Nanocarrier System: State-of-the-Art in Oral Delivery of Astaxanthin
Abstract
:1. Introduction
2. Pharmacodynamics of Astaxanthin
2.1. Skin Disease Prevention
2.2. Early Burn Wound Treatment
2.3. DNA Restoration
2.4. Anticancer Properties
2.5. Immune System Modulator
2.6. Anti-Lipid Peroxidation
2.7. Atherosclerosis Prevention
2.8. Blood Pressure Reduction
2.9. Anti-Diabetic
3. Pharmacokinetic and Bioavailability of Oral Astaxanthin
4. Nanocarrier Systems for Oral Delivery of Astaxanthin
4.1. Lipid-Based Nanocarriers—Nanoemulsions, Liposomes, Solid-Lipid Nanoparticles and Nanostructured Lipid Carriers
4.1.1. Nanoemulsions
4.1.2. Liposomes
4.1.3. Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs)
4.2. Other Polymeric Nanoparticles—Chitosan-Based Nanoparticles and Poly(Lactic-Co-Glycolic Acid) (PLGA)
5. Limitations of Astaxanthin-Loaded Nanoparticles
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Davinelli, S.; Nielsen, M.E.; Scapagnini, G. Astaxanthin in Skin Health, Repair, and Disease: A Comprehensive Review. Nutrients 2018, 10, 522. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Delgado, A.A.; Khandual, S.; Villanueva–Rodríguez, S.J. Chemical Stability of Astaxanthin Integrated into a Food Matrix: Effects of Food Processing and Methods for Preservation. Food Chem. 2017, 225, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, E. Astaxanthin as a Medical Food. Funct. Foods Health Dis. 2013, 3, 254–258. [Google Scholar] [CrossRef]
- Ambati, R.R.; Moi, P.S.; Ravi, S.; Aswathanarayana, R.G. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications - A Review. Mar. Drugs 2014, 12, 128–152. [Google Scholar] [CrossRef]
- Stachowiak, B.; Szulc, P. Astaxanthin for the Food Industry. Molecules 2021, 26, 2666. [Google Scholar] [CrossRef]
- Dong, S.; Huang, Y.; Zhang, R.; Wang, S.; Liu, Y. Four Different Methods Comparison for Extraction of Astaxanthin from Green Alga Haematococcus Pluvialis. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef]
- Khalid, N.; Barrow, C.J. Critical Review of Encapsulation Methods for Stabilization and Delivery of Astaxanthin. J. Food Bioact. 2018, 1. [Google Scholar] [CrossRef]
- Dhankhar, J.; Kadian, S.S.; Sharma, A. Astaxanthin: A Potential Carotenoid. Int. J. Pharm. Sci. Res. 2012, 3, 5. [Google Scholar]
- Rodriguez-Ruiz, V.; Salatti-Dorado, J.Á.; Barzegari, A.; Nicolas-Boluda, A.; Houaoui, A.; Caballo, C.; Caballero-Casero, N.; Sicilia, D.; Venegas, J.B.; Pauthe, E.; et al. Astaxanthin-Loaded Nanostructured Lipid Carriers for Preservation of Antioxidant Activity. Molecules 2018, 23, 2601. [Google Scholar] [CrossRef]
- Ito, N.; Seki, S.; Ueda, F. The Protective Role of Astaxanthin for UV-Induced Skin Deterioration in Healthy People—A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2018, 10, 817. [Google Scholar] [CrossRef]
- Xue, X.L.; Han, X.D.; Li, Y.; Chu, X.F.; Miao, W.M.; Zhang, J.L.; Fan, S.J. Astaxanthin Attenuates Total Body Irradiation-Induced Hematopoietic System Injury in Mice via Inhibition of Oxidative Stress and Apoptosis. Stem Cell Res. Ther. 2017, 8, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Q.; Guo, S.; Zhou, H.; Han, R.; Wu, P.; Han, C. Astaxanthin Protects against Early Burn-Wound Progression in Rats by Attenuating Oxidative Stress-Induced Inflammation and Mitochondria-Related Apoptosis. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Camera, E.; Mastrofrancesco, A.; Fabbri, C.; Daubrawa, F.; Picardo, M.; Sies, H.; Stahl, W. Astaxanthin, Canthaxanthin and β-Carotene Differently Affect UVA-Induced Oxidative Damage and Expression of Oxidative Stress-Responsive Enzymes. Exp. Dermatol. 2009, 18, 222–231. [Google Scholar] [CrossRef]
- O’Connor, I.; O’Brien, N. Modulation of UVA Light-Induced Oxidative Stress by β-Carotene, Lutein and Astaxanthin in Cultured Fibroblasts. J. Dermatol. Sci. 1998, 16, 226–230. [Google Scholar] [CrossRef]
- Wolf, G. Retinoids and Carotenoids as Inhibitors of Carcinogenesis and Inducers of Cell-Cell Communication. Nutr. Rev. 1992, 50, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Sinyuk, M.; Mulkearns-Hubert, E.E.; Reizes, O.; Lathia, J. Cancer Connectors: Connexins, Gap Junctions, and Communication. Front. Oncol. 2018, 8, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Bonacquisti, E.E.; Nguyen, J. Connexin 43 (Cx43) in Cancer: Implications for Therapeutic Approaches via Gap Junctions. Cancer Lett. 2019, 442, 439–444. [Google Scholar] [CrossRef]
- Hix, L.M.; Lockwood, S.F.; Bertram, J.S. Upregulation of Connexin 43 Protein Expression and Increased Gap Junctional Communication by Water Soluble Disodium Disuccinate Astaxanthin Derivatives. Cancer Lett. 2004, 211, 25–37. [Google Scholar] [CrossRef]
- Tripathi, D.N.; Jena, G.B. Intervention of Astaxanthin against Cyclophosphamide-Induced Oxidative Stress and DNA Damage: A Study in Mice. Chem. Biol. Interact. 2009, 180, 398–406. [Google Scholar] [CrossRef]
- Lin, K.H.; Lin, K.C.; Lu, W.J.; Thomas, P.A.; Jayakumar, T.; Sheu, J.R. Astaxanthin, a Carotenoid, Stimulates Immune Responses by Enhancing IFN-γ and Il-2 Secretion in Primary Cultured Lymphocytes in Vitro and Ex Vivo. Int. J. Mol. Sci. 2016, 17. [Google Scholar] [CrossRef]
- Fan, Q.; Chen, Z.; Wu, Y.; Zhu, J.; Yu, Z. Study on the Enhancement of Immune Function of Astaxanthin from Haematococcus Pluvialis. Foods 2021, 10, 1847. [Google Scholar] [CrossRef] [PubMed]
- Petri, D.; Lundebye, A.K. Tissue Distribution of Astaxanthin in Rats Following Exposure to Graded Levels in the Feed. Comp. Biochem. Physiol.-C Toxicol. Pharmacol. 2007, 145, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, Y.; Yoshida, H.; Kondo, K. Potential Anti-Atherosclerotic Properties of Astaxanthin. Mar. Drugs 2016, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- McNulty, H.P.; Byun, J.; Lockwood, S.F.; Jacob, R.F.; Mason, R.P. Differential Effects of Carotenoids on Lipid Peroxidation Due to Membrane Interactions: X-Ray Diffraction Analysis. Biochim. Biophys. Acta-Biomembr. 2007, 1768, 167–174. [Google Scholar] [CrossRef]
- Karppi, J.; Rissanen, T.H.; Nyyssönen, K.; Kaikkonen, J.; Olsson, A.G.; Voutilainen, S.; Salonen, J.T. Effects of Astaxanthin Supplementation on Lipid Peroxidation. Int. J. Vitam. Nutr. Res. 2007, 77, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.R.; Sindhuja, H.N.; Dharmesh, S.M.; Sankar, K.U.; Sarada, R.; Ravishankar, G.A. Effective Inhibition of Skin Cancer, Tyrosinase, and Antioxidative Properties by Astaxanthin and Astaxanthin Esters from the Green Alga Haematococcus Pluvialis. J. Agric. Food Chem. 2013, 61, 3842–3851. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, T.; Hosoda, K.; Hirano, R.; Kurata, H.; Matsumoto, A.; Miki, W.; Kamiyama, M.; Itakura, H.; Yamamoto, S.; Kondo, K. Inhibition of Low-Density Lipoprotein Oxidation by Astaxanthin Tamami of Medicine Introduction Oxidative Modification of Low-Density Lipoprotein ( LDL ) Has Been Implicated in the Pathogenesis of Atheroscle- Rosis ( 1, 2 ). The Rapid Uptake of Oxidative. J. Atheroscler. Thromb. 2000, 7, 216–222. [Google Scholar] [CrossRef]
- Hussein, G.; Nakamura, M.; Zhao, Q.; Iguchi, T.; Goto, H.; Sankawa, U.; Watanabe, H. Antihypertensive and Neuroprotective Effects of Astaxanthin in Experimental Animals. Biol. Pharm. Bull. 2005, 28, 47–52. [Google Scholar] [CrossRef]
- Monroy-Ruiz, J.; Sevilla, M.Á.; Carrón, R.; Montero, M.J. Astaxanthin-Enriched-Diet Reduces Blood Pressure and Improves Cardiovascular Parameters in Spontaneously Hypertensive Rats. Pharmacol. Res. 2011, 63, 44–50. [Google Scholar] [CrossRef]
- Uchiyama, K.; Naito, Y.; Hasegawa, G.; Nakamura, N.; Takahashi, J.; Yoshikawa, T. Astaxanthin Protects β-Cells against Glucose Toxicity in Diabetic Db/Db Mice. Redox Rep. 2002, 7, 290–293. [Google Scholar] [CrossRef]
- Zhuge, F.; Ni, Y.; Wan, C.; Liu, F.; Fu, Z. Anti-Diabetic Effects of Astaxanthin on an Stz-Induced Diabetic Model in Rats. Endocr. J. 2021, 68, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Odeberg, J.M.; Lignell, Å.; Pettersson, A.; Höglund, P. Oral Bioavailability of the Antioxidant Astaxanthin in Humans Is Enhanced by Incorporation of Lipid Based Formulations. Eur. J. Pharm. Sci. 2003, 19, 299–304. [Google Scholar] [CrossRef]
- Choi, H.D.; Kang, H.E.; Yang, S.H.; Lee, M.G.; Shin, W.G. Pharmacokinetics and First-Pass Metabolism of Astaxanthin in Rats. Br. J. Nutr. 2011, 105, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y.; Ishikura, M.; Maoka, T. Bioavailability of Astaxanthin in Haematococcus Algal Extract: The Effects of Timing of Diet and Smoking Habits. Biosci. Biotechnol. Biochem. 2009, 73, 1928–1932. [Google Scholar] [CrossRef] [PubMed]
- Osterlie, M.B.B.; Østerlie, M.; Bjerkeng, B. Plasma Appearance and Distribution of Astaxanthin E/Z and R/S Isomers in Plasma Lipoproteins of Men after Single Dose Administration of Astaxanthin. J. Nutr. Biochem. 2000, 2863, 482–490. [Google Scholar] [CrossRef]
- Yang, Y.; Kim, B.; Lee, J. Astaxanthin Structure, Metabolism, and Health Benefits. J. Hum. Nutr. Food Sci. 2013, 1–11. [Google Scholar]
- Coral-Hinostroza, G.N.; Ytrestøyl, T.; Ruyter, B.; Bjerkeng, B. Plasma Appearance of Unesterified Astaxanthin Geometrical E/Z and Optical R/S Isomers in Men given Single Doses of a Mixture of Optical 3 and 3′R/S Isomers of Astaxanthin Fatty Acyl Diesters. Comp. Biochem. Physiol.-C Toxicol. Pharmacol. 2004, 139, 99–110. [Google Scholar] [CrossRef]
- Chauhan, I.; Yasir, M.; Verma, M.; Singh, A.P. Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery. Adv. Pharm. Bull. 2020, 10, 150–165. [Google Scholar] [CrossRef]
- Islan, G.A.; Cacicedo, M.L.; Bosio, V.E.; Castro, G.R. Advances in Smart Nanopreparations for Oral Drug Delivery; 2015; ISBN 9781783267231.
- Martínez-Álvarez, Ó.; Calvo, M.M.; Gómez-Estaca, J. Recent Advances in Astaxanthin Micro/Nanoencapsulation to Improve Its Stability and Functionality as a Food Ingredient. Mar. Drugs 2020, 18, 406. [Google Scholar] [CrossRef]
- Date, A.A.; Hanes, J.; Ensign, L.M. Nanoparticles for Oral Delivery: Design, Evaluation and State-of-the-Art. J. Control. Release 2016, 240, 504–526. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects 10 Technology 1007 Nanotechnology 03 Chemical Sciences 0306 Physical Chemistry (Incl. Structural) 03 Chemical Sciences 0303 Macromolecular and Materials Chemistry 11 Medical and He. J. Nanobiotechnol. 2018, 16, 1–33. [Google Scholar] [CrossRef]
- Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable Polymeric Nanoparticles as Drug Delivery Devices. J. Control. Release 2001, 70, 1–20. [Google Scholar] [CrossRef]
- Peng, C.H.; Chang, C.H.; Peng, R.Y.; Chyau, C.C. Improved Membrane Transport of Astaxanthine by Liposomal Encapsulation. Eur. J. Pharm. Biopharm. 2010, 75, 154–161. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, S.; McClements, D.J.; Wang, D.; Xu, Y. Design of Astaxanthin-Loaded Core-Shell Nanoparticles Consisting of Chitosan Oligosaccharides and Poly(Lactic- Co-Glycolic Acid): Enhancement of Water Solubility, Stability, and Bioavailability. J. Agric. Food Chem. 2019, 67, 5113–5121. [Google Scholar] [CrossRef] [PubMed]
- Meor Mohd Affandi, M.M.R.; Julianto, T.; Majeed, A.B.A. Development and Stability Evaluation of Astaxanthin Nanoemulsion. Asian J. Pharm. Clin. Res. 2011, 4, 143–148. [Google Scholar]
- Yeung, A.W.K.; Souto, E.B.; Durazzo, A.; Lucarini, M.; Novellino, E.; Tewari, D.; Wang, D.; Atanasov, A.G.; Santini, A. Big Impact of Nanoparticles: Analysis of the Most Cited Nanopharmaceuticals and Nanonutraceuticals Research. Curr. Res. Biotechnol. 2020, 2, 53–63. [Google Scholar] [CrossRef]
- Fernandez, P.; André, V.; Rieger, J.; Kühnle, A. Nano-Emulsion Formation by Emulsion Phase Inversion. Colloids Surfaces A Physicochem. Eng. Asp. 2004, 251, 53–58. [Google Scholar] [CrossRef]
- Jaiswal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An Advanced Mode of Drug Delivery System. 3 Biotech 2015, 5, 123–127. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Chan, Y.S.; Danquah, M.K. Nano-Formulations of Drugs: Recent Developments, Impact and Challenges. Biochimie 2016, 128–129, 99–112. [Google Scholar] [CrossRef]
- Kumar, M.; Bishnoi, R.S.; Shukla, A.K.; Jain, C.P. Techniques for Formulation of Nanoemulsion Drug Delivery System: A Review. Prev. Nutr. Food Sci. 2019, 24, 225–234. [Google Scholar] [CrossRef]
- Haung, H.Y.; Wang, Y.C.; Cheng, Y.C.; Kang, W.; Hu, S.H.; Liu, D.; Xiao, C.; Wang, H.M.D.; Ali, D. A Novel Oral Astaxanthin Nanoemulsion from Haematococcus Pluvialis Induces Apoptosis in Lung Metastatic Melanoma. Oxid. Med. Cell. Longev. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Fang, T.; Zheng, J.; Guo, M. Physicochemical Properties and Cellular Uptake of Astaxanthin-Loaded Emulsions. Molecules 2019, 24, 727. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Hernández, C.R.; García-Alvarado, M.A.; García-Galindo, H.S.; Salgado-Cervantes, M.A.; Beristain, C.I. STABILITY, ANTIOXIDANT ACTIVITY AND BIOAVAILABILITY OFNANO-EMULSIFIED ASTAXANTHIN. Rev. Mex. Ing. Química 2016, 15, 457–468. [Google Scholar] [CrossRef]
- Meor Mohd Affandi, M.M.R.; Julianto, T.; Majeed, A.B.A. Enhanced Oral Bioavailability of Astaxanthin with Droplet Size Reduction. Food Sci. Technol. Res. 2012, 18, 549–554. [Google Scholar] [CrossRef]
- Boonlao, N.; Ruktanonchai, U.R.; Anal, A.K. Enhancing Bioaccessibility and Bioavailability of Carotenoids Using Emulsion-Based Delivery Systems. Colloids Surfaces B Biointerfaces 2022, 209, 112211. [Google Scholar] [CrossRef] [PubMed]
- Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and Nanoparticles: Nanosized Vehicles for Drug Delivery in Cancer. Trends Pharmacol. Sci. 2009, 30, 592–599. [Google Scholar] [CrossRef]
- Gregoriadis, G.; Florence, A.T. Liposomes in Drug Delivery. Drugs 1993, 45, 15–28. [Google Scholar] [CrossRef]
- Jafari, Z.; Bigham, A.; Sadeghi, S.; Dehdashti, S.M.; Rabiee, N.; Abedivash, A.; Bagherzadeh, M.; Nasseri, B.; Karimi-Maleh, H.; Sharifi, E.; et al. Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. J. Med. Chem. 2022, 65, 2–36. [Google Scholar] [CrossRef]
- Sangsuriyawong, A.; Limpawattana, M.; Siriwan, D.; Klaypradit, W. Properties and Bioavailability Assessment of Shrimp Astaxanthin Loaded Liposomes. Food Sci. Biotechnol. 2019, 28, 529–537. [Google Scholar] [CrossRef]
- Karim, K.; Mandal, A.; Biswas, N.; Guha, A.; Chatterjee, S.; Behera, M.; Kuotsu, K. Niosome: A Future of Targeted Drug Delivery Systems. J. Adv. Pharm. Technol. Res. 2010, 1, 374–380. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Falsafi, S.R.; Jafari, S.M. Nanoencapsulation of Carotenoids within Lipid-Based Nanocarriers. J. Control. Release 2019, 298, 38–67. [Google Scholar] [CrossRef] [PubMed]
- Santonocito, D.; Raciti, G.; Campisi, A.; Sposito, G.; Panico, A.; Siciliano, E.A.; Sarpietro, M.G.; Damiani, E.; Puglia, C. Astaxanthin-Loaded Stealth Lipid Nanoparticles (AST-SSLN) as Potential Carriers for the Treatment of Alzheimer’s Disease: Formulation Development and Optimization. Nanomaterials 2021, 11, 391. [Google Scholar] [CrossRef] [PubMed]
- Muchow, M.; Maincent, P.; Müller, R.H. Lipid Nanoparticles with a Solid Matrix (SLN®, NLC®, LDC®) for Oral Drug Delivery. Drug Dev. Ind. Pharm. 2008, 34, 1394–1405. [Google Scholar] [CrossRef] [PubMed]
- Talegaonkar, S.; Bhattacharyya, A. Potential of Lipid Nanoparticles (SLNs and NLCs) in Enhancing Oral Bioavailability of Drugs with Poor Intestinal Permeability. AAPS PharmSciTech 2019, 20. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Hu, Q.; Lee, J.Y.; Luo, Y. Solid Lipid-Polymer Hybrid Nanoparticles by in Situ Conjugation for Oral Delivery of Astaxanthin. J. Agric. Food Chem. 2018, 66, 9473–9480. [Google Scholar] [CrossRef]
- Li, M.; Zahi, M.R.; Yuan, Q.; Tian, F.; Liang, H. Preparation and Stability of Astaxanthin Solid Lipid Nanoparticles Based on Stearic Acid. Eur. J. Lipid Sci. Technol. 2016, 118, 592–602. [Google Scholar] [CrossRef]
- Jain, P.; Rahi, P.; Pandey, V.; Asati, S.; Soni, V. Nanostructure Lipid Carriers: A Modish Contrivance to Overcome the Ultraviolet Effects. Egypt. J. Basic Appl. Sci. 2017, 4, 89–100. [Google Scholar] [CrossRef]
- López-García, R.; Ganem-Rondero, A. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC): Occlusive Effect and Penetration Enhancement Ability. J. Cosmet. Dermatological Sci. Appl. 2015, 05, 62–72. [Google Scholar] [CrossRef]
- Mao, X.; Tian, Y.; Sun, R.; Wang, Q.; Huang, J.; Xia, Q. Stability Study and in Vitro Evaluation of Astaxanthin Nanostructured Lipid Carriers in Food Industry. Integr. Ferroelectr. 2019, 200, 208–216. [Google Scholar] [CrossRef]
- Hu, Q.; Hu, S.; Fleming, E.; Lee, J.Y.; Luo, Y. Chitosan-Caseinate-Dextran Ternary Complex Nanoparticles for Potential Oral Delivery of Astaxanthin with Significantly Improved Bioactivity. Int. J. Biol. Macromol. 2020, 151, 747–756. [Google Scholar] [CrossRef]
- Kim, E.S.; Baek, Y.; Yoo, H.J.; Lee, J.S.; Lee, H.G. Chitosan-Tripolyphosphate Nanoparticles Prepared by Ionic Gelation Improve the Antioxidant Activities of Astaxanthin in the In Vitro and In Vivo Model. Antioxidants 2022, 11, 479. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Gu, Z.; Liao, Y.; Li, S.; Xue, Y.; Firempong, M.A.; Xu, Y.; Yu, J.; Smyth, H.D.C.; Xu, X. Improved Intestinal Absorption and Oral Bioavailability of Astaxanthin Using Poly (Ethylene Glycol)-Graft-Chitosan Nanoparticles: Preparation, in Vitro Evaluation, and Pharmacokinetics in Rats. J. Sci. Food Agric. 2022, 102, 1002–1011. [Google Scholar] [CrossRef] [PubMed]
- Ku Aizuddin, K.A.; Nurlina, M.A.; Khuriah, A.H.; Foo, C.S.; Meor Mohd Affandi, M.M.R. Development of Astaxanthin-Loaded Biodegradable Nanoparticles by Nanoprecipitation Method. Int. J. Pharm. Technol. 2014, 5, 5962–5972. [Google Scholar]
- Azman, K.A.K.; Seong, F.C.; Singh, G.K.S.; Affandi, M.M.R.M.M. Physicochemical Characterization of Astaxanthin-Loaded Plga Formulation Via Nanoprecipitation Technique. J. Appl. Pharm. Sci. 2021, 11, 056–061. [Google Scholar] [CrossRef]
- Hu, F.; Liu, W.; Yan, L.; Kong, F.; Wei, K. Optimization and Characterization of Poly(Lactic-Co-Glycolic Acid) Nanoparticles Loaded with Astaxanthin and Evaluation of Anti-Photodamage Effect in Vitro. R. Soc. Open Sci. 2019, 6. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, R. Regulatory Issues Surrounding Nanomedicines: Setting the Scene for the next Generation of Nanopharmaceuticals. Nanomedicine 2007, 2, 143–147. [Google Scholar] [CrossRef]
Author(s) | Year | Factors Affecting Astaxanthin Bioavailability | Study Size, n | AUC(0–∞) ± S.D. (µg.h.l−1) | Summary of Findings | |
---|---|---|---|---|---|---|
Yumika Okada, Masaharu Ishikura & Takashi Maoka | 2009 | Oral bioavailability of astaxanthin based on two different timings | 20 | Before-meal group | 2996 ± 969 | The AUC(0–∞) for the after-meal group was 2.5 times higher than the before-meal group. This may be due to the additional lipid substances that enhance the absorption of astaxanthin. |
After-meal group | 7526 ± 3300 | |||||
Johanna Mercke Odeberg, Ake Lignell, Annette Pettersson & Peter Höglund | 2003 | Oral bioavailability of astaxanthin in four different formulations | 32 | Reference 1 | 1347 ± 501 | Formulation B had the highest AUC(0–∞) among all four formulations. This may be due to the proportion of lipids in the formulation that improve the absorption of astaxanthin. |
A 2 | 2216 ± 574 * | |||||
B 3 | 4960 ± 1504 * | |||||
C 4 | 2580 ± 850 * | |||||
Yumika Okada, Masaharu Ishikura & Takashi Maoka | 2009 | The impact smoking on oral bioavailability of astaxanthin | 20 | Non-smokers group | 7526 ± 3300 | The smoking habit affected the pharmacokinetics parameters; AUC(0–∞) was 1.15 times higher in the non-smokers group compared to smokers’ group and 1.65 times for t1/2. This may be due to the high oxidative stress led to high oxidation of astaxanthin. |
Smokers group | 6518 ± 4125 |
Nano-Formulations | Nanoparticle Size | Method of Preparation | In Vitro | In Vivo | Findings | Reference |
---|---|---|---|---|---|---|
Nanoemulsions | 145.6 ± 27.7 to 155.0 ± 40.8 nm | Self-emulsification | ✓ | ✓ |
| [53] |
193.87 ± 3.84 to 286.52 ± 19.75 nm | High shear homogenization, ultrasonication | ✓ |
| [54] | ||
0.023 ± 3.83 to 19.65 ± 3.34 nm | Self-emulsification, high pressure homogenization, ultrasonication | ✓ | ✓ |
| [55] | |
0.128 ± 0.015 µm | Homogenization | ✓ |
| [56] | ||
Liposomes | 0.14 ± 0.01 nm | Thin-film hydration | ✓ |
| [61] | |
SLNs | 150 to 800 nm | Solvent-free homogenization, sonication | ✓ |
| [67] | |
Chitosan-based | 91.7 to 148.8 nm | Ionic gelation crosslinker-free fabrication method | ✓ |
| [72] | |
483.9 ± 148.4 to 653.8 ± 215.1 nm | Ionic gelation | ✓ | ✓ |
| [73] | |
122.1 ± 6.4 nm | Solvent evaporation | ✓ | ✓ |
| [74] | |
PLGA-based | 150 nm | Anti-solvent precipitation, electrostatic deposition | ✓ |
| [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdol Wahab, N.R.; Meor Mohd Affandi, M.M.R.; Fakurazi, S.; Alias, E.; Hassan, H. Nanocarrier System: State-of-the-Art in Oral Delivery of Astaxanthin. Antioxidants 2022, 11, 1676. https://doi.org/10.3390/antiox11091676
Abdol Wahab NR, Meor Mohd Affandi MMR, Fakurazi S, Alias E, Hassan H. Nanocarrier System: State-of-the-Art in Oral Delivery of Astaxanthin. Antioxidants. 2022; 11(9):1676. https://doi.org/10.3390/antiox11091676
Chicago/Turabian StyleAbdol Wahab, Nur Rafiqah, Meor Mohd Redzuan Meor Mohd Affandi, Sharida Fakurazi, Ekram Alias, and Haniza Hassan. 2022. "Nanocarrier System: State-of-the-Art in Oral Delivery of Astaxanthin" Antioxidants 11, no. 9: 1676. https://doi.org/10.3390/antiox11091676
APA StyleAbdol Wahab, N. R., Meor Mohd Affandi, M. M. R., Fakurazi, S., Alias, E., & Hassan, H. (2022). Nanocarrier System: State-of-the-Art in Oral Delivery of Astaxanthin. Antioxidants, 11(9), 1676. https://doi.org/10.3390/antiox11091676