NADES-Assisted Extraction of Polyphenols from Coriander Seeds: A Systematic Optimization Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. NADES Preparation
2.4. Extraction of Coriander Seeds by Traditional Maceration (MAC)
2.5. Ultrasound-Assisted Extraction (UAE) of Coriander Seeds
2.6. Spectrophotometric Total Phenol Content (TPC) and In Vitro Antioxidant Activity
2.7. HPLC-DAD Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Conventional Extraction of Phenols from Coriander Seeds
3.2. NADES-Assisted Extraction of Phenols from Coriander Seeds by Conventional MAC and Unconventional UAE
3.3. Comparison of NADES Systems Coupled with MAC and UAE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cvjetko Bubalo, M.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. New perspective in extraction of plant biologically active compounds by green solvents. Food Bioprod. Process. 2018, 109, 52–73. [Google Scholar] [CrossRef]
- Mangiapelo, L.; Blasi, F.; Ianni, F.; Barola, C.; Galarini, R.; Abualzulof, G.W.; Sardella, R.; Volpi, C.; Cossignani, L. Optimization of Ultrasound-Assisted Extraction of Chlorogenic Acid from Potato Sprout Waste and Enhancement of the In Vitro Total Antioxidant Capacity. Antioxidants 2023, 12, 348. [Google Scholar] [CrossRef]
- Laribi, B.; Kouki, K.; M’Hamdi, M.; Bettaieb, T. Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia 2015, 103, 9–26. [Google Scholar] [CrossRef]
- Mandal, S.; Mandal, M. Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity. Asian Pac. J. Trop. Biomed. 2015, 5, 421–428. [Google Scholar] [CrossRef]
- Scandar, S.; Zadra, C.; Marcotullio, M.C. Coriander (Coriandrum sativum) polyphenols and their nutraceutical value against obesity and metabolic syndrome. Molecules 2023, 28, 4187. [Google Scholar] [CrossRef]
- Mhemdi, H.; Rodier, E.; Kechaou, N.; Fages, J. A supercritical tuneable process for the selective extraction of fats and essential oil from coriander seeds. J. Food Eng. 2011, 105, 609–616. [Google Scholar] [CrossRef]
- Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef]
- Zeković, Z.; Vladić, J.; Vidović, S.; Adamović, D.; Pavlić, B. Optimization of microwave-assisted extraction (MAE) of coriander phenolic antioxidants-response surface methodology approach. J. Sci. Food Agric. 2016, 96, 4613–4622. [Google Scholar] [CrossRef]
- Zeković, Z.; Bušić, A.; Komes, D.; Vladić, J.; Adamović, D.; Pavlić, B. Coriander seeds processing: Sequential extraction of non-polar and polar fractions using supercritical carbon dioxide extraction and ultrasound-assisted extraction. Food Bioprod. Process. 2015, 95, 218–227. [Google Scholar] [CrossRef]
- Palmieri, S.; Pellegrini, M.; Ricci, A.; Compagnone, D.; Lo Sterzo, C. Chemical Composition and Antioxidant Activity of Thyme, Hemp and Coriander Extracts: A Comparison Study of Maceration, Soxhlet, UAE and RSLDE Techniques. Foods 2020, 9, 1221. [Google Scholar] [CrossRef]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.C.E.; Witkamp, G.-J.; Verpoorte, R. Are Natural Deep Eutectic Solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef]
- Nolan, M.D.; Mezzetta, A.; Guazzelli, L.; Scanlan, E.M. Radical-mediated thiol–ene ‘click’ reactions in deep eutectic solvents for bioconjugation. Green Chem. 2022, 24, 1456–1462. [Google Scholar] [CrossRef]
- Thomas, F.; Kayser, O. Natural deep eutectic solvents enhance cannabinoid biotransformation. Biochem. Eng. J. 2022, 180, 108380. [Google Scholar] [CrossRef]
- Nguyen, C.-H.; Augis, L.; Fourmentin, S.; Barratt, G.; Legrand, F.-X. Deep Eutectic Solvents for Innovative Pharmaceutical Formulations. In Deep Eutectic Solvents for Medicine, Gas Solubilization and Extraction of Natural Substances; Fourmentin, S., Costa Gomes, M., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 41–102. [Google Scholar]
- Martins, M.A.R.; Pinho, S.P.; Coutinho, J.A.P. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J. Solut. Chem. 2019, 48, 962–982. [Google Scholar] [CrossRef]
- Choi, Y.H.; Verpoorte, R. Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Curr. Opin. Food Sci. 2019, 26, 87–93. [Google Scholar] [CrossRef]
- Hikmawanti, N.P.E.; Ramadon, D.; Jantan, I.; Mun’im, A. Natural Deep Eutectic Solvents (NADES): Phytochemical Extraction Performance Enhancer for Pharmaceutical and Nutraceutical Product Development. Plants 2021, 10, 2091. [Google Scholar] [CrossRef]
- Afonso, J.; Mezzetta, A.; Marrucho, I.M.; Guazzelli, L. History repeats itself again: Will the mistakes of the past for ILs be repeated for DESs? From being considered ionic liquids to becoming their alternative: The unbalanced turn of deep eutectic solvents. Green Chem. 2023, 25, 59–105. [Google Scholar] [CrossRef]
- Stupar, A.; Šeregelj, V.; Ribeiro, B.D.; Pezo, L.; Cvetanović, A.; Mišan, A.; Marrucho, I. Recovery of β-carotene from pumpkin using switchable natural deep eutectic solvents. Ultrason. Sonochem. 2021, 76, 105638. [Google Scholar] [CrossRef]
- Mansinhos, I.; Gonçalves, S.; Rodríguez-Solana, R.; Ordóñez-Díaz, J.L.; Moreno-Rojas, J.M.; Romano, A. Ultrasonic-Assisted Extraction and Natural Deep Eutectic Solvents Combination: A Green Strategy to Improve the Recovery of Phenolic Compounds from Lavandula pedunculata subsp. lusitanica (Chaytor) Franco. Antioxidants 2021, 10, 582. [Google Scholar] [CrossRef]
- Souza, O.A.; Ramalhão, V.G.d.S.; Trentin, L.d.M.; Funari, C.S.; Carneiro, R.L.; Bolzani, V.d.S.; Rinaldo, D. Combining natural deep eutectic solvent and microwave irradiation towards the eco-friendly and optimized extraction of bioactive phenolics from Eugenia uniflora L. Sustain. Chem. Pharm. 2022, 26, 100618. [Google Scholar] [CrossRef]
- Lanari, D.; Zadra, C.; Negro, F.; Njem, R.; Marcotullio, M.C. Influence of choline chloride-based NADES on the composition of Myristica fragrans Houtt. essential oil. Heliyon 2022, 8, e09531. [Google Scholar] [CrossRef]
- Ianni, F.; Barola, C.; Blasi, F.; Moretti, S.; Galarini, R.; Cossignani, L. Investigation on chlorogenic acid stability in aqueous solution after microwave treatment. Food Chem. 2022, 374, 131820. [Google Scholar] [CrossRef]
- Boli, E.; Prinos, N.; Louli, V.; Pappa, G.; Stamatis, H.; Magoulas, K.; Voutsas, E. Recovery of Bioactive Extracts from Olive Leaves Using Conventional and Microwave-Assisted Extraction with Classical and Deep Eutectic Solvents. Separations 2022, 9, 255. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef]
- Sriti, J.; Aidi Wannes, W.; Talou, T.; Ben Jemia, M.; Kchouk, M.; Marzouk, B. Antioxidant properties and polyphenol contents of different parts of coriander (Coriandrum sativum L.) fruit. Riv. Ital. Sostanze Grasse 2012, 89, 253–262. [Google Scholar]
- Schaich, K.M.; Tian, X.; Xie, J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods 2015, 14, 111–125. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. Anal. Chem. 2013, 85, 6272–6278. [Google Scholar] [CrossRef]
- Mehariya, S.; Fratini, F.; Lavecchia, R.; Zuorro, A. Green extraction of value-added compounds form microalgae: A short review on natural deep eutectic solvents (NaDES) and related pre-treatments. J. Environ. Chem. Eng. 2021, 9, 105989. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef]
- Zhang, H.; Lang, J.; Lan, P.; Yang, H.; Lu, J.; Wang, Z. Study on the dissolution mechanism of cellulose by ChCl-based deep eutectic solvents. Materials 2020, 13, 278. [Google Scholar] [CrossRef]
- de Almeida Pontes, P.V.; Ayumi Shiwaku, I.; Maximo, G.J.; Caldas Batista, E.A. Choline chloride-based deep eutectic solvents as potential solvent for extraction of phenolic compounds from olive leaves: Extraction optimization and solvent characterization. Food Chem. 2021, 352, 129346. [Google Scholar] [CrossRef]
- Panić, M.; Gunjević, V.; Cravotto, G.; Radojčić Redovniković, I. Enabling technologies for the extraction of grape-pomace anthocyanins using natural deep eutectic solvents in up-to-half-litre batches extraction of grape-pomace anthocyanins using NADES. Food Chem. 2019, 300, 125185. [Google Scholar] [CrossRef]
- Maimulyanti, A.; Nurhidayati, I.; Mellisani, B.; Amelia Rachmawati Putri, F.; Puspita, F.; Restu Prihadi, A. Development of natural deep eutectic solvent (NADES) based on choline chloride as a green solvent to extract phenolic compound from coffee husk waste. Arab. J. Chem. 2023, 16, 104634. [Google Scholar] [CrossRef]
- Msaada, K.; Ben Jemia, M.; Salem, N.; Bachrouch, O.; Sriti, J.; Tammar, S. Antioxidant activity of methanolic extracts from three coriander (Coriandrum sativum L.) fruit varieties. Arab. J. Chem. 2014, 10, S3176–S3183. [Google Scholar] [CrossRef]
- Han, X.; Xue, X.; Zhao, Y.; Li, Y.; Liu, W.; Zhang, J.; Fan, S. Rutin-Enriched Extract from Coriandrum sativum L. Ameliorates Ionizing Radiation-Induced Hematopoietic Injury. Int. J. Mol. Sci. 2017, 18, 942. [Google Scholar] [CrossRef]
- Tymczewska, A.; Klebba, J.; Szydłowska-Czerniak, A. Antioxidant Capacity and Total Phenolic Content of Spice Extracts Obtained by Ultrasound-Assisted Extraction Using Deep Eutectic and Conventional Solvents. Appl. Sci. 2023, 13, 6987. [Google Scholar] [CrossRef]
- Alañón, M.E.; Ivanović, M.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Segura-Carretero, A. Choline chloride derivative-based deep eutectic liquids as novel green alternative solvents for extraction of phenolic compounds from olive leaf. Arab. J. Chem. 2020, 13, 1685–1701. [Google Scholar] [CrossRef]
- Ivanović, M.; Grujić, D.; Cerar, J.; Islamčević Razboršek, M.; Topalić-Trivunović, L.; Savić, A.; Kočar, D.; Kolar, M. Extraction of Bioactive Metabolites from Achillea millefolium L. with Choline Chloride Based Natural Deep Eutectic Solvents: A Study of the Antioxidant and Antimicrobial Activity. Antioxidants 2022, 11, 724. [Google Scholar] [CrossRef]
- Pal, C.B.T.; Jadeja, G.C. Deep eutectic solvent-based extraction of polyphenolic antioxidants from onion (Allium cepa L.) peel. J. Sci. Food Agric. 2019, 99, 1969–1979. [Google Scholar] [CrossRef]
- Choudhary, P.; Guleria, S.; Sharma, N.; Salaria, K.H.; Chalotra, R.; Ali, V.; Vyas, D. Comparative phenolic content and antioxidant activity of some medicinal plant extracts prepared by choline chloride based green solvents and methanol. Curr. Opin. Green Sustain. Chem. 2021, 4, 100224. [Google Scholar] [CrossRef]
- Jeong, K.M.; Jin, Y.; Yoo, D.E.; Han, S.Y.; Kim, E.M.; Lee, J. One-step sample preparation for convenient examination of volatile monoterpenes and phenolic compounds in peppermint leaves using deep eutectic solvents. Food Chem. 2018, 251, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Cao, J.; Wang, H.; Chen, L.; Cao, F.; Su, E. Solubility improvement of phytochemicals using (natural) deep eutectic solvents and their bioactivity evaluation. J. Mol. Liq. 2020, 318, 113997. [Google Scholar] [CrossRef]
- Duan, L.; Dou, L.-L.; Guo, L.; Li, P.; Liu, E.H. Comprehensive Evaluation of Deep Eutectic Solvents in Extraction of Bioactive Natural Products. ACS Sustain. Chem. Eng. 2016, 4, 2405–2411. [Google Scholar] [CrossRef]
- Patel, K.; Patel, D.K. The Beneficial Role of Rutin, A Naturally Occurring Flavonoid in Health Promotion and Disease Prevention: A Systematic Review and Update. In Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases, 2nd ed.; Watson, R.R., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 457–479. [Google Scholar]
Coriander Extract | TPC (mg GAE/g) | DPPH (mg TE/g) | FRAP (mg TE/g) | ABTS (mg TE/g) |
---|---|---|---|---|
MAC 40 min | 15.85 ± 0.69 a | 3.12 ± 0.10 a,b | 3.74 ± 0.04 a | 4.04 ± 0.12 a |
MAC 2 h | 9.29 ± 0.04 b | 3.29 ± 0.25 a,b | 3.87 ± 0.13 a | 4.38 ± 0.02 a,b |
MAC 4 h | 11.39 ± 0.32 c | 2.88 ± 0.29 a | 3.60 ± 0.03 a | 3.73 ± 0.17 b |
MAC 6 h | 11.41 ± 0.48 c | 3.89 ± 0.23 b | 5.04 ± 0.01 b | 5.63 ± 0.08 c |
Coriander Extract | Analyte Concentration (µg/g) | |||||
---|---|---|---|---|---|---|
Protocatechuic Acid | Chlorogenic Acid Isomer | Chlorogenic Acid | Caffeic Acid | p-Coumaric Acid | Rutin | |
MAC 40 min | 22.18 ± 0.18 a | 258.01 ± 18.72 a | 321.89 ± 20.94 a | 19.03 ± 0.32 a | 14.45 ± 1.21 a | 675.63 ± 9.62 a |
MAC 2 h | 15.69 ± 0.54 b | 225.93 ± 8.76 a | 298.18 ± 9.89 a | 17.93 ± 1.59 a | 14.71 ± 1.15 a | 640.64 ± 3.50 a |
MAC 4 h | 15.55 ± 0.12 b | 214.87 ± 0.24 a | 298.72 ± 4.65 a | 19.46 ± 1.18 a | 11.84 ± 0.55 a | 637.65 ± 25.22 a |
MAC 6 h | 17.86 ± 1.47 b | 236.67 ± 5.89 a | 339.20 ± 9.42 a | 18.93 ± 3.47 a | 15.06 ± 0.89 a | 719.53 ± 26.11 a |
Coriander Extract | TPC (mg GAE/g) | DPPH (mg TE/g) | FRAP (mg TE/g) | ABTS (mg TE/g) |
---|---|---|---|---|
ChCl:CA MAC 40 min | 15.84 ± 0.92 a | 4.73 ± 0.04 a | 2.03 ± 0.05 a | 1.97 ±0.08 a |
ChCl:CA UAE 40 min | 18.35 ± 0.44 a | 7.42 ± 0.00 b | 3.77 ± 0.17 b | 4.27 ± 0.01 b |
ChCl:CA MAC 20 min | 17.72 ± 0.93 a | 5.35 ± 0.12 c | 2.21 ± 0.06 a | 2.43 ± 0.27 a |
ChCl:CA UAE 20 min | 18.34 ± 0.36 a | 4.92 ± 0.20 a,c | 1.99 ± 0.03 a | 1.83 ± 0.09 a |
Coriander Extract | Analyte Concentration (µg/g) | |||||
---|---|---|---|---|---|---|
Protocatechuic Acid | Chlorogenic Acid Isomer | Chlorogenic Acid | Caffeic Acid | p-Coumaric Acid | Rutin | |
ChCl:AC MAC 40 min | 18.82 ± 0.67 a,b | 343.76 ± 13.97 a | 294.189 ± 25.29 a | 21.25 ± 3.60 a | 16.07 ± 0.00 a | 648.18 ± 48.70 a,c |
ChCl:AC UAE 40 min | 16.51 ± 0.18 a | 288.29 ± 0.71 b | 269.33 ± 4.45 a | 24.33 ± 0.28 a | 15.05 ± 0.25 a | 573.64 ± 2.54 a |
ChCl:AC MAC 20 min | 23.56 ± 2.55 b | 428.50 ± 10.89 c | 361.33 ± 7.27 b | 25.92 ± 2.58 a | 17.94 ± 1.45 a | 820.31 ± 28.59 b,c |
ChCl:AC UAE 20 min | 21.72 ± 1.01 a,b | 398.18 ± 2.39 c | 323.11 ± 15.28 a,b | 24.10 ± 3.45 a | 17.72 ± 0.42 a | 736.85 ± 15.04 c |
Coriander Extract | TPC (mg GAE/g) | DPPH (mg TE/g) | FRAP (mg TE/g) | ABTS (mg TE/g) |
---|---|---|---|---|
ChCl:Ur MAC 20 min | 17.47 ± 1.16 a | 3.77 ± 0.04 a | 3.26 ± 0.11 a | 7.75 ± 0.21 a |
ChCl:Ur UAE 20 min | 21.43 ± 0.16 a | 4.66 ± 0.12 b | 4.79 ± 0.05 b | 11.46 ± 0.13 b |
ChCl:Glu MAC 20 min | 29.11 ± 2.20 b | 3.68 ± 0.19 a | 3.79 ± 0.06 c | 8.58 ± 0.15 c |
ChCl:Glu UAE 20 min | 34.17 ± 0.55 b | 3.93 ± 0.20 a | 4.31 ± 0.04 d | 9.58 ± 0.14 d |
Coriander Extract | Analyte Concentration (µg/g) | |||||
---|---|---|---|---|---|---|
Protocatechuic Acid | Chlorogenic Acid Isomer | Chlorogenic Acid | Caffeic Acid | p-Coumaric Acid | Rutin | |
ChCl:Ur MAC 20 min | 39.95 ± 0.26 a,b | 370.09 ± 2.59 a | 335.18 ± 14.63 a | 65.51 ± 5.14 a | 23.84 ± 0.38 a | 592.94 ± 9.00 a |
ChCl:Ur UAE 20 min | 30.68 ± 0.36 a | 537.42 ± 1.27 b | 453.90 ± 4.77 b | 93.70 ± 0.03 b | 30.94 ± 0.05 b | 766.25 ± 4.85 b |
ChCl:Glu MAC 20 min | 50.12 ± 1.41 b | 265.42 ± 3.04 c | 231.06 ± 1.39 c | 155.57 ± 7.02 c | 38.27 ± 0.40 c | 380.73 ± 2.81 c |
ChCl:Glu UAE 20 min | 131.13 ± 6.16 c | 184.81 ± 8.60 d | 152.63 ± 10.06 d | 269.03 ± 4.15 d | 57.36 ± 0.06 d | 235.09 ± 2.19 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ianni, F.; Scandar, S.; Mangiapelo, L.; Blasi, F.; Marcotullio, M.C.; Cossignani, L. NADES-Assisted Extraction of Polyphenols from Coriander Seeds: A Systematic Optimization Study. Antioxidants 2023, 12, 2048. https://doi.org/10.3390/antiox12122048
Ianni F, Scandar S, Mangiapelo L, Blasi F, Marcotullio MC, Cossignani L. NADES-Assisted Extraction of Polyphenols from Coriander Seeds: A Systematic Optimization Study. Antioxidants. 2023; 12(12):2048. https://doi.org/10.3390/antiox12122048
Chicago/Turabian StyleIanni, Federica, Samir Scandar, Luciano Mangiapelo, Francesca Blasi, Maria Carla Marcotullio, and Lina Cossignani. 2023. "NADES-Assisted Extraction of Polyphenols from Coriander Seeds: A Systematic Optimization Study" Antioxidants 12, no. 12: 2048. https://doi.org/10.3390/antiox12122048
APA StyleIanni, F., Scandar, S., Mangiapelo, L., Blasi, F., Marcotullio, M. C., & Cossignani, L. (2023). NADES-Assisted Extraction of Polyphenols from Coriander Seeds: A Systematic Optimization Study. Antioxidants, 12(12), 2048. https://doi.org/10.3390/antiox12122048