Antioxidant Activity of Medicinal Herbs and Spices from Plants of the Lamiaceae, Apiaceae and Asteraceae Families: Chemometric Interpretation of the Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of Infusions
2.3. Reagents and Solutions
2.4. Determination of Total Phenolic Content (TPC)
2.5. Determination of Flavonoid Content (FC)
2.6. Determination of Total Antioxidant Capacity (TAC)
2.6.1. DPPH Assay
2.6.2. ABTS Assay
2.6.3. FRAP Assay
2.7. Determination of Ferrous Ions Chelating Capacity (FIC)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Content of Phenolic Compounds
3.2. Antioxidant Activity
3.3. Ferrous Ions Chelating
3.4. Multivariate Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rao, P.S.; Kalva, S.; Yerramilli, A.; Mamidi, S. Free radicals and tissue damage: Role of antioxidants. Free Radic. Antiox. 2011, 4, 2–7. [Google Scholar]
- Fang, Y.Z.; Yang, S.; Wu, G. Free radicals, antioxidants, and nutrition. Nutrition 2002, 18, 872–879. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef]
- Zafar, F.; Asif, H.M.; Shaheen, G.; Ghauri, A.O.; Rajpoot, S.R.; Tasleem, M.W.; Shamim, T.; Hadi, F.; Noor, R.; Ali, T.; et al. A comprehensive review on medicinal plants possessing antioxidant potential. Clin. Exp. Pharmacol. Physiol. 2023, 50, 205–217. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. Therapeutic potential of phenolic compounds in medicinal plants—Natural health products for human health. Molecules 2023, 28, 1845. [Google Scholar] [CrossRef]
- Umar, A.H.; Ratnadewi, D.; Rafi, M.; Sulistyaningsih, Y.C.; Hamim, H. Phenolics profile and antioxidant activities of in vitro propagules and field-raised plant organs of Curculigo latifolia. J. Appl. Pharm. Sci. 2023, 13, 168–185. [Google Scholar]
- Trevizan, J.; Soto, E.; Parra, F.; Bustos, L.; Parra, C. Antioxidant activity of nine medicinal plants with commercial potential. Idesia (Chile) 2020, 38, 53–58. [Google Scholar] [CrossRef]
- Razali, N.; Mat-Junit, S.; Abdul-Muthalib, A.F.; Subramaniam, S. Effects of various solvents on the extraction of antioxidant phenolics from the leaves, seeds, veins and skins of Tamarindus indica L. Food Chem. 2012, 131, 441–448. [Google Scholar] [CrossRef]
- Miser-Salihogl, E.; Akaydin, G.; Caliskan-Can, E.; Yardim-Akaydin, S. Evaluation of antioxidant activity of various herbal folk medicine. J. Nutr. Food Sci. 2013, 3, 222. [Google Scholar] [CrossRef]
- Scalbert, A.; Manach, C.; Morand, C.; Remsey, C. Dietary polyphenols and prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef]
- Robards, K.; Prenzler, P.D.; Tucker, G.; Swatsitang, P.; Glover, W. Phenolic compounds and their role in oxidative processes in fruits. Food Chem. 1999, 66, 401–436. [Google Scholar] [CrossRef]
- Podsędek, A. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT–Food Sci. Technol. 2007, 40, 1–11. [Google Scholar] [CrossRef]
- Sroka, Z.; Gamian, A.; Cisowski, W. Niskocząsteczkowe związki przeciwutleniające pochodzenia naturalnego. Post. Hig. Med. Dośw. 2005, 59, 34–41. [Google Scholar]
- Kohlműnzer, S. Farmakognozja; PZWL: Warsaw, Poland, 2004. [Google Scholar]
- Low Dog, T. A reason to season: The therapeutic benefits of spices and culinary herbs. Diet Nutr. 2006, 2, 446–449. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Regueiro, J.; Martínez-Huélamo, M.; Alvarenga, J.F.R.; Leal, L.N.; Lamuela-Raventos, R.M. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: Rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chem. 2014, 154, 299–307. [Google Scholar] [CrossRef]
- Lima, M.N.N.; Costa, J.S.; Guimarães, B.A.; Freitas, J.J.S.; Setzer, W.N.; Silva, J.K.R.; Maia, J.G.S. Chemometrics of the composition and antioxidant capacity of Hyptis crenata essential oils from Brazil. Molecules 2023, 28, 3371. [Google Scholar] [CrossRef]
- Tel-Çayan, G.; Deveci, E.; Çayan, F.; Molo, Z.; Duru, M.E.; Yeşil, Y. Chemometrics evaluation of phytochemicals and antioxidant activities of the extracts of Chaerophyllum bulbosum roots and aerial parts. Anal. Let. 2022, 55, 327–342. [Google Scholar] [CrossRef]
- Nonato, C.F.A.; Camilo, C.J.; Leite, D.O.D.; Nobrega, M.G.L.A.; Ribeiro-Filho, J.; Menezes, I.R.A.; Tavares, J.F.; Costa, J.G.M. Comparative analysis of chemical profiles and antioxidant activities of essential oils obtained from species of Lippia L. by chemometrics. Food Chem. 2022, 384, 132614. [Google Scholar] [CrossRef]
- Styawan, A.A.; Susidarti, R.A.; Purwanto, P.; Irnawati, I.; Rohman, A. The use of pattern recognition for classification of Indonesian ginger (Zingiber officinale var. amarum) based on antioxidant activities and FTIR spectra. J. Appl. Pharm. Sci. 2023, 13, 149–156. [Google Scholar] [CrossRef]
- Rácz, A.; Papp, N.; Balogh, E.; Fodor, M.; Héberger, K. Comparison of antioxidant capacity assays with chemometric methods. Anal. Methods 2015, 7, 4216–4224. [Google Scholar] [CrossRef]
- Aoshima, H.; Hirata, S.; Ayabe, S. Antioxidative and anti-hydrogen peroxide activities of various herbal teas. Food Chem. 2007, 103, 617–622. [Google Scholar] [CrossRef]
- Molan, A.L.; Flanagan, J.; Wei, W.; Moughan, P.J. Selenium—Containing green tea has higher antioxidant and prebiotic activities than regular green tea. Food Chem. 2009, 114, 829–835. [Google Scholar] [CrossRef]
- Koşar, M.; Dorman, H.J.D.; Hiltunen, R. Effect of an acid treatment on the phytochemical and antioxidant characteristics of extracts from selected Lamiaceae species. Food Chem. 2005, 91, 525–533. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.-M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Asif, M.; Ansari, S.H.; Haque, M.R.; Kalam, N. Estimation of total phenolic, flavonoid contents and antioxidant activity in the nut galls of Quercus infectoria olivier. J. Pharm. Res. 2012, 5, 3855–3857. [Google Scholar]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Apak, R.; Gorinstein, S.; Böhm, V.; Schaich, K.M.; Özyürek, M.; Güçlü, K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 5, 957–998. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of free radical method to evaluate antioxidant activity. LWT–Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Karakaya, S.; El, S.N.; Karagözlü, N.; Şahin, S. Antioxidant and antimicrobial activities of essential oils obtained from Oregano (Origanum vulgare ssp. hirtum) by using different extraction methods. J. Med. Food 2011, 14, 645–652. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Li, H.B.; Wong, C.C.; Cheng, K.W.; Chen, F. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT–Food Sci. Technol. 2008, 41, 385–390. [Google Scholar] [CrossRef]
- Zielinski, A.A.F.; Haminiuk, C.W.I.; Alberti, A.; Nogueira, A.; Demiate, I.M.; Granato, D. A comparative study of the phenolic compounds and the in vitro antioxidant activity of different Brazilian teas using multivariate statistical techniques. Food Res. Int. 2014, 60, 246–254. [Google Scholar] [CrossRef]
- Singd, N.; Rajini, P.S. Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 2004, 85, 611–616. [Google Scholar] [CrossRef]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 6th ed.; Pearson Education: Essex, UK, 2010. [Google Scholar]
- Ulewicz-Magulska, B.; Wesolowski, M. Total phenolic contents and antioxidant potential of herbs used for medical and culinary purposes. Plant Foods Hum. Nutr. 2019, 74, 61–67. [Google Scholar] [CrossRef]
- Modnicki, D.; Balcerek, M. Estimation of total polyphenols contents in Ocimum basilicum L., Origanum vulgare L. and Thymus vulgaris L. commercial samples. Herb. Pol. 2009, 55, 35–42. [Google Scholar]
- European Pharmacopoeia, 11th ed.; Council of Europe: Strasbourg, France, 2022; Volume 1.
- Polish Pharmacopoeia, 12th ed.; Republic of Poland: Warsaw, Poland, 2020; Volume 2.
- Cicero, N.; Gervasi, T.; Durazzo, A.; Lucarini, M.; Macri, A.; Nava, V.; Giarratana, F.; Tardugno, R.; Vadala, R.; Santini, A. Mineral and microbiological analysis of spices and aromatic herbs. Foods 2022, 11, 548. [Google Scholar] [CrossRef]
- Maisuthisakul, P.; Suttajit, M.; Pongsawatmanit, R. Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem. 2007, 100, 1409–1418. [Google Scholar] [CrossRef]
- Gursoy, N.; Sarikurkcu, C.; Cengiz, M.; Solak, M.H. Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food Chem. Toxicol. 2009, 47, 2381–2388. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y.; Xia, E.Q.; Li, H.B. Antioxidant capacity and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Triantaphyllou, K.; Blekas, G.; Boskou, D. Antioxidative properties of water extracts obtained from herbs of the species Lamiaceae. Int. J. Food Sci. Nutr. 2001, 52, 313–317. [Google Scholar] [CrossRef]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef]
- Sroka, Z.; Cisowski, W. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol. 2003, 41, 753–758. [Google Scholar] [CrossRef]
- Manach, C. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef]
- Liaudanskas, M.; Viškelis, P.; Raudonis, R.; Kviklys, D.; Uselis, N.; Janulis, V. Phenolic composition and antioxidant activity of Malus domestica leaves. Sci. World J. 2014, 2014, 542121. [Google Scholar] [CrossRef]
- Cheong, M.W.; Tong, K.H.; Ong, J.J.M.; Liu, S.Q.; Curran, P.; Yu, B. Volatile composition and antioxidant capacity of Arabica coffee. Food Res. Int. 2013, 51, 388–396. [Google Scholar] [CrossRef]
- Žugić, A.; Dorđević, S.; Arsić, I.; Marković, G.; Živković, J.; Jovanović, S.; Tadić, V. Antioxidant activity and phenolic compounds in 10 selected herbs from Vrujci Spa, Serbia. Ind. Crops Prod. 2014, 52, 519–527. [Google Scholar] [CrossRef]
- Katalinic, V.; Milos, M.; Kulisic, T.; Jukic, M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 2006, 94, 550–557. [Google Scholar] [CrossRef]
- Zhang, S.; Xi, J.; Wang, C. High hydrostatic pressure extraction of flavonoids from propolis. J. Chem. Technol. Biotechnol. 2005, 80, 50–54. [Google Scholar]
- Dorman, H.J.D.; Peltoketo, A.; Hiltunen, R.; Tikkanen, M.J. Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food Chem. 2003, 83, 255–262. [Google Scholar] [CrossRef]
- Cosio, M.S.; Buratti, S.; Mannino, S.; Benedetti, S. Use of an electrochemical method to evaluate the antioxidant activity of herb extracts from the Labiateae family. Food Chem. 2006, 97, 725–731. [Google Scholar] [CrossRef]
- Rodríguez Vaquero, M.J.; Tomassini Serravalle, L.R.; Manca de Nadra, M.C.; Strasser de Saad, A.M. Antioxidant capacity and antibacterial activity of phenolic compounds from Argentinean herbs infusion. Food Control 2010, 21, 779–785. [Google Scholar] [CrossRef]
- Brezová, V.; Šlebodová, A.; Staško, A. Coffee as a source of antioxidants: An EPR study. Food Chem. 2009, 114, 859–868. [Google Scholar] [CrossRef]
- Surveswaran, S.; Cai, Y.; Corke, H.; Sun, M. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem. 2007, 102, 938–953. [Google Scholar] [CrossRef]
- Kozłowska, M.; Ścibisz, I.; Przybył, J.L.; Laudy, A.E.; Majewska, E.; Tarnowska, K.; Małajowicz, J.; Ziarno, M. Antioxidant and antibacterial activity of extracts from selected plant material. Appl. Sci. 2022, 12, 9871. [Google Scholar] [CrossRef]
- Rusaczonek, A.; Świderski, F.; Waszkiewicz-Robak, B. Antioxidant properties of tea and herbal infusions—A short report. Pol. J. Food Nutr. Sci. 2010, 60, 33–35. [Google Scholar]
- Duda-Chodak, A.; Tarko, T.; Rus, M. Antioxidant activity and total polyphenol content of selected herbal medicinal products used in Poland. Herb. Pol. 2011, 57, 48–61. [Google Scholar]
- Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Sulaiman, S.F.; Yusoff, N.A.; Eldeen, I.M.; Seow, E.M.; Sajak, A.A.B.; Supriatno Ooi, K.L. Correlation between total phenolic and mineral contents with antioxidant activity of eight Malaysian bananas (Musa sp.). J. Food Comp. Anal. 2011, 24, 1–10. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U. Dietary spices as a natural effectors of lipoxygenase, xanthine oxidase, peroxidase and antioxidant agents. LWT–Food Sci. Technol. 2012, 47, 138–146. [Google Scholar] [CrossRef]
- Maisuthisakul, P.; Pasuk, S.; Ritthiruangdej, P. Relationship between antioxidant properties and chemical composition of some Thai plants. J. Food Comp. Anal. 2008, 21, 229–240. [Google Scholar] [CrossRef]
- Kumar, V.; Rani, A.; Kumar Dixit, A.; Pratap, D.; Bhatnagar, D. A comparative assessment of total phenolic content, ferric reducing antioxidative power, free radical scavenging activity, vitamin C and isoflavones content in soybean with varying seed coat colour. Food Res. Int. 2010, 43, 323–328. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Lim, T.T.; Tee, J.J. Antioxidant properties of several tropical fruits: A comparative study. Food Chem. 2007, 103, 1003–1008. [Google Scholar] [CrossRef]
- Ebrahimzadeh, M.A.; Pourmorad, F.; Hafezi, S. Antioxidant activities of Iranian corn silk. Turk. J. Biol. 2008, 32, 43–49. [Google Scholar]
- Hinneburg, I.; Dorman, H.J.D.; Hiltunen, R. Antioxidant activities of extracts from selected culinary herbs and spices. Food Chem. 2006, 97, 122–129. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lim, Y.Y.; Chew, Y.L. Antioxidant activity of Camellia sinensis leaves and tea from a lowland plantation in Malaysia. Food Chem. 2007, 102, 1214–1222. [Google Scholar] [CrossRef]
Sample Numbers | Raw Materials | Herbs Spices | Forms | Plant Species | Plant Families |
---|---|---|---|---|---|
1 | Oregano herbs | herb | cut leaves | Oregano Origanum vulgare L | Lamiceaae |
2–8 | Oregano | spice | cut leaves and flowers | ||
9–11 | Thyme herbs | herb | cut herbs | Common thyme Thymus vulgaris L. | |
12–15 | Thyme | spice | cut herbs | ||
16–19 | Rosemary leaves | herb | cut leaves | Rosemary Rosmarinus officinalis L. | |
20–22 | Rosemary | spice | leaves | ||
23–29 | Lemon balm leaves | herb | leaves | Lemon balm Melissa officinalis L. | |
30–35 | Peppermint leaves | herb | leaves | Peppermint Mentha piperita L. | |
36–41 | Sage leaves | herb | leaves | Common sage Salvia officinalis L. | |
42–44 | Savory | spice | cut herbs | Summer savory Satureja hortensis L. | |
45–46 | Hyssop | spice | cut herbs | Hyssop Hyssopus officinalis L. | |
47–52 | Basil | spice | cut leaves | Basil Ocimum basilicum L. | |
53–60 | Marjoram | spice | cut herbs | Marjoram Origanum majorana L. | |
61–63 | Caraway seeds | herb | whole seeds | Caraway Carum carvi L. | Apiceae |
64–68 | Caraway | spice | whole seeds | ||
69–73 | Lovage root | herb | crushed root | Lovage Levisticum officinale Koch | |
74–78 | Lovage | spice | cut leaves | ||
79–82 | Angelica root | herb | crushed root | Garden angelica Archangelica officinalis Hoffm. | |
83–87 | Tarragon | spice | cut herbs | Mugwort tarragon Artemisia dracunculus L. | Asteraceae |
Calibration Curves | TPC | FC | ABTS | FRAP |
---|---|---|---|---|
Gallic Acid µg/mL (n = 7) | Rutin µg/mL (n = 6) | Trolox µmol/mL (n = 7) | Iron(II) Sulfate µmol/L (n = 6) | |
Range | 1.0–8.0 | 4.0–28.0 | 0.1–1.0 | 2.5–40 |
Slope (a) | 0.1161 | 0.03089 | 92.8087 | 0.0210 |
∆a (tα,f · Sa) | 0.0021 | 0.0015 | 4.7867 | 0.0001 |
Sa (SD of the slope) | 0.0008 | 0.0005 | 1.9561 | 0.00005 |
Intercept (b) | −0.0033 | −0.0282 | 0.3651 | −0.0062 |
∆b (tα,f · Sb) | 0.0103 | 0.0273 | 0.8933 | 0.0030 |
Sb (SD of the intercept) | 0.0040 | 0.0098 | 1.2521 | 0.0011 |
R2 (%) | 99.97 | 99.84 | 99.73 | 99.99 |
Sxy (residual SD) | 0.0052 | 0.0116 | 1.6245 | 0.0017 |
LOD (3,3 · Sxy/a) | 0.1477 | 1.2412 | 0.0578 | 0.2726 |
LOQ (10 · Sxy/a) | 0.4475 | 3.7611 | 0.1750 | 0.8262 |
Recovery and precision | ||||
Concentration of standard | 4.0 | 20.00 | 0.40 | 20.0 |
Determined concentration | 3.91 | 20.25 | 0.39 | 19.90 |
Recovery (%) | 97.75 | 101.24 | 97.75 | 99.51 |
Intra-day CV (%) | 4.66 | 2.26 | 1.89 | 3.44 |
Sample Numbers | Raw Materials | TPC mg GAE/g | FC mg RUT/g | TACDPPH % | TACABTS mmol TEAC/g | TACFRAP mmole Fe(II)/g | FIC % |
---|---|---|---|---|---|---|---|
1 | Oregano herbs | 81.77–84.27 82.66 (82.31) | 23.65–26.89 25.40 (25.53) | 51.08–64.38 57.67 (57.61) | 5.63–6.22 5.94 (5.96) | 1.30–1.43 1.36 (1.36) | 51.16–58.45 55.08 (55.36) |
2–8 | Oregano | 31.38–97.77 54.30 (50.32) | 8.53–36.91 18.82 (17.71) | 30.26–77.48 47.94 (40.80) | 2.25–7.66 4.00 (3.44) | 0.46–1.96 0.87 (0.61) | 20.06–71.70 51.62 (58.73) |
9–11 | Thyme herbs | 41.38–59.94 49.39 (48.69) | 17.92–23.84 21.16 (21.11) | 32.91–44.32 39.03 (40.00) | 3.19–4.45 3.68 (3.69) | 0.60–1.02 0.81 (0.83) | 54.21–68.52 60.84 (61.14) |
12–15 | Thyme | 27.56–55.75 46.85 (51.51) | 10.72–25.12 19.76 (21.20) | 27.74–53.44 42.83 (44.80) | 1.78–4.15 2.89 (2.88) | 0.42–2.64 1.44 (1.42) | 48.78–64.64 58.19 (59.89) |
16–19 | Rosemary leaves | 39.49–50.63 47.07 (48.36) | 13.78–16.97 15.84 (16.03) | 24.05–50.72 39.58 (39.37) | 3.10–4.47 3.74 (3.79) | 0.64–0.96 0.77 (0.75) | 20.39–45.51 31.55 (30.58) |
20–22 | Rosemary | 45.51–59.90 52.50 (52.32) | 13.63–19.42 17.19 (17.90) | 34.69–42.03 38.50 (39.18) | 3.78–4.63 4.04 (3.98) | 0.52–0.80 0.67 (0.65) | 30.44–49.18 39.75 (39.95) |
23–29 | Lemon balm leaves | 60.29–100.14 87.54 (88.72) | 13.64–23.43 18.73 (18.68) | 55.05–92.87 74.89 (76.65) | 3.37–7.81 5.99 (6.18) | 1.07–2.56 1.67 (1.62) | 51.37–73.96 61.07 (61.40) |
30–35 | Peppermint leaves | 37.06–74.99 54.75 (46.75) | 13.47–40.04 27.18 (26.96) | 32.53–66.28 46.70 (46.31) | 2.07–5.38 3.72 (3.67) | 0.54–1.41 0.91 (0.88) | 46.84–68.42 60.78 (62.66) |
36–41 | Sage leaves | 17.39–41.22 33.84 (35.02) | 6.32–26.77 18.61 (20.21) | 17.46–41.74 30.72 (32.72) | 1.47–3.37 2.62 (2.85) | 0.37–0.73 0.54 (0.54) | 56.84–73.56 67.06 (68.69) |
42–44 | Savory | 20.89–45.14 35.97 (40.77) | 12.98–23.16 17.23 (17.54) | 22.48–54.01 34.36 (34.90) | 1.16–3.45 2.00 (1.78) | 0.30–0.65 0.53 (0.63) | 70.74–80.59 76.26 (76.40) |
45–46 | Hyssop | 40.89–51.55 45.19 (44.96) | 5.16–9.12 7.80 (8.46) | 33.22–56.52 43.80 (43.77) | 2.50–3.82 3.18 (3.20) | 0.61–1.03 0.84 (0.80) | 43.79–56.26 50.73 (51.47) |
47–52 | Basil | 25.72–39.85 33.65 (33.01) | 8.12–15.87 10.92 (11.13) | 24.69–37.23 30.20 (30.23) | 1.25–3.59 2.37 (2.31) | 0.30–0.68 0.49 (0.49) | 50.10–73.45 62.55 (61.43) |
53–60 | Marjoram | 33.64–68.02 49.08 (47.17) | 13.85–24.22 19.21 (19.32) | 26.42–58.16 39.91 (40.46) | 2.75–6.47 4.38 (4.53) | 0.45–0.81 0.63 (0.61) | 48.00–68.52 58.65 (60.18) |
61–63 | Caraway seeds | 7.04–10.61 8.52 (8.36) | 4.88–7.09 5.97 (5.77) | 11.77–19.67 15.72 (15.58) | 0.59–1.03 0.85 (0.92) | 0.06–0.09 0.08 (0.08) | 40.92–62.49 54.72 (58.13) |
64–68 | Caraway | 5.96–11.72 8.06 (7.97) | 3.22–6.19 4.70 (4.63) | 11.52–16.50 13.75 (13.28) | 0.17–0.99 0.70 (0.73) | 0.04–0.10 0.07 (0.06) | 41.66–65.26 54.60 (53.65) |
69–73 | Lovage root | 3.70–7.90 6.28 (6.47) | 1.55–5.57 3.46 (3.88) | 10.72–16.56 14.18 (14.69) | 0.55–1.28 0.88 (0.90) | 0.05–0.08 0.07 (0.06) | 4.95–35.79 16.81 (15.95) |
74–78 | Lovage | 8.39–26.46 16.71 (16.11) | 7.86–19.56 14.23 (15.02) | 11.3–22.36 15.40 (14.39) | 0.80–2.23 1.34 (1.27) | 0.08–0.28 0.17 (0.15) | 16.31–72.95 41.17 (39.26) |
79–82 | Angelica root | 5.00–7.14 5.66 (5.41) | 2.24–4.07 2.82 (2.71) | 10.91–17.00 13.47 (13.57) | 0.43–2.24 0.83 (0.77) | 0.03–0.08 0.06 (0.06) | 28.64–70.95 51.27 (54.13) |
83–87 | Tarragon | 19.82–47.21 32.35 (29.63) | 12.50–29.00 20.24 (18.74) | 17.80–41.67 23.51 (27.03) | 1.58–4.06 2.48 (2.21) | 0.19–0.62 0.36 (0.29) | 32.20–78.11 58.74 (57.71) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulewicz-Magulska, B.; Wesolowski, M. Antioxidant Activity of Medicinal Herbs and Spices from Plants of the Lamiaceae, Apiaceae and Asteraceae Families: Chemometric Interpretation of the Data. Antioxidants 2023, 12, 2039. https://doi.org/10.3390/antiox12122039
Ulewicz-Magulska B, Wesolowski M. Antioxidant Activity of Medicinal Herbs and Spices from Plants of the Lamiaceae, Apiaceae and Asteraceae Families: Chemometric Interpretation of the Data. Antioxidants. 2023; 12(12):2039. https://doi.org/10.3390/antiox12122039
Chicago/Turabian StyleUlewicz-Magulska, Beata, and Marek Wesolowski. 2023. "Antioxidant Activity of Medicinal Herbs and Spices from Plants of the Lamiaceae, Apiaceae and Asteraceae Families: Chemometric Interpretation of the Data" Antioxidants 12, no. 12: 2039. https://doi.org/10.3390/antiox12122039
APA StyleUlewicz-Magulska, B., & Wesolowski, M. (2023). Antioxidant Activity of Medicinal Herbs and Spices from Plants of the Lamiaceae, Apiaceae and Asteraceae Families: Chemometric Interpretation of the Data. Antioxidants, 12(12), 2039. https://doi.org/10.3390/antiox12122039