, S.-C.; Chiou, H.-L.; Chiang, C.-L.; Yang, S.-F.; Hsieh, Y.-S. Cyanidin 3-Glucoside and Peonidin 3-Glucoside Inhibit Tumor Cell Growth and Induce Apoptosis In Vitro and Suppress Tumor Growth In Vivo. Nutr. Cancer 2005, 53, 232–243. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J. Polyphenol-plasma proteins interaction: Its nature, analytical techniques, and influence on bioactivities of polyphenols. Curr. Drug Metab. 2013, 14, 367–368. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Kai, G. A Review of Dietary Polyphenol-Plasma Protein Interactions: Characterization, Influence on the Bioactivity, and Structure-Affinity Relationship. Crit. Rev. Food Sci. Nutr. 2012, 52, 85–101. [Google Scholar] [CrossRef]
- Turan, M.; Mammadov, R. Antioxidant, Antimicrobial, Cytotoxic, Larvicidal and Anthelmintic Activities and Phenolic Contents of Cyclamen alpinum. J. Pharmacol. Pharm. 2018, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Zengin, G.; Mahomoodally, M.F.; Sinan, K.I.; Picot-Allain, M.C.N.; Yildiztugay, E.; Cziáky, Z.; Jekő, J.; Saleem, H.; Ahemad, N. Chemical characterization, antioxidant, enzyme inhibitory and cytotoxic properties of two geophytes: Crocus pallasii and Cyclamen cilicium. Food Res. Int. 2020, 133, 109129. [Google Scholar] [CrossRef]
- Tian, Y.; Puganen, A.; Alakomi, H.-L.; Uusitupa, A.; Saarela, M.; Yang, B. Antioxidative and antibacterial activities of aqueous ethanol extracts of berries, leaves, and branches of berry plants. Food Res. Int. 2018, 106, 291–303. [Google Scholar] [CrossRef]
- De Morais, J.S.; Sant’Ana, A.S.; Dantas, A.M.; Silva, B.S.; Lima, M.S.; Borges, G.C.; Magnani, M. Antioxidant activity and bioaccessibility of phenolic compounds in white, red, blue, purple, yellow and orange edible flowers through a simulated intestinal barrier. Food Res. Int. 2020, 131, 109046. [Google Scholar] [CrossRef]
- Turker, A.U.; Usta, C. Biological screening of some Turkish medicinal plant extracts for antimicrobial and toxicity activities. Nat. Prod. Res. 2008, 22, 136–146. [Google Scholar] [CrossRef]
- Özcan, F.; Semerci, A.B.; Kenan, T.U.N.Ç. A Study on Antimicrobial and Antioxidant Activities of Cyclamen coum, Colchicum turcicum and Colchicum bornmuelleri Species. Curr. Perspect. Med. Aromat. Plants (CUPMAP) 2020, 3, 121–127. [Google Scholar]
- Kenan, T.U.N.Ç.; Semerci, A.B.; İnceçayir, D.; Sağiroğlu, M.S. Antimicrobial activity of different flower extracts. Curr. Perspect. Med. Aromat. Plants (CUPMAP) 2019, 2, 53–58. [Google Scholar]
- Radovanović, A.N.; Jovančičević, B.S.; Radovanović, B.C.; Mihajilov-Krstev, T. Antimicrobial effectiveness of selected Vranac wines against six Gram-positive and six Gram-negative bacterial strains. Trop. J. Pharm. Res. 2014, 13, 819–824. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.; Igrejas, G.; Falco, V.; Santos, T.P.; Torres, C.; Oliveira, A.M.P.; Pereira, J.E.; Amaral, J.S.; Poeta, P. Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control 2018, 92, 516–522. [Google Scholar] [CrossRef] [Green Version]
- El Hosry, L.; Di Giorgio, C.; Birer, C.; Habib, J.; Tueni, M.; Bun, S.-S.; Herbette, G.; De Meo, M.; Ollivier, E.; Elias, R. In vitro cytotoxic and anticlastogenic activities of saxifragifolin B and cyclamin isolated from Cyclamen persicum and Cyclamen libanoticum. Pharm. Biol. 2014, 52, 1134–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benso, B.; Rosalen, P.L.; Alencar, S.M.; Murata, R.M. Malva sylvestris Inhibits Inflammatory Response in Oral Human Cells. An In Vitro Infection Model. PLoS ONE 2015, 10, e0140331. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Vareed, S.K.; Nair, M.G. Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Sci. 2005, 76, 1465–1472. [Google Scholar] [CrossRef]
- Udayawara Rudresh, D.; Maradagi, T.; Stephen, N.M.; Niraikulam, A.; Nambi Ramudu, K.; Ponesakki, G. Neoxanthin prevents H2O2-induced cytotoxicity in HepG2 cells by activating endogenous antioxidant signals and suppressing apoptosis signals. Mol. Biol. Rep. 2021, 48, 6923–6934. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Moon, S.H.; Gansukh, E.; Keum, Y.-S. An efficient one-step scheme for the purification of major xanthophyll carotenoids from lettuce, and assessment of their comparative anticancer potential. Food Chem. 2018, 266, 56–65. [Google Scholar] [CrossRef]
- Baraya, Y.U.S.A.; Yankuzo, H.M.; Wong, K.K.; Yaacob, N.S. Strobilanthes crispus bioactive subfraction inhibits tumor progression and improves hematological and morphological parameters in mouse mammary carcinoma model. J. Ethnopharmacol. 2021, 267, 113522. [Google Scholar] [CrossRef] [PubMed]
- Gansukh, E.; Mya, K.K.; Jung, M.; Keum, Y.-S.; Kim, D.H.; Saini, R.K. Lutein derived from marigold (Tagetes erecta) petals triggers ROS generation and activates Bax and caspase-3 mediated apoptosis of human cervical carcinoma (HeLa) cells. Food Chem. Toxicol. 2019, 127, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Kotake-Nara, E.; Asai, A.; Nagao, A. Neoxanthin and fucoxanthin induce apoptosis in PC-3 human prostate cancer cells. Cancer Lett. 2005, 220, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Barros, R.G.C.; Andrade, J.K.S.; Pereira, U.C.; de Oliveira, C.S.; Rafaella Ribeiro Santos Rezende, Y.; Oliveira Matos Silva, T.; Pedreira Nogueira, J.; Carvalho Gualberto, N.; Caroline Santos Araujo, H.; Narain, N. Phytochemicals screening, antioxidant capacity and chemometric characterization of four edible flowers from Brazil. Food Res. Int. 2020, 130, 108899. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 2018, 72, 83–90. [Google Scholar] [CrossRef]
- Nunes, C.A.; Alvarenga, V.O.; de Souza Sant’Ana, A.; Santos, J.S.; Granato, D. The use of statistical software in food science and technology: Advantages, limitations and misuses. Food Res. Int. 2015, 75, 270–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Genotype | Sample ID | L* | a* | b* | C* | H° |
---|---|---|---|---|---|---|
Leaves | ||||||
C. persicumaccessions | LC1 | 50.97 ± 10.5 c | −19.63 ± 4.4 c | 23.10 ± 4.4 c | 31.47 ± 2.0 c | 131.00 ± 10.9 c |
LC2 | 51.37 ± 13.4 c | −19.43 ± 4.6 c | 20.13 ± 4.2 c | 28.00 ± 6.2 c | 133.33 ± 2.0 c | |
LC2.1 | 57.97 ± 7.8 b | −27.7 ± 2.9 d | 32.50 ± 2.5 b | 42.80 ± 3.5 b | 130.33 ± 2.0 c | |
LC3 | 73.23 ± 15.2 a | −17.4 ± 3.6 c | 15.67 ± 1.9 d | 23.60 ± 1.1 d | 137.33 ± 5.4 b | |
LC4 | 48.93 ± 7.9 c | −22.6 ± 3.3 cd | 11.43 ± 6.8 de | 26.47 ± 5.2 cd | 159.00 ± 14.0 a | |
LC7 | 37.83 ± 14.8 d | −11.73 ± 2.2 b | 11.30 ± 2.5 e | 16.30 ± 3.3 e | 136.33 ± 1.4 b | |
LC9 | 64.7 ± 5.5 b | −25.07 ± 2.0 d | 40.90 ± 10.4 a | 52.37 ± 6.0 a | 123.67 ± 9.4 d | |
LC15 | 61.23 ± 8.3 b | −21.1 ± 7.3 cd | 16.33 ± 2.0 d | 27.30 ± 6.5 cd | 137.00 ± 10.2 bc | |
C. mirabile | LC6 | 61.17 ± 5.4 b | −5.4 ± 13.5 a | 20.47 ± 9.0 c | 29.63 ± 2.1 c | 91.00 ± 36.2 e |
C. hederifolium | LC18 | 76.67 ± 7.6 a | −10.7 ± 1.7 b | 13.40 ± 6.6 de | 17.67 ± 6.1 e | 134.33 ± 9.33 c |
Flowers | ||||||
C. persicumaccessions | FC1 | 26.8 ± 3.6 c | 42.9 ± 6.2 c | −8.6 ± 2.1 c | 43.9 ± 5.7 c | 348.0 ± 4.0 a |
FC2 | 47.05 ± 16.1 ab | 31.2 ± 13.4 d | −5.65 ± 5.4 c | 31.9 ± 14.1 d | 352.5 ± 6.5 a | |
FC2.1 | 41.75 ± 5.6 b | 55.6 ± 1.8 a | −11.6 ± 2.0 d | 56.85 ± 2.1 a | 348.5 ± 1.5 b | |
FC3 | 48.3 ± 8.1 ab | 39.15 ± 3.5 c | −16.85 ± 1.2 e | 42.6 ± 3.8 c | 336.5 ± 0.5 d | |
FC4 | 30.0 ± 2.4 bc | 47.45 ± 2.5 b | 22.05 ± 0.5 a | 52.3 ± 2.5 a | 25.0 ± 1.0 f | |
FC7 | 29.5 ± 9.8 bc | 48.2 ± 11.9 b | 27.15 ± 8.1 a | 55.35 ± 4.3 a | 29.0 ± 1.0 g | |
FC9 | 56.7 ± 18.9 a | 35.35 ± 14.5 d | −6.6 ± 3.8 c | 36.0 ± 15.0 d | 350.0 ± 2.0 a | |
FC15 | 45.25 ± 13.6 ab | 49.3 ± 1.2 b | 0.15 ± 9.1 b | 50.1 ± 1.2 b | 170.0 ± 13.6 e | |
C. mirabile | FC6 | 42.75 ± 7.3 ab | 32.5 ± 1.5 d | −10.6 ± 2.4 d | 34.2 ± 2.2 d | 342.0 ± 3.0 c |
C. hederifolium | FC18 | 56.15 ± 13.1 a | 26.45 ± 19.2 e | −5.95 ± 5.05 c | 27.15 ± 19.8 e | 349.5 ± 3.5 ab |
Species | Sample ID | Neoxantin μg/g | Violaxantin μg/g | Lutein μg/g | β-Carotene μg/g | Cis- β-Carotene μg/g | Total Carotenoids μg/g | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
fw | dw | fw | dw | fw | dw | fw | dw | fw | dw | fw | dw | ||
C. persicumaccessions | LC1 | 6.66 ± 0.92 e | 9.66 ± 1.2 d | 6.23 ± 0.23 e | 9.66 ± 0.4 e | 48.07 ± 7.18 c | 69.78 ± 0.67 f | 17.57 ± 1.2 e | 25.50 ± 3.4 e | 3.84 ± 0.37 d | 5.57 ± 0.4 d | 82.4 | 119.58 |
LC2 | 6.58 ± 0.34 ef | 10.41 ± 0.76 d | 6.09 ± 0.88 e | 9.63 ± 0.98 e | 56.59 ± 4.12 c | 89.57 ± 0.43 e | 23.08 ± 1.04 d | 36.53 ± 2.3 d | 4.73 ± 0.31 c | 7.48 ± 1.2 c | 97.09 | 153.65 | |
LC2.1 | 6.05 ± 0.31 f | 8.29 ± 3.4 de | 9.05 ± 0.45 c | 12.41 ± 0.56 d | 81.09 ± 9.43 ab | 111.21 ± 0.31 c | 25.78 ± 0.88 c | 35.35 ± 5.6 d | 5.20 ± 0.61 bc | 7.13 ± 1.6 c | 127.2 | 174.41 | |
LC3 | 5.17 ± 0.23 d | 7.27 ± 2.7 e | 3.93 ± 0.19 f | 5.53 ± 0.23 f | 31.91 ± 1.6 e | 44.92 ± 0.45 h | 12.67 ± 5.12 f | 17.83 ± 4.6 f | 2.87 ± 0.12 e | 4.04 ± 0.7 e | 56.58 | 79.62 | |
LC4 | 11.00 ± 0.89 b | 14.64 ± 5.1 c | 14.49 ± 0.23 a | 19.29 ± 1.1 b | 36.92 ± 1.5 d | 49.15 ± 0.43 g | 97.09 ± 0.23 a | 129.26 ± 12.6 a | 7.47 ± 0.09 a | 9.94 ± 2.2 a | 167.0 | 222.29 | |
LC7 | 6.78 ± 0.99 c | 10.13 ± 3.2 d | 10.24 ± 1.03 bc | 15.28 ± 2.3 c | 85.32 ± 3.78 ab | 127.38 ± 3.89 b | 30.43 ± 5.02 b | 45.43 ± 4.6 c | 6.06 ± 0.93 b | 9.04 ± 0.65 b | 138.83 | 195.84 | |
LC9 | 12.19 ± 0.72 b | 19.34 ± 1.8 b | 12.61 ± 1.45 b | 20.01 ± 2.87 b | 90.68 ± 9.05 a | 143.91 ± 0.78 a | 23.43 ± 0.32 d | 37.18 ± 6.7 d | 4.97 ± 0.17 bc | 7.88 ± 0.61 c | 143.9 | 207.28 | |
LC15 | 11.21 ± 1.26 b | 15.28 ± 0.8 c | 11.20 ± 1.14 b | 15.27 ± 2.3 c | 70.51 ± 9.04 b | 96.16 ± 1.2 d | 13.09 ± 0.97 f | 17.85 ± 3.12 f | 2.61 ± 0.21 f | 3.55 ± 1.1 e | 108.65 | 228.34 | |
C. mirabile | LC6 | 21.49 ± 3.14 a | 31.13 ± 2.2 a | 15.52 ± 1.29 a | 22.48 ± 0.87 a | 74.97 ± 6.59 ab | 108.62 ± 1.89 c | 19.40 ± 4.14 e | 28.10 ± 3.7 e | 3.79 ± 0.72 d | 5.49 ± 1.5 d | 135.2 | 148.14 |
C. hederifolium | LC18 | 7.30 ± 0.85 c | 11.28 ± 1.9 d | 7.74 ± 0.61 d | 11.96 ± 0.35 d | 87.42 ± 9.23 a | 135.10 ± 2.3 b | 35.85 ± 5.45 b | 55.40 ± 2.8 b | 6.77 ± 0.84 b | 10.46 ± 0.88 a | 145.1 | 224.21 |
Species | Sample ID | Cyanidin 3,5-di-O-Glucoside | Peonidin 3,5-di-O-Glucoside | Malvidin 3,5-di-O-Glucoside | Peonidin-Rutinoside | Peonidin 3-O-Glucoside | Malvidin 3-O-Glucoside | Malvidin-Rutinoside | Total Anthocyanins (µg/g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
fw | dw | fw | dw | fw | dw | fw | dw | fw | dw | fw | dw | fw | dw | fw | dw | ||
C. persicumaccessions | FC1 | n.d. | n.d. | n.d. | n.d. | 185.58 ± 2.42 b | 628.11 ± 3.1 b | n.d. | n.d. | 1.32 ± 0.1 f | 4.46 ± 0.3 h | 8.00 ± 0.3 f | 27.07 ± 0.5 | 8.10 ± 2.1 e | 27.41 ± 2.2 g | 203.0 | 687.07 |
FC2 | n.d. | n.d. | n.d. | n.d. | 5.62 ± 1.31 g | 18.84 ± 1.2 h | 2.02 ± 0.3 e | 6.77 ± 0.1 e | 17.22 ± 0.6 d | 57.67 ± 0.8 e | 198.28 ± 4.1 b | 664.82 ± 3.9 b | 14.32 ± 1.5 d | 48.01 ± 1.8 e | 237.4 | 796.12 | |
FC2.1 | 68.14 ± 1.28 a | 255.52 ± 4.5 a | 73.06 ± 1.19 a | 273.97 ± 5.7 a | 62.17 ± 0.98 d | 233.13 ± 1.1 d | 32.11 ± 0.9 c | 120.41 ± 2.9 b | 47.08 ± 2.1 b | 176.55 ± 1.3 b | 24.03 ± 0.8 e | 90.11 ± 0.8 e | 13.14 ± 0.5 d | 49.27 ± 0.4 e | 319.7 | 1198.98 | |
FC3 | n.d. | n.d. | n.d. | n.d. | 286.46 ± 2.47 a | 1407.39 ± 11.7 a | n.d. | n.d. | 2.73 ± 0.1 e | 13.41 ± 0.2 g | 7.23 ± 0.2 f | 35.52 ± 1.4 h | 7.04 ± 0.3 e | 34.58 ± 0.3 f | 303.4 | 1490.91 | |
FC4 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 200.14 ± 3.7 a | 520.36 ± 4.4 a | 181.41 ± 2.7 a | 471.66 ± 4.7 a | 21.43 ± 0.1 e | 55.71 ± 1.1 g | 8.63 ± 1.9 e | 22.43 ± 1.1 h | 411.6 | 1070.18 | |
FC7 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 400.27 ± 6.6 a | 1673.6 ± 6.8 a | n.d. | n.d. | 400.2 | 852.234 | |
FC9 | n.d. | n.d. | n.d. | n.d. | 43.13 ± 2.1 e | 141.87 ± 1.9 e | 13.21 ± 0.3 d | 43.45 ± 2.1 c | n.d. | n.d. | 201.82 ± 3.5 b | 663.88 ± 5.7 b | 67.76 ± 3.4 a | 222.89 ± 2.6 a | 325.9 | 1673.60 | |
FC15 | n.d. | n.d. | n.d. | n.d. | 12.09 ± 0.8 f | 31.91 ± 1.1 g | n.d. | n.d. | 48.11 ± 2.4 b | 127.01 ± 2.5 c | 121.51 ± 6.1 c | 320.78 ± 2.8 c | 32.22 ± 2.4 b | 85.06 ± 2.2 c | 213.9 | 1072.10 | |
C. mirabile | FC6 | 62.07 ± 0.89 b | 188.90 ± 3.1 b | 58.11 ± 1.15 b | 176.85 ± 5.1 b | 43.12 ± 2.11 e | 131.23 ± 3.8 f | 39.08 ± 1.5 b | 118.93 ± 3.6 b | 37.32 ± 1.5 c | 113.58 ± 2.2 d | 21.05 ± 2.3 e | 64.06 ± 2.6 f | 19.27 ± 2.3 c | 58.64 ± 1.7 d | 280.0 | 564.77 |
C. hederifolium | FC18 | n.d. | n.d. | n.d. | n.d. | 118.34 ± 4.1 c | 357.53 ± 3.2 c | 12.56 ± 0.3 d | 37.94 ± 1.2 d | 16.77 ± 2.1 d | 50.66 ± 0.7 f | 42.22 ± 2.7 d | 127.55 ± 0.7 d | 31.47 ± 3.1 b | 95.07 ± 1.3 b | 221.3 | 668.78 |
Species | Sample ID | TPC (mg/g GAE dw) | TFC (mg/g QE dw) | DPPH (mg/g Trolox dw) | TEAC (mg/g Trolox dw) | FRAP (mmol/g FeII dw) |
---|---|---|---|---|---|---|
C. persicumaccessions | LC1 | 25.16 ± 0.67 de | 40.45 ± 0.10 d | 41.51 ± 0.10 a | 37.75 ± 0.45 e | 35.73 ± 0.21 a |
LC2 | 17.59 ± 0.49 f | 25.26 ± 0.13 g | 39.37 ± 0.02 b | 35.89 ± 0.43 f | 34.74 ± 1.49 a | |
LC2.1 | 22.46 ± 0.44 e | 32.33 ± 0.15 f | 22.78 ± 0.10 g | 37.22 ± 0.15 e | 27.24 ± 0.76 c | |
LC3 | 26.72 ± 0.05 d | 35.49 ± 0.19 e | 27.14 ± 0.07 f | 40.80 ± 0.98 d | 21.09 ± 0.92 e | |
LC4 | 28.01 ± 0.32 c | 23.77 ± 0.21 h | 13.86 ± 0.13 h | 41.22 ± 0.75 d | 26.89 ± 0.92 c | |
LC7 | 38.80 ± 0.55 b | 45.17 ± 0.19 c | 28.98 ± 0.12 e | 61.60 ± 0.50 b | 19.82 ± 0.63 e | |
LC9 | 29.65 ± 0.32 c | 54.90 ± 0.27 a | 31.71 ± 0.12 d | 46.99 ± 0.35 c | 26.25 ± 0.64 c | |
LC15 | 23.19 ± 0.79 de | 22.28 ± 0.16 i | 38.61 ± 0.17 c | 30.65 ± 0.62 g | 17.02 ± 0.28 f | |
C. mirabile | LC6 | 46.32 ± 0.14 a | 23.47 ± 0.28 h | 28.45 ± 0.16 e | 78.74 ± 0.50 a | 29.81 ± 0.21 b |
C. hederifolium | LC18 | 10.03 ± 0.39 g | 47.59 ± 0.20 b | 21.96 ± 0.16 g | 17.89 ± 0.71 h | 23.38 ± 0.58 d |
Species | Sample ID | TPC (mg/g GAE dw) | TFC (mg/g QE dw) | DPPH (mg/g Trolox dw) | TEAC (mg/g Trolox dw) | FRAP (mmol/g FeII dw) |
---|---|---|---|---|---|---|
C. persicumaccessions | FC1 | 50.68 ± 0.15 b | 50.63 ± 0.35 d | 31.59 ± 0.08 d | 73.10 ± 0.45 a | 16.77 ± 0.12 h |
FC2 | 47.23 ± 0.14 c | 77.87 ± 0.25 a | 27.23 ± 0.06 g | 69.80 ± 1.16 b | 30.19 ± 0.42 c | |
FC2.1 | 50.81 ± 0.31 b | 53.39 ± 0.23 c | 28.28 ± 0.12 e | 52.51 ± 0.54 f | 23.05 ± 0.80 e | |
FC3 | 42.38 ± 0.40 e | 43.67 ± 0.21 e | 39.17 ± 0.09 b | 52.22 ± 0.90 f | 21.30 ± 0.76 f | |
FC4 | 39.79 ± 0.20 f | 44.91 ± 0.26 e | 33.03 ± 0.09 c | 52.08 ± 0.14 f | 19.73 ± 0.11 g | |
FC7 | 34.34 ± 0.20 g | 34.84 ± 0.23 f | 40.35 ± 0.42 a | 43.51 ± 0.51 g | 23.07 ± 0.24 e | |
FC9 | 42.61 ± 0.16 e | 60.07 ± 0.33 b | 28.41 ± 0.08 ef | 58.99 ± 0.73 d | 38.30 ± 0.32 a | |
FC15 | 58.63 ± 0.17 a | 34.45 ± 0.31 f | 24.50 ± 0.08 h | 65.99 ± 0.81 c | 20.67 ± 0.21 f | |
C. mirabile | FC6 | 30.81 ± 0.26 h | 52.20 ± 0.34 c | 28.84 ± 0.08 f | 53.70 ± 0.80 e | 24.84 ± 0.32 d |
C. hederifolium | FC18 | 44.33 ± 0.17 d | 49.41 ± 0.28 d | 28.61 ± 0.16 e | 54.13 ± 0.78 e | 35.88 ± 0.32 b |
Used Strains | LC6 | LC9 | LC18 | FC6 | FC9 | FC18 | A | N | M |
---|---|---|---|---|---|---|---|---|---|
St. aureus | - | - | - | - | 7.83 | - | 23.91 | - | - |
Enter. fecalis | - | - | - | 7.26 | 8.64 | - | 26.76 | - | - |
List. monocytogenes | - | - | - | - | 7.29 | - | 24.87 | - | - |
B. cereus | - | - | - | - | - | - | 27.24 | - | - |
E. coli | - | - | - | 10.27 | 12.31 | 7.25 | - | 25.87 | - |
S. enteritidis | 7.27 | - | - | - | 10.24 | - | - | 27.42 | - |
K. pneumoniae | - | - | - | - | 7.56 | - | - | 14.27 | - |
C. albicans | - | - | - | - | - | - | - | - | 18.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cornea-Cipcigan, M.; Bunea, A.; Bouari, C.M.; Pamfil, D.; Páll, E.; Urcan, A.C.; Mărgăoan, R. Anthocyanins and Carotenoids Characterization in Flowers and Leaves of Cyclamen Genotypes Linked with Bioactivities Using Multivariate Analysis Techniques. Antioxidants 2022, 11, 1126. https://doi.org/10.3390/antiox11061126
Cornea-Cipcigan M, Bunea A, Bouari CM, Pamfil D, Páll E, Urcan AC, Mărgăoan R. Anthocyanins and Carotenoids Characterization in Flowers and Leaves of Cyclamen Genotypes Linked with Bioactivities Using Multivariate Analysis Techniques. Antioxidants. 2022; 11(6):1126. https://doi.org/10.3390/antiox11061126
Chicago/Turabian StyleCornea-Cipcigan, Mihaiela, Andrea Bunea, Cosmina Maria Bouari, Doru Pamfil, Emőke Páll, Adriana Cristina Urcan, and Rodica Mărgăoan. 2022. "Anthocyanins and Carotenoids Characterization in Flowers and Leaves of Cyclamen Genotypes Linked with Bioactivities Using Multivariate Analysis Techniques" Antioxidants 11, no. 6: 1126. https://doi.org/10.3390/antiox11061126
APA StyleCornea-Cipcigan, M., Bunea, A., Bouari, C. M., Pamfil, D., Páll, E., Urcan, A. C., & Mărgăoan, R. (2022). Anthocyanins and Carotenoids Characterization in Flowers and Leaves of Cyclamen Genotypes Linked with Bioactivities Using Multivariate Analysis Techniques. Antioxidants, 11(6), 1126. https://doi.org/10.3390/antiox11061126