Assessment of Antioxidant Stability of Meat Pâté with Allium cepa Husk Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Onion Husk Extract
2.3. Manufacture of Meat Pâtés
2.4. Proximal Analysis
2.5. Extraction of Meat Pâtés
2.6. UPLC-ESI-Q-TOF-MS Analysis
2.7. Stability Assessment
2.7.1. Ferric Reducing Antioxidant Power (FRAP) Assay
2.7.2. Lipid Peroxidation Products
2.7.3. Determination of Peroxide Value and pH
2.7.4. Microbiological Analyses
2.8. Statistical Analyses
3. Results
3.1. Composition of Meat Pâtés
3.2. Identification of Active Compounds and Metabolome Profile in Meat Pâtés
3.3. Determination of Antioxidant Stability
3.4. Determination of Storage Indicators
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaur, S.; Das, M. Functional foods: An overview. Food Sci. Biotechnol. 2011, 20, 861. [Google Scholar] [CrossRef]
- Milner, J.A. Functional foods: The US perspective. Am. J. Clin. Nutr. 2000, 71, 1654S–1659S; discussion 1674S–1675S. [Google Scholar] [CrossRef] [PubMed]
- Kausar, T.; Hanan, E.; Ayob, O.; Praween, B.; Azad, Z. A review on functional ingredients in red meat products. Bioinformation 2019, 15, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Olmedilla-Alonso, B.; Jiménez-Colmenero, F.; Sánchez-Muniz, F.J. Development and assessment of healthy properties of meat and meat products designed as functional foods. Meat Sci. 2013, 95, 919–930. [Google Scholar] [CrossRef]
- Manassi, C.F.; de Souza, S.S.; Hassemer, G.S.; Sartor, S.; Lima, C.M.G.; Miotto, M.; De Dea Lindner, J.; Rezzadori, K.; Pimentel, T.C.; Ramos, G.L.P.A.; et al. Functional meat products: Trends in pro-, pre-, syn-, para- and post-biotic use. Food Res. Int. 2022, 154, 111035. [Google Scholar] [CrossRef] [PubMed]
- Ravani, A.; Sharma, H.P. Chapter 7. Meat Based Functional Foods. In Functional Foods, 1st ed.; Chhikara, N., Panghal, A., Chaudhary, G., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2022; pp. 235–287. [Google Scholar] [CrossRef]
- Nazarova, N.E.; Lazutina, A.L.; Lebedeva, T.E.; Batsyna, Y.V.; Statuev, A.A. The use of plant raw materials in the production of meat pate. IOP Conf. Ser. Earth Environ. Sci. 2022, 1052, 012063. [Google Scholar] [CrossRef]
- Augustyńska-Prejsnar, A.; Ormian, M.; Sokołowicz, Z.; Kačániová, M. The Effect of the Addition of Hemp Seeds, Amaranth, and Golden Flaxseed on the Nutritional Value, Physical, Sensory Characteristics, and Safety of Poultry Pâté. Appl. Sci. 2022, 12, 5289. [Google Scholar] [CrossRef]
- Pellegrini, M.; Lucas-Gonzalez, R.; Sayas-Barberá, E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Quinoa (Chenopodium quinoa Willd) paste as partial fat replacer in the development of reduced fat cooked meat product type pâté: Effect on quality and safety. CyTA J. Food 2018, 16, 1079–1088. [Google Scholar] [CrossRef]
- Doolaege, E.H.; Vossen, E.; Raes, K.; De Meulenaer, B.; Verhé, R.; Paelinck, H.; De Smet, S. Effect of rosemary extract dose on lipid oxidation, colour stability and antioxidant concentrations, in reduced nitrite liver pâtés. Meat Sci. 2012, 90, 925–931. [Google Scholar] [CrossRef]
- Estévez, M.; Ramírez, R.; Ventanas, S.; Cava, R. Sage and rosemary essential oils versus BHT for the inhibition of lipid oxidative reactions in liver pâté. LWT Food Sci. Technol. 2007, 40, 58–65. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- Echegaray, N.; Gómez, B.; Barba, F.J.; Franco, D.; Estévez, M.; Carballo, J.; Marszałek, K.; Lorenzo, J.M. Chestnuts and by-products as source of natural antioxidants in meat and meat products: A review. Trends Food Sci. Technol. 2018, 82, 110–121. [Google Scholar] [CrossRef]
- Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G.; Pugine, S.M.P.; Lima, C.G.; Lorenzo, J.M.; de Melo, M.P. Evaluation of oxidative stability of lamb burger with Origanum vulgare extract. Food Chem. 2017, 233, 101–109. [Google Scholar] [CrossRef]
- Martín-Sánchez, A.M.; Ciro-Gómez, G.; Sayas, E.; Vilella-Esplá, J.; Ben-Abda, J.; Pérez-Álvarez, J.Á. Date palm by-products as a new ingredient for the meat industry: Application to pork liver pâté. Meat Sci. 2013, 93, 880–887. [Google Scholar] [CrossRef]
- Gallo, M.; Ferracane, R.; Naviglio, D. Antioxidant addition to prevent lipid and protein oxidation in chicken meat mixed with supercritical extracts of Echinacea angustifolia. J. Supercrit. Fluids 2012, 72, 198–204. [Google Scholar] [CrossRef]
- Pereira, A.L.F.; Abreu, V.K.G. Lipid peroxidation in meat and meat products. In Lipid Peroxidation, 1st ed.; Mansour, M.A., Ed.; IntechOpen: London, UK, 2018; pp. 29–42. [Google Scholar] [CrossRef]
- Alfaia, C.M.; Alves, S.P.; Lopes, A.F.; Fernandes, M.J.; Costa, A.S.; Fontes, C.M.; Castro, M.L.; Bessa, R.J.; Prates, J.A. Effect of cooking methods on fatty acids, conjugated isomers of linoleic acid and nutritional quality of beef intramuscular fat. Meat Sci. 2010, 84, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Broncano, J.M.; Petrón, M.J.; Parra, V.; Timón, M.L. Effect of different cooking methods on lipid oxidation and formation of free cholesterol oxidation products (COPs) in Latissimus dorsi muscle of Iberian pigs. Meat Sci. 2009, 83, 431–437. [Google Scholar] [CrossRef]
- Shah, M.A.; Bosco, S.J.; Mir, S.A. Plant extracts as natural antioxidants in meat and meat products. Meat Sci. 2014, 98, 21–33. [Google Scholar] [CrossRef]
- Nikmaram, N.; Budaraju, S.; Barba, F.J.; Lorenzo, J.M.; Cox, R.B.; Mallikarjunan, K.; Roohinejad, S. Application of plant extracts to improve the shelf-life, nutritional and health-related properties of ready-to-eat meat products. Meat Sci. 2018, 145, 245–255. [Google Scholar] [CrossRef]
- Agregán, R.; Lorenzo, J.M.; Munekata, P.E.S.; Dominguez, R.; Carballo, J.; Franco, D. Assessment of the antioxidant activity of Bifurcaria bifurcata aqueous extract on canola oil. Effect of extract concentration on the oxidation stability and volatile compound generation during oil storage. Food Res. Int. 2017, 99, 1095–1102. [Google Scholar] [CrossRef]
- Franco, D.; Rodríguez-Amado, I.; Agregán, R.; Munekata, P.E.S.; Vázquez, J.A.; Barba, F.J.; Lorenzo, J.M. Optimization of antioxidants extraction from peanut skin to prevent oxidative processes during soybean oil storage. LWT 2018, 88, 1–8. [Google Scholar] [CrossRef]
- Kumar, Y.; Yadav, D.N.; Ahmad, T.; Narsaiah, K. Recent Trends in the Use of Natural Antioxidants for Meat and Meat Products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 796–812. [Google Scholar] [CrossRef]
- Calliste, C.A.; Trouillas, P.; Allais, D.P.; Duroux, J.L. Castanea sativa Mill. leaves as new sources of natural antioxidant: An electronic spin resonance study. J. Agric. Food. Chem. 2005, 53, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Fredotović, Ž.; Šprung, M.; Soldo, B.; Ljubenkov, I.; Budić-Leto, I.; Bilušić, T.; Čikeš-Čulić, V.; Puizina, J. Chemical Composition and Biological Activity of Allium cepa L. and Allium × cornutum (Clementi ex Visiani 1842) Methanolic Extracts. Molecules 2017, 22, 448. [Google Scholar] [CrossRef]
- González-de-Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Barbero, G.F.; Palma, M. Development of Optimized Ultrasound-Assisted Extraction Methods for the Recovery of Total Phenolic Compounds and Anthocyanins from Onion Bulbs. Antioxidants 2021, 10, 1755. [Google Scholar] [CrossRef] [PubMed]
- Corzo-Martínez, M.; Corzo, N.; Villamiel, M. Biological properties of onions and garlic. Trends Food Sci. Technol. 2007, 18, 609–625. [Google Scholar] [CrossRef]
- Lanzotti, V. The analysis of onion and garlic. J. Chromatogr. A 2006, 1112, 3–22. [Google Scholar] [CrossRef]
- Arshad, M.S.; Sohaib, M.; Nadeem, M.; Saeed, F.; Imran, A.; Javed, A.; Amjad, Z.; Batool, S.M. Status and trends of nutraceuticals from onion and onion by-products: A critical review. Cogent Food Agric. 2017, 3, 1. [Google Scholar] [CrossRef]
- Law, Y.Y.; Chiu, H.F.; Lee, H.H.; Shen, Y.C.; Venkatakrishnan, K.; Wang, C.K. Consumption of onion juice modulates oxidative stress and attenuates the risk of bone disorders in middle-aged and post-menopausal healthy subjects. Food Funct. 2016, 7, 902–912. [Google Scholar] [CrossRef]
- Chernukha, I.; Kupaeva, N.; Kotenkova, E.; Khvostov, D. Differences in Antioxidant Potential of Allium cepa Husk of Red, Yellow, and White Varieties. Antioxidants 2022, 11, 1243. [Google Scholar] [CrossRef]
- Chernukha, I.; Fedulova, L.; Vasilevskaya, E.; Kulikovskii, A.; Kupaeva, N.; Kotenkova, E. Antioxidant effect of ethanolic onion (Allium cepa) husk extract in ageing rats. Saudi J. Biol. Sci. 2021, 28, 2877–2885. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-W.; Zeng, X.-A.; Ngadi, M. Enhanced extraction of phenolic compounds from onion by pulsed electric field (PEF). J. Food Process. Preserv. 2018, 42, e13755. [Google Scholar] [CrossRef]
- The Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists (AOAC): Gaithersburg, MD, USA, 2000. [Google Scholar]
- Chernukha, I.; Kotenkova, E.; Derbeneva, S.; Khvostov, D. Bioactive Compounds of Porcine Hearts and Aortas May Improve Cardiovascular Disorders in Humans. Int. J. Environ. Res. Public Health 2021, 18, 7330. [Google Scholar] [CrossRef]
- Tsugawa, H.; Nakabayashi, R.; Mori, T.; Yamada, Y.; Takahashi, M.; Rai, A.; Saito, K. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nat. Methods 2019, 16, 295–298. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Brazhe, N.A.; Baizhumanov, A.A.; Parshina, E.Y.; Yusipovich, A.I.; Akhalaya, M.Y.; Yarlykova, Y.V.; Maksimov, G.V. Studies of the blood antioxidant system and oxy-gen-transporting properties of human erythrocytes during 105-day isolation. Hum. Physiol. 2014, 40, 804–809. [Google Scholar] [CrossRef]
- ISO 3960:2017; Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (Visual) Endpoint Determination. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/71268.html (accessed on 1 November 2022).
- ISO 2917:1999; Meat and Meat Products—Measurement of pH. ISO: Geneva, Switzerland, 1999. Available online: https://www.iso.org/ru/standard/24785.html (accessed on 1 November 2022).
- ISO 4833-1:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique. ISO: Geneva, Switzerland, 2013. Available online: https://www.iso.org/obp/ui/#iso:std:iso:4833:-1:ed-1:v1:en (accessed on 1 November 2022).
- ISO 15213:2003; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Sulfite-Reducing Bacteria Growing under Anaerobic Conditions. ISO: Geneva, Switzerland, 2003. Available online: https://www.iso.org/ru/standard/26852.html (accessed on 1 November 2022).
- ISO 21527-2:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 2: Colony Count Technique in Products with Water Activity Less than or Equal to 0.95. ISO: Geneva, Switzerland, 2008. Available online: https://www.iso.org/obp/ui#iso:std:iso:21527:-2:ed-1:v1:en (accessed on 1 November 2022).
- ISO 16654:2001; Microbiology-Horizontal Method for the Detection of Escherichia coli O157. ISO: Geneva, Switzerland, 2001. Available online: https://www.iso.org/standard/29821.html (accessed on 1 November 2022).
- ISO 4832:2006; Horizontal Method for the Enumeration of Coliforms. ISO: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/38282.html (accessed on 1 November 2022).
- ISO 6579:2002; Microbiology of Food and Animal Feeding Stuffs–Horizontal Method for the Detection of Salmonella spp. ISO: Geneva, Switzerland, 2002. Available online: https://www.iso.org/ru/standard/29315.html (accessed on 1 November 2022).
- ISO 7932:2004; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Presumptive Bacillus cereus—Colony-Count Technique at 30 degrees C. ISO: Geneva, Switzerland, 2004. Available online: https://www.iso.org/standard/38219.html (accessed on 1 November 2022).
- ISO 13720:2010; Meat and Meat Products—Enumeration of Presumptive Pseudomonas spp. ISO: Geneva, Switzerland, 2010. Available online: https://www.iso.org/ru/standard/45099.html (accessed on 1 November 2022).
- ISO 6888-1:2021; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and Other Species)—Part 1: Method Using Baird-Parker Agar Medium. ISO: Geneva, Switzerland, 2021. Available online: https://www.iso.org/ru/standard/76672.html (accessed on 1 November 2022).
- ISO 11290-1:2017; Microbiology of Food and Animal Feeding Stuffs–Horizontal Method for the Enumeration of Listeria monocytogenes—Part 1, Incorporating Amendment 1. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/60313.html (accessed on 1 November 2022).
- Manessis, G.; Kalogianni, A.I.; Lazou, T.; Moschovas, M.; Bossis, I.; Gelasakis, A.I. Plant-Derived Natural Antioxidants in Meat and Meat Products. Antioxidants 2020, 9, 1215. [Google Scholar] [CrossRef]
- Liu, H.; Qiu, N.; Ding, H.; Yao, R. Polyphenols contents and antioxidant capacity of 68 Chinese herbals suitable for medical or food uses. Food Res. Int. 2008, 41, 363–370. [Google Scholar] [CrossRef]
- Alirezalu, K.; Pateiro, M.; Yaghoubi, M.; Alirezalu, A.; Peighambardoust, S.H.; Lorenzo, J.M. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends Food Sci. Technol. 2020, 100, 292–306. [Google Scholar] [CrossRef]
- Awad, A.M.; Kumar, P.; Ismail-Fitry, M.R.; Jusoh, S.; Ab Aziz, M.F.; Sazili, A.Q. Overview of plant extracts as natural preservatives in meat. J. Food Process. Preserv. 2022, 46, e16796. [Google Scholar] [CrossRef]
- Mariutti, L.R.; Nogueira, G.C.; Bragagnolo, N. Lipid and cholesterol oxidation in chicken meat are inhibited by sage but not by garlic. J. Food Sci. 2011, 76, C909–C915. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Munekata, P.E.S.; Sant’Ana, A.S.; Carvalho, R.B.; Barba, F.J.; Toldrá, F.; Mora, L.; Trindade, M.A. Main characteristics of peanut skin and its role for the preservation of meat products. Trends Food Sci. Technol. 2018, 77, 1–10. [Google Scholar] [CrossRef]
- Ashokkumar, K.; Murugan, M.; Dhanya, M.K.; Pandian, A.; Warkentin, T.D. Phytochemistry and therapeutic potential of black pepper [Piper nigrum (L.)] essential oil and piperine: A review. Clin. Phytosci. 2021, 7, 52. [Google Scholar] [CrossRef]
- Feng, Y.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS characterization of bioactive compounds from black spices and their potential antioxidant activities. J. Food Sci. Technol. 2020, 57, 4671–4687. [Google Scholar] [CrossRef]
- Lee, J.G.; Chae, Y.; Shin, Y.; Kim, Y.-J. Chemical composition and antioxidant capacity of black pepper pericarp. Appl. Biol. Chem. 2020, 63, 35. [Google Scholar] [CrossRef]
- Zhang, L.; Lokeshwar, B.L. Medicinal properties of the Jamaican pepper plant Pimenta dioica and Allspice. Curr. Drug Targets 2012, 13, 1900–1906. [Google Scholar] [CrossRef]
- Miyajima, Y.; Kikuzaki, H.; Hisamoto, M.; Nikatani, N. Antioxidative polyphenols from berries of Pimenta dioica. Biofactors 2004, 21, 301–303. [Google Scholar] [CrossRef]
- Torrijos, R.; Righetti, L.; Cirlini, M.; Calani, L.; Mañes, J.; Meca, G.; Dall’Asta, C. Phytochemical profiling of volatile and bioactive compounds in yellow mustard (Sinapis alba) and oriental mustard (Brassica juncea) seed flour and bran. LWT 2023, 173, 114221. [Google Scholar] [CrossRef]
- Martinović, N.; Polak, T.; Poklar Ulrih, N.; Abramovič, H. Mustard Seed: Phenolic Composition and Effects on Lipid Oxidation in Oil, Oil-in-Water Emulsion and Oleogel. Ind. Crop. Prod. 2020, 156, 112851. [Google Scholar] [CrossRef]
- Reddy, B.C.; Noor, A.; Sabareesh, V.; Vijayalakshmi, M.A. Preliminary screening of potential flavonoid-subclasses in Myristica fragrans and Cordyline terminalis by LCESI-MS. J. Pharmacogn. Phytochem. 2016, 5, 437–450. [Google Scholar]
- Antasionasti, I.; Datu, O.S.; Lestari, U.S.; Abdullah, S.S.; Jayanto, I. Correlation Analysis of Antioxidant Activities with Tannin, Total Flavonoid, and Total Phenolic Contents of Nutmeg (Myristica fragrans Houtt) Fruit Precipitated by Egg white. Borneo J. Pharm. 2021, 4, 301–310. [Google Scholar] [CrossRef]
- Gupta, A.D.; Bansal, V.K.; Babu, V.; Maithil, N. Chemistry, antioxidant and antimicrobial potential of nutmeg (Myristica fragrans Houtt). J. Genet. Eng. Biotechnol. 2013, 11, 25–31. [Google Scholar] [CrossRef]
- Karna, K.K.; Choi, B.R.; You, J.H.; Shin, Y.S.; Cui, W.S.; Lee, S.W.; Kim, J.H.; Kim, C.Y.; Kim, H.K.; Park, J.K. The ameliorative effect of monotropein, astragalin, and spiraeoside on oxidative stress, endoplasmic reticulum stress, and mitochondrial signaling pathway in varicocelized rats. BMC Complement. Altern. Med. 2019, 19, 333. [Google Scholar] [CrossRef] [PubMed]
- Pal, C.B.T.; Jadeja, G.C. Deep eutectic solvent-based extraction of polyphenolic antioxidants from onion (Allium cepa L.) peel. J. Sci. Food Agric. 2019, 99, 1969–1979. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.T.; Kheirkhah, H.; Baroutian, S.; Quek, S.Y.; Young, B.R. Subcritical water extraction of bioactive compounds from waste onion skin. J. Clean. Prod. 2018, 183, 487–494. [Google Scholar] [CrossRef]
- Campone, L.; Celano, R.; Lisa Piccinelli, A.; Pagano, I.; Carabetta, S.; Sanzo, R.D.; Russo, M.; Ibañez, E.; Cifuentes, A.; Rastrelli, L. Response surface methodology to optimize supercritical carbon dioxide/co-solvent extraction of brown onion skin by-product as source of nutraceutical compounds. Food Chem. 2018, 269, 495–502. [Google Scholar] [CrossRef]
- Kwak, J.H.; Seo, J.M.; Kim, N.H.; Arasu, M.V.; Kim, S.; Yoon, M.K.; Kim, S.-J. Variation of quercetin glycoside derivatives in three onion (Allium cepa L.) varieties. Saudi J. Biol. Sci. 2017, 24, 1387–1391. [Google Scholar] [CrossRef]
- Kotenkova, E.A.; Kupaeva, N.V. Comparative antioxidant study of onion and garlic waste and bulbs. IOP Conf. Ser. Earth Environ. Sci. 2019, 333, 012031. [Google Scholar] [CrossRef]
- Vijayalakshmi, G.; Raja, M.M.; Naik, M.L.; Carbone, V.; Russo, G.L.; Khan, P.S.V. Determination of antioxidant capacity and flavonoid composition of onion (Allium cepa L.) landrace ‘Krishnapuram’ bulb using HPLC-ESI-ITMS. J. Biosci. 2021, 46, 58. [Google Scholar] [CrossRef]
- Oku, S.; Aoki, K.; Honjo, M.; Muro, T.; Tsukazaki, H. Temporal Changes in Quercetin Accumulation and Composition in Onion (Allium cepa L.) Bulbs and Leaf Blades. Hortic. J. 2021, 90, 326–333. [Google Scholar] [CrossRef]
Ingredient | Control | E1 # | E2 # |
---|---|---|---|
Blanched materials, g/kg blanched materials | |||
Beef flank | 350 | 350 | 350 |
Beef liver | 230 | 230 | 230 |
Lean pork | 200 | 200 | 200 |
Pork heart | 100 | 100 | 100 |
Wheat flour | 50 | 50 | 50 |
Powdered cow’s milk | 20 | 20 | 20 |
Fried onions | 50 | 50 | 50 |
Auxiliary materials, g/kg unsalted blanched materials | |||
Table salt | 14 | 14 | 14 |
Sugar | 3 | 3 | 3 |
Ground black pepper | 1 | 1 | 1 |
Ground allspice | 0.5 | 0.5 | 0.5 |
Ground mustard | 5 | 5 | 5 |
Nutmeg | 0.5 | 0.5 | 0.5 |
Auxiliary materials, mL/kg unsalted blanched materials | |||
Beef broth after blanching | 200 | 132 | 166 |
OHE * | - | 68 | 34 |
Fat, % | Protein, % | Moisture, % | Ash, % | Carbohydrates, % | |
---|---|---|---|---|---|
Control | 9.33 ± 0.06 | 21.27 ± 0.06 | 57.17 ± 0.21 | 1.95 ± 0.04 | 10.29 ± 0.12 |
E1 | 8.00 ± 0.20 * | 28.03 ± 0.15 * | 53.0 ± 0.17 * | 2.11 ± 0.06 * | 8.85 ± 0.43 * |
E2 | 8.93 ± 0.15 *,# | 24.0 ± 0.10 *,# | 55.7 ± 0.20 *,# | 2.10 ± 0.06 * | 9.27 ± 0.34 * |
Metabolite | OHE, µg-eq. Q/100 mL | µg-eq. Q/100 g Meat Pâté | ||||||
---|---|---|---|---|---|---|---|---|
Predicted (Calculated) | Control (C) | Obtained | ||||||
E1 | E2 | E1 | E2 | ∆ (E1-C) | ∆ (E2-C) | |||
Delphinidin 3-galactoside | 955.5 ± 59.4 | 65.0 ± 4.0 | 32.5 ± 2.0 | 18.8 ± 2.6 | 80.4 ± 34.2 * | 35.7 ± 3.1 *,# | 61.6 | 17.0 |
Petunidin 3-galactoside | 293.5 ± 19.8 | 20.0 ± 1.4 | 10.0 ± 0.7 | 13.1 ± 4.6 | 15.6 ± 3.5 | 19.1 ± 5.9 | 2.5 | 6.0 |
Luteolin-4′- O-glucoside | 804.9 ± 56.9 | 53.7 ± 3.9 | 27.4 ± 1.9 | 30.9 ± 2.2 | 61.8 ± 8.2 * | 43.3 ± 8.9 * | 30.9 | 12.5 |
Spiraeoside | 365,200.0 ± 0.0 | 24,833.6 ± 0.0 | 12,416.8 ± 0.0 | 11,041.1 ± 158.1 | 20,809.7 ± 372.8 * | 16,447.7 ± 504.1 *,# | 9768.6 | 5406.7 |
Myricitrin | 6534.4 ± 344.7 | 444.3 ± 23.4 | 222.2 ± 11.7 | 254.9 ± 20.0 | 656.7 ± 8.1 * | 506.9 ± 32.4 *,# | 402.1 | 252.0 |
Isorhamnetin-3-O-beta-D- Glucoside | 2789.6 ± 53.1 | 189.7 ± 3.6 | 94.9 ± 1.8 | 180.5 ± 25.8 | 259.0 ± 6.3 * | 273.4 ± 21.0 * | 78.4 | 92.8 |
Quercetin 3-O-malonylglucoside | 441.0 ± 17.5 | 30.0 ± 1.2 | 15.0 ± 0.6 | 0.0 ± 0.0 | 15.0 ± 6.4 * | 8.4 ± 1.7 * | 15.0 | 8.4 |
Quercetin-3,4′-O-di-beta- glucoside | 1796.9 ± 121.3 | 122.2 ± 8.3 | 61.1 ± 4.1 | 0.1 ± 0.2 | 73.7 ± 3.8 * | 40.0 ± 9.2 *,# | 73.5 | 39.9 |
Baimaside | 449.7 ± 34.0 | 30.6 ± 2.3 | 15.3 ± 1.2 | 0.4 ± 0.8 | 19.4 ± 10.2 * | 11.4 ± 0.3 * | 19.0 | 11.0 |
Isorhamnetin | 1831.1 ± 132.9 | 124.5 ± 9.0 | 62.3 ± 4.5 | 24.2 ± 6.7 | 144.0 ± 7.7 * | 80.1 ± 11.3 *,# | 119.8 | 55.9 |
Kaempferol | 1057.3 ± 29.1 | 71.9 ± 2.0 | 36.0 ± 1.0 | 3.0 ± 1.9 | 53.8 ± 10.4 * | 22.1 ± 1.8 *,# | 50.8 | 19.1 |
Quercetin | 174,546.7 ± 3596.7 | 11,869.2 ± 244.6 | 5934.6 ± 122.3 | 77.9 ± 10.1 | 10,279.0 * ± 389.8 * | 4563.6 * ± 76.8 *,# | 10,201.0 | 4485.7 |
Total | 556,700.5 ± 3495.1 | 37,855.6 ± 237.8 | 18,927.8 ± 118.8 | 11,644.9 ± 164.3 | 32,468.2 * ± 664.1 * | 21,949.4 ± 417.5 *,# | 20,823.3 | 10,304.5 |
Day | TACFRAP, µmol-equiv. Q/ 100 g Meat Pâté | ||||
---|---|---|---|---|---|
Control (C) | E1 | E2 | ∆ (E1-C) | ∆ (E2-C) | |
0 | 32.83 ± 1.19 | 72.94 ± 1.85 * | 50.52 ± 1.27 *,# | 40.11 | 17.69 |
3 | 29.96 ± 0.79 | 73.35 ± 0.30 * | 49.88 ± 0.67 *,# | 43.39 | 19.92 |
5 | 26.19 ± 1.21 | 64.25 ± 1.03 * | 42.97 ± 0.20 *,# | 38.06 | 16.78 |
7 | 25.06 ± 0.20 | 58.42 ± 0.29 * | 37.73 ± 0.29 *,# | 33.36 | 12.67 |
14 | 21.69 ± 0.44 | 50.13 ± 0.97 * | 36.59 ± 0.14 *,# | 28.44 | 14.90 |
µmol-equiv. Q/100 g Meat Pâté | Decrease in TACFRAP in E1, % | µmol-equiv. Q/100 g Meat Pâté | Decrease in TACFRAP in E2, % | ||
---|---|---|---|---|---|
Amount in Recipe E1 | ∆ (E1-C) | Amount in Recipe E2 | ∆ (E2-C) | ||
44.4 | 36.67 ± 5.86 | 17.41 | 22.2 | 16.39 ± 2.75 | 9.45 |
Day | PV, mmol. Active O2/kg of Fat | ||
---|---|---|---|
Control | E1 | E2 | |
0 | 2.07 ± 0.34 | 2.09 ± 0.16 | 1.35 ± 0.25 *,# |
3 | 2.0 ± 0.37 | 2.44 ± 0.12 * | 2.57 ± 0.14 * |
7 | 2.83 ± 0.04 | 2.98 ± 0.14 | 2.61 ± 0.05 *,# |
10 | 3.62 ± 0.09 | 3.32 ± 0.03 * | 3.54 ± 0.06 # |
14 | 3.65 ± 0.16 | 3.84 ± 0.22 | 4.07 ± 0.02 * |
28 | 4.19 ± 0.11 | 3.92 ± 0.23 | 3.96 ± 0.23 |
p-value 1 (0–28 days) | 0.014 | 0.012 | 0.014 |
p-value 1 (0–7 days) | 0.097 | 0.050 | 0.097 |
Day | pH Value | ||
---|---|---|---|
Control | E1 | E2 | |
0 | 6.07 ± 0.06 | 6.09 ± 0.04 | 5.98 ± 0.05 # |
3 | 5.95 ± 0.03 | 5.92 ± 0.03 | 6.05 ± 0.04 *,# |
7 | 5.95 ± 0.02 | 5.83 ± 0.03 * | 6.02 ± 0.04 *,# |
10 | 5.89 ± 0.03 | 5.83 ± 0.02 * | 6.00 ± 0.01 *,# |
14 | 5.93 ± 0.04 | 5.87 ± 0.02 * | 6.02 ± 0.01 *,# |
28 | 6.0 ± 0.05 | 5.91 ± 0.02 * | 6.06 ± 0.03 # |
p-value 1 (0–28 days) | 0.025 | 0.014 | 0.187 |
p-value 1 (0–7 days) | 0.097 | 0.050 | 0.202 |
Day | TBARS, µmol/100 g Meat Pâté | ||
---|---|---|---|
Control | E1 | E2 | |
0 | 2.27 ± 0.30 | 1.96 ± 0.19 | 1.94 ± 0.36 |
3 | 4.57 ± 0.32 | 1.89 ± 0.33 * | 2.20 ± 0.35 * |
7 | 5.83 ± 3.83 | 2.11 ± 0.13 * | 2.96 ± 0.73 * |
10 | 6.07 ± 0.17 | 2.80 ± 0.57 * | 2.26 ± 0.34 * |
14 | 4.79 ± 0.73 | 2.29 ± 0.69 * | 2.83 ± 0.53 * |
p-value 1 (0–14 days) | 0.009 | 0.114 | 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernukha, I.; Kupaeva, N.; Khvostov, D.; Bogdanova, Y.; Smirnova, J.; Kotenkova, E. Assessment of Antioxidant Stability of Meat Pâté with Allium cepa Husk Extract. Antioxidants 2023, 12, 1103. https://doi.org/10.3390/antiox12051103
Chernukha I, Kupaeva N, Khvostov D, Bogdanova Y, Smirnova J, Kotenkova E. Assessment of Antioxidant Stability of Meat Pâté with Allium cepa Husk Extract. Antioxidants. 2023; 12(5):1103. https://doi.org/10.3390/antiox12051103
Chicago/Turabian StyleChernukha, Irina, Nadezhda Kupaeva, Daniil Khvostov, Yuliya Bogdanova, Jutta Smirnova, and Elena Kotenkova. 2023. "Assessment of Antioxidant Stability of Meat Pâté with Allium cepa Husk Extract" Antioxidants 12, no. 5: 1103. https://doi.org/10.3390/antiox12051103
APA StyleChernukha, I., Kupaeva, N., Khvostov, D., Bogdanova, Y., Smirnova, J., & Kotenkova, E. (2023). Assessment of Antioxidant Stability of Meat Pâté with Allium cepa Husk Extract. Antioxidants, 12(5), 1103. https://doi.org/10.3390/antiox12051103