Restoring Sperm Quality Post-Cryopreservation Using Mitochondrial-Targeted Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Semen Collection
2.2. Semen Cryopreservation
2.3. Sperm Motility and Kinetic Analysis
2.4. Sperm Mitochondrial Analysis
2.5. Sperm DNA Damage Analysis
2.6. Statistical Analysis
3. Results
3.1. The Addition of Antioxidants to a Cryopreservation Medium Improves Sperm Motility Post-Cryopreservation
3.2. Semen Cryopreservation Induces Sperm mtROS
3.3. Mitochondrial Activators Reduced Sperm DNA Damage Caused by Freezing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Santo, M.; Tarozzi, N.; Nadalini, M.; Borini, A. Human sperm cryopreservation: Update on techniques, effect on DNA integrity, and implications for art. Adv. Urol. 2012, 2012, 854837. [Google Scholar] [CrossRef] [PubMed]
- Best, B.P. Cryoprotectant toxicity: Facts, issues, and questions. Rejuvenation Res. 2015, 18, 422–436. [Google Scholar] [CrossRef] [PubMed]
- Kopeika, J.; Thornhill, A.; Khalaf, Y. The effect of cryopreservation on the genome of gametes and embryos: Principles of cryobiology and critical appraisal of the evidence. Hum. Reprod. Update 2014, 21, 209–227. [Google Scholar] [CrossRef] [PubMed]
- Isachenko, E.; Isachenko, V.; Sanchez, R.; Katkov, I.I.; Kreienberg, R. Cryopreservation of spermatozoa: Old routine and new perspectives. In Principles and Practice of Fertility Preservation; Cambridge University Press: New York, NY, USA, 2011; pp. 176–198. [Google Scholar]
- Gualtieri, R.; Kalthur, G.; Barbato, V.; Di Nardo, M.; Adiga, S.K.; Talevi, R. Mitochondrial dysfunction and oxidative stress caused by cryopreservation in reproductive cells. Antioxidants 2021, 10, 337. [Google Scholar] [CrossRef]
- Said, T.M.; Gaglani, A.; Agarwal, A. Implication of apoptosis in sperm cryoinjury. Reprod. Biomed. Online 2010, 21, 456–462. [Google Scholar] [CrossRef]
- Aitken, R.J.; Jones, K.T.; Robertson, S.A. Reactive oxygen species and sperm function—In sickness and in health. J. Androl. 2012, 33, 1096–1106. [Google Scholar] [CrossRef]
- Iommiello, V.M.; Albani, E.; Di Rosa, A.; Marras, A.; Menduni, F.; Morreale, G.; Levi, S.L.; Pisano, B.; Levi-Setti, P.E. Ejaculate oxidative stress is related with sperm DNA fragmentation and round cells. Int. J. Endocrinol. 2015, 2015, 321901. [Google Scholar] [CrossRef]
- Nijs, M.; Ombelet, W. Cryopreservation of human sperm. Hum. Fertil. 2001, 4, 158–163. [Google Scholar] [CrossRef]
- Moraes, C.R.; Meyers, S. The sperm mitochondrion: Organelle of many functions. Anim. Reprod. Sci. 2018, 194, 71–80. [Google Scholar] [CrossRef]
- Zini, A. Are sperm chromatin and DNA defects relevant in the clinic? Syst. Biol. Reprod. Med. 2011, 57, 78–85. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, J.Y.; Xue, X.; Zhu, G.X. The association between sperm DNA fragmentation and reproductive outcomes following intrauterine insemination, a meta analysis. Reprod. Toxicol. 2019, 86, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef] [PubMed]
- Martin-Hidalgo, D.; Bragado, M.J.; Batista, A.R.; Oliveira, P.F.; Alves, M.G. Antioxidants and male fertility: From molecular studies to clinical evidence. Antioxidants 2019, 8, 89. [Google Scholar] [CrossRef] [PubMed]
- Lasso, J.L.; Noiles, E.E.; Alvarez, J.G.; Storey, B.T. Mechanism of superoxide dismutase loss from human sperm cells during cryopreservation. J. Androl. 1994, 15, 255–265. [Google Scholar] [PubMed]
- Majzoub, A.; Agarwal, A. Antioxidants in sperm cryopreservation. In Male Infertility: Contemporary Clinical Approaches, Andrology, Art and Antioxidants; Springer International Publishing: Cham, Switzerland, 2020; pp. 671–678. [Google Scholar]
- Park, N.C.; Park, H.J.; Lee, K.M.; Shin, D.G. Free radical scavenger effect of Rebamipide in sperm processing and cryopreservation. Asian J. Androl. 2003, 5, 195–201. [Google Scholar] [PubMed]
- Taylor, K.; Roberts, P.; Sanders, K.; Burton, P. Effect of antioxidant supplementation of cryopreservation medium on post-thaw integrity of human spermatozoa. Reprod. Biomed. Online 2009, 18, 184–189. [Google Scholar] [CrossRef]
- Roca, J.; Carvajal, G.; Lucas, X.; Vazquez, J.M.; Martinez, E.A. Fertility of weaned sows after deep intrauterine insemination with a reduced number of frozen-thawed spermatozoa. Theriogenology 2003, 60, 77–87. [Google Scholar] [CrossRef]
- O’Flaherty, C.; Beconi, M.; Beorlegui, N. Effect of natural antioxidants, superoxide dismutase and hydrogen peroxide on capacitation of frozen-thawed bull spermatozoa. Andrologia 1997, 29, 269–275. [Google Scholar] [CrossRef]
- Cerolini, S.; Maldjian, A.; Surai, P.; Noble, R. Viability, susceptibility to peroxidation and fatty acid composition of boar semen during liquid storage. Anim. Reprod. Sci. 2000, 58, 99–111. [Google Scholar] [CrossRef]
- Chanapiwat, P.; Kaeoket, K.; Tummaruk, P. Effects of DHA-enriched hen egg yolk and L-cysteine supplementation on quality of cryopreserved boar semen. Asian J. Androl. 2009, 11, 600–608. [Google Scholar] [CrossRef] [Green Version]
- Kaya, A.; Aksoy, M.; Baspinar, N.; Yildiz, C.; Ataman, M.B. Effect of Melatonin implantation to sperm donor rams on post-thaw viability and acrosomal integrity of sperm cells in the breeding and non-breeding season. Reprod. Domest. Anim. 2001, 36, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Rebolledo, E.; Fernández-Santos, M.R.; Bisbal, A.; Ros-Santaella, J.L.; Ramón, M.; Carmona, M.; Martínez-Pastor, F.; Garde, J.J. Improving the effect of incubation and oxidative stress on thawed spermatozoa from red deer by using different antioxidant treatments. Reprod. Fertil. Dev. 2010, 22, 856–870. [Google Scholar] [CrossRef] [PubMed]
- Yoshimoto, T.; Nakamura, S.; Yamauchi, S.; Muto, N.; Nakada, T.; Ashizawa, K.; Tatemoto, H. Improvement of the post-thaw qualities of Okinawan native pig spermatozoa frozen in an extender supplemented with ascorbic acid 2-O-alpha-glucoside. Cryobiology 2008, 57, 30–36. [Google Scholar] [CrossRef]
- Peña, F.J.; Johannisson, A.; Wallgren, M.; Rodriguez Martinez, H. Antioxidant supplementation in vitro improves boar sperm motility and mitochondrial membrane potential after cryopreservation of different fractions of the ejaculate. Anim. Reprod. Sci. 2003, 78, 85–98. [Google Scholar] [CrossRef]
- Lv, C.; Larbi, A.; Wu, G.; Hong, Q.; Quan, G. Improving the quality of cryopreserved goat semen with a commercial bull extender supplemented with Resveratrol. Anim. Reprod. Sci. 2019, 208, 106127. [Google Scholar] [CrossRef]
- Silva, E.; Cajueiro, J.; Silva, S.; Soares, P.; Guerra, M. Effect of antioxidants Resveratrol and Quercetin on in vitro evaluation of frozen ram sperm. Theriogenology 2012, 77, 1722–1726. [Google Scholar] [CrossRef]
- Longobardi, V.; Zullo, G.; Salzano, A.; De Canditiis, C.; Cammarano, A.; De Luise, L.; Puzio, M.V.; Neglia, G.; Gasparrini, B. Resveratrol prevents capacitation-like changes and improves in vitro fertilizing capability of buffalo frozen-thawed sperm. Theriogenology 2017, 88, 1–8. [Google Scholar] [CrossRef]
- Banihani, S.; Agarwal, A.; Sharma, R.; Bayachou, M. Cryoprotective effect of L-carnitine on motility, vitality and DNA oxidation of human spermatozoa. Andrologia 2014, 46, 637–641. [Google Scholar] [CrossRef]
- Zhang, W.; Li, F.; Cao, H.; Li, C.; Du, C.; Yao, L.; Mao, H.; Lin, W. Protective effects of L-carnitine on astheno- and normozoospermic human semen samples during cryopreservation. Zygote 2016, 24, 293–300. [Google Scholar] [CrossRef]
- Gottwald, E.M.; Duss, M.; Bugarski, M.; Haenni, D.; Schuh, C.D.; Landau, E.M.; Hall, A.M. The targeted anti-oxidant mitoq causes mitochondrial swelling and depolarization in kidney tissue. Physiol. Rep. 2018, 6, e13667. [Google Scholar] [CrossRef]
- Kumar, P.; Wang, M.; Isachenko, E.; Rahimi, G.; Mallmann, P.; Wang, W.; von Brandenstein, M.; Isachenko, V. Unraveling subcellular and ultrastructural changes during vitrification of human spermatozoa: Effect of a mitochondria-targeted antioxidant and a permeable cryoprotectant. Front. Cell Dev. Biol. 2021, 9, 1515. [Google Scholar] [CrossRef] [PubMed]
- Literati-Nagy, B.; Peterfai, E.; Kulcsar, E.; Literati-Nagy, Z.; Buday, B.; Tory, K.; Mandl, J.; Sumegi, B.; Fleming, A.; Roth, J.; et al. Beneficial effect of the insulin sensitizer (HSP inducer) BGP-15 on olanzapine-induced metabolic disorders. Brain Res. Bull. 2010, 83, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Sumegi, K.; Fekete, K.; Antus, C.; Debreceni, B.; Hocsak, E.; Gallyas, F., Jr.; Sumegi, B.; Szabo, A. BGP-15 protects against oxidative stress- or lipopolysaccharide-induced mitochondrial destabilization and reduces mitochondrial production of reactive oxygen species. PLoS ONE 2017, 12, e0169372. [Google Scholar] [CrossRef]
- Al-Zubaidi, U.; Adhikari, D.; Cinar, O.; Zhang, Q.-H.; Yuen, W.S.; Murphy, M.P.; Rombauts, L.; Robker, R.L.; Carroll, J. Mitochondria-targeted therapeutics, MitoQ and BGP-15, reverse aging-associated meiotic spindle defects in mouse and human oocytes. Hum. Reprod. 2021, 36, 771–784. [Google Scholar] [CrossRef]
- Naderi Noreini, S.; Malmir, M.; Ghafarizadeh, A.; Faraji, T.; Bayat, R. Protective effect of L-carnitine on apoptosis, DNA fragmentation, membrane integrity and lipid peroxidation of spermatozoa in the asthenoteratospermic men. Andrologia 2021, 53, e13932. [Google Scholar] [CrossRef]
- Banihani, S.; Sharma, R.; Bayachou, M.E.; Sabanegh, E.; Agarwal, A. Human sperm DNA oxidation, motility and viability in the presence of L-carnitine during in vitro incubation and centrifugation. Andrologia 2012, 44 (Suppl. 1), 505–512. [Google Scholar] [CrossRef]
- Biggers, J.D.; Whitten, W.K.; Whittingham, D.G. The culture of mouse embryos in vitro. In Methods in Mammalian Embryology; Freeman: San Francisco, CA, USA, 1971; pp. 86–116. [Google Scholar]
- Horst, V.D.G.; Maree, L. Do Sperm Functional Tests Inform Us about Potential Fertility in Humans? MICROPTIC: Barcelona, Spain, 2021. [Google Scholar]
- Vorilhon, S.; Brugnon, F.; Kocer, A.; Dollet, S.; Bourgne, C.; Berger, M.; Janny, L.; Pereira, B.; Aitken, R.J.; Moazamian, A.; et al. Accuracy of human sperm DNA oxidation quantification and threshold determination using an 8-OHdG immuno-detection assay. Hum. Reprod. 2018, 33, 553–562. [Google Scholar] [CrossRef]
- Fernández, J.L.; Muriel, L.; Goyanes, V.; Segrelles, E.; Gosalvez, J.; Enciso, M.; LaFromboise, M.; De Jonge, C. Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test. Fertil. Steril. 2005, 84, 833–842. [Google Scholar] [CrossRef]
- O’Connell, M.; McClure, N.; Lewis, S.E.M. The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Hum. Reprod. 2002, 17, 704–709. [Google Scholar] [CrossRef]
- Emamverdi, M.; Zhandi, M.; Shahneh, A.Z.; Sharafi, M.; Akhlaghi, A.; Motlagh, M.K.; Dadkhah, F.; Davachi, N.D. Flow cytometric and microscopic evaluation of post-thawed ram semen cryopreserved in chemically defined home-made or commercial extenders. Anim. Prod. Sci. 2015, 55, 551–558. [Google Scholar] [CrossRef]
- Fernandes, G.H.C.; Carvalho, P.D.T.C.D.; Serra, A.J.; Crespilho, A.M.; Peron, J.P.S.; Rossato, C.; Leal-Junior, E.C.; Albertini, R. The effect of low-level laser irradiation on sperm motility, and integrity of the plasma membrane and acrosome in cryopreserved bovine sperm. PLoS ONE 2015, 10, e0121487. [Google Scholar] [CrossRef] [PubMed]
- Hezavehei, M.; Sharafi, M.; Kouchesfahani, H.M.; Henkel, R.; Agarwal, A.; Esmaeili, V.; Shahverdi, A. Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reprod. Biomed. Online 2018, 37, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Iaffaldano, N.; Paventi, G.; Pizzuto, R.; Di Iorio, M.; Bailey, J.L.; Manchisi, A.; Passarella, S. Helium-neon laser irradiation of cryopreserved ram sperm enhances Cytochrome c oxidase activity and ATP levels improving semen quality. Theriogenology 2016, 86, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Qadeer, S.; Khan, M.; Ansari, M.; Rakha, B.; Ejaz, R.; Iqbal, R.; Younis, M.; Ullah, N.; DeVries, A.L.; Akhter, S. Efficiency of antifreeze glycoproteins for cryopreservation of Nili-ravi (Bubalus bubalis) buffalo bull sperm. Anim. Reprod. Sci. 2015, 157, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.M.; Cao, Z.; Liu, H.; Khan, A.; Rahman, S.U.; Khan, M.Z.; Sathanawongs, A.; Zhang, Y. Impact of cryopreservation on spermatozoa freeze-thawed traits and relevance omics to assess sperm cryo-tolerance in farm animals. Front. Vet. Sci. 2021, 8, 609180. [Google Scholar] [CrossRef]
- Zheng, J.; Lu, Y.; Qu, X.; Wang, P.; Zhao, L.; Gao, M.; Shi, H.; Jin, X. Decreased sperm motility retarded icsi fertilization rate in severe oligozoospermia but good-quality embryo transfer had achieved the prospective clinical outcomes. PLoS ONE 2016, 11, e0163524. [Google Scholar]
- LLoutradi, K.E.; Tarlatzis, B.C.; Goulis, D.G.; Zepiridis, L.; Pagou, T.; Chatziioannou, E.; Grimbizis, G.F.; Papadimas, I.; Bontis, I. The effects of sperm quality on embryo development after intracytoplasmic sperm injection. J. Assist. Reprod. Genet. 2006, 23, 69–74. [Google Scholar] [CrossRef]
- Liu, L.; Wang, M.J.; Yu, T.H.; Cheng, Z.; Li, M.; Guo, Q.W. Mitochondria-targeted antioxidant Mitoquinone protects post-thaw human sperm against oxidative stress injury. Zhonghua Nan Ke Xue 2016, 22, 205–211. [Google Scholar]
- Murphy, M.P.; Smith, R.A. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 629–656. [Google Scholar] [CrossRef]
- Aitken, R.J.; Clarkson, J.S. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. Reproduction 1987, 81, 459–469. [Google Scholar] [CrossRef]
- Dunning, K.R.; Akison, L.K.; Russell, D.L.; Norman, R.J.; Robker, R.L. Increased beta-oxidation and improved oocyte developmental competence in response to L-carnitine during ovarian in vitro follicle development in mice. Biol. Reprod. 2011, 85, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Dunning, K.R.; Cashman, K.; Russell, D.L.; Thompson, J.G.; Norman, R.J.; Robker, R.L. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol. Reprod. 2010, 83, 909–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.Q.; Jia, B.Y.; Li, J.J.; Fu, X.W.; Zhou, G.B.; Hou, Y.P.; Zhu, S.E. L-carnitine enhances oocyte maturation and development of parthenogenetic embryos in pigs. Theriogenology 2011, 76, 785–793. [Google Scholar] [CrossRef]
- Umehara, T.; Winstanley, Y.E.; Andreas, E.; Morimoto, A.; Williams, E.J.; Smith, K.M.; Carroll, J.; Febbraio, M.A.; Shimada, M.; Russell, D.L.; et al. Female reproductive life span is extended by targeted removal of fibrotic collagen from the mouse ovary. Sci. Adv. 2022, 8, eabn4564. [Google Scholar] [CrossRef] [PubMed]
- Szabo, A.; Sumegi, K.; Fekete, K.; Hocsak, E.; Debreceni, B.; Setalo, G.; Kovacs, K.; Deres, L.; Kengyel, A.; Kovacs, D.; et al. Activation of mitochondrial fusion provides a new treatment for mitochondria-related diseases. Biochem. Pharmacol. 2018, 150, 86–96. [Google Scholar] [CrossRef]
- Horvath, O.; Ordog, K.; Bruszt, K.; Deres, L.; Gallyas, F.; Sumegi, B.; Toth, K.; Halmosi, R. BGP-15 protects against heart failure by enhanced mitochondrial biogenesis and decreased fibrotic remodelling in spontaneously hypertensive rats. Oxidative Med. Cell. Longev. 2021, 2021, 1250858. [Google Scholar] [CrossRef]
- Condorelli, R.A.; La Vignera, S.; Bellanca, S.; Vicari, E.; Calogero, A.E. Myoinositol: Does it improve sperm mitochondrial function and sperm motility? Urology 2012, 79, 1290–1295. [Google Scholar] [CrossRef]
Number of patients | 34 |
Age, mean ± SD (range min–max) | 36.7 ± 5.7 (27–51) |
BMI, mean ± SD (range min–max) | 28.9 ± 5.0 (21.3–46.1) |
Cigarette smoker, n (%) | 1 (2.9) |
Alcohol consumer, n (%) | 28 (82.4) |
Cause of infertility | |
Male factor, n (%) | 12 (35.3) |
Female factor, n (%) | 24 (70.6) |
Unexplained, n (%) | 7 (20.6) |
Fresh (n = 34) | Control (n = 34) | BGP-15 (n = 34) | MitoQ (n = 21) | L-Carnitine (n = 11) | ||
---|---|---|---|---|---|---|
VCL (µm s−1) | Mean | 36.5 ± 11.4 a | 29.5 ± 7.7 b | 31.6 ± 5.9 b | 31.7 ± 8.1 b | 34.7 ± 9.0 a,b |
Rapid | 48.3 ± 14.7 | 45.3 ± 17.7 | 49.1 ± 13.3 | 46.5 ± 19.8 | 54.1 ± 6.8 | |
Medium | 19.4 ± 2.1 a | 18.1 ± 1.7 b | 18.3 ± 1.4 b | 18.4 ± 2.0 b | 19.1 ± 1.7 a,b | |
Slow | 19.4 ± 2.1 a | 18.1 ± 1.7 b | 18.3 ± 1.4 b | 18.4 ± 2.0 b | 19.1 ± 1.7 a,b | |
VSL (µm s−1) | Mean | 13.0 ± 5.1 a | 8.6 ± 3.4 b | 9.2 ± 2.8 b | 9.3 ± 3.3 b | 10.7 ± 3.2 a,b |
Rapid | 27.3 ± 8.4 a | 23.6 ± 9.7 b | 25.9 ± 7.8 a,b | 24.9 ±10.6 a,b | 28.0 ± 2.9 a,b | |
VAP (%) | Mean | 20.84 ± 6.9 a | 4.8 ± 1.2 b | 10.5 ± 1.9 b | 23.5 ± 4.2 b | 60.2 ± 6.8 a,b |
Rapid | 31.2 ± 9.4 a | 27.0 ± 11.1 b | 29.6 ± 8.7 a,b | 28.7 ±12.1 a,b | 32.1 ± 3.1 a,b | |
LIN (%) | Mean | 32.7 ± 7.9 a | 26.5 ± 6.3 b | 27.2 ± 5.0 b | 27.6 ± 5.3 b | 28.8 ± 4.9 a,b |
Rapid | 54.5 ± 15.7 a | 46.9 ± 19.3 b | 50.9 ±15.2 a,b | 47.7 ±19.8 a,b | 53.4 ± 3.5 a,b | |
STR (%) | Mean | 55.1 ± 8.4 a | 46.3 ± 10.3 b | 49.9 ± 6.2 b | 49.3 ± 6.5 b | 51.5 ± 5.3 b |
Rapid | 82.3 ± 21.0 | 77.4 ± 28.8 | 82.0 ± 20.9 | 74.9 ± 29.9 | 87.2 ± 1.2 | |
WOB (%) | Mean | 56.0 ± 7.1 a | 50.2 ± 6.7 b | 50.5 ± 4.7 b | 51.9 ± 4.4 b | 52.7 ± 5.3 a,b |
Rapid | 62.0 ± 17.5 a | 53.5 ± 22.0 b | 57.9 ± 16.7 a,b | 54.7 ± 22.5 a,b | 61.1 ± 3.7 a,b | |
ALH (µm) | Mean | 2.00 ± 0.48 a | 1.72 ± 0.34 a | 1.82 ± 0.30 a | 1.84 ± 0.36 a | 1.93 ± 0.37 b |
Rapid | 2.35 ± 0.58 | 2.21 ± 0.88 | 2.38 ± 0.65 | 2.32 ± 1.08 | 2.52 ± 0.29 | |
BCF (Hz) | Mean | 4.64 ± 1.52 a | 2.95 ± 1.15 b | 3.27 ± 1.05 c | 3.18 ± 1.33 b | 3.87 ± 1.04 d |
Rapid | 7.52 ± 2.12 a | 6.08 ± 3.13 b | 6.47 ± 2.76 b | 6.20 ± 3.11 b | 6.85 ± 1.58 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, M.; Prashar, T.; Connaughton, H.; Barry, M.; Robker, R.; Rose, R. Restoring Sperm Quality Post-Cryopreservation Using Mitochondrial-Targeted Compounds. Antioxidants 2022, 11, 1808. https://doi.org/10.3390/antiox11091808
Gonzalez M, Prashar T, Connaughton H, Barry M, Robker R, Rose R. Restoring Sperm Quality Post-Cryopreservation Using Mitochondrial-Targeted Compounds. Antioxidants. 2022; 11(9):1808. https://doi.org/10.3390/antiox11091808
Chicago/Turabian StyleGonzalez, Macarena, Tanisha Prashar, Haley Connaughton, Michael Barry, Rebecca Robker, and Ryan Rose. 2022. "Restoring Sperm Quality Post-Cryopreservation Using Mitochondrial-Targeted Compounds" Antioxidants 11, no. 9: 1808. https://doi.org/10.3390/antiox11091808
APA StyleGonzalez, M., Prashar, T., Connaughton, H., Barry, M., Robker, R., & Rose, R. (2022). Restoring Sperm Quality Post-Cryopreservation Using Mitochondrial-Targeted Compounds. Antioxidants, 11(9), 1808. https://doi.org/10.3390/antiox11091808