Coffee: Fuel for Your Day or Foe for Your Arteries
Abstract
:1. Introduction
2. Coffee Composition
3. Bioactive Compounds in Coffee and Its Potential to Prevent Atherosclerosis
3.1. The Impact of Coffee Consumption on Obesity
Coffee Consumption and Gut Microbiota in Weight Loss
3.2. Coffee Consumption and Inflammation
Genetic Variations and Physical Activity Influences the Impact of Coffee Consumption on Inflammation
3.3. Coffee Extraction Method Influence the Lipid Profile
3.4. Anti-Atherogenic Effects of Bioactive Compounds of Coffee
Coffee/Coffee Bioactive | Study Model | Main Findings | Study Details | References |
---|---|---|---|---|
Green and roasted coffee | Normocholesterolemic (n = 25) and hypercholesterolemic (n = 27) subjects aged 18 to 45 years | ⇩ Total cholesterol ⇩ LDL-C ⇩ VLDL-C ⇩ Triglycerides ⇧ Plasma antioxidant capacity ⇩ MDA levels ⇩ Carbonylation ⇩ CRP | Moderate coffee consumption (3 cups per day) for 8 weeks. | [4] |
Caffeine and CGA ⇧ | 3T3-F422A preadipocyte cell line | ⇩ PPAR-γ expression ⇩ c/EBP-α | Caffeine 1 mM + CGA 0.5 mM loaded into solid lipid nanoparticles. | [13] |
Caffeine and CGA | Female ICR mice | ⇩ Adipose tissue ⇩ Body weight ⇩ Total cholesterol (serum and hepatic) ⇩ Triglycerides ⇩ Leptin levels ⇧ AMPK activation ⇩ PPAR-γ2 liver expression. | Diet containing: 0.2% CGA 0.03% caffeine for 24 weeks. | [17] |
Instant organic coffee | C57BL6 male mice | Improved glucose metabolism ⇩ Adipose tissue inflammation ⇩ Hypertrophy ⇩ Macrophage infiltration ⇩ IL-6, TNF-α ⇧ Adaptive thermogenesis ⇧ Mitochondrial biogenesis | High-fat diet + consumption of instant organic coffee (0.1% v/v) for 4 weeks. | [18] |
Green coffee bean extract | Individuals, over the age of 18, (n = 103) | ⇩ Body weight Lipid profile improvement | 500 mg/day green coffee extract. Supplementation for at least 1 week to 8 weeks. | [19] |
Decaffeinated green coffee | Patients diagnosed with metabolic syndrome, aged 18–70 years (n = 43) | ⇩ Body weight ⇩ Body mass index | 8 weeks of decaffeinated green coffee supplementation (800 mg/day, containing 186 mg of CGA). | [20] |
Green coffee extract | Overweight/ obese patients with type 2 diabetes (n = 44) | ⇩ Body weight ⇩ Body mass index ⇩ Systolic blood pressure ⇩ C-reactive protein ⇩ Triglycerides ⇧ HDL levels | 800 mg/day green coffee extract supplementation for 10 weeks | [7] |
Coffee | Kidney transplant recipients aged 49.5 years (n = 170) | ⇧ Body adiposity (central adiposity) Lower muscle quality | Median coffee consumption 200 mL/day 2 years follow-up. | [21] |
Coffee | Individuals with metabolic syndrome (n = 1483) | ⇩ Total fat tissue ⇩ Trunk fat ⇩ Visceral adipose tissue | Moderate coffee consumption (1–7 cups/week) 3 years follow-up. | [22] |
Acute coffee consumption (400 mg CGA) | In vitro and ex vivo experiments on plasma from healthy volunteers (n = 20) after drinking coffee | ⇧ Antioxidant capacity of plasma Prevention of LDL oxidation | Acute coffee consumption containing 420 mg of CGA (400 mL of coffee). | [23] |
Instant coffee | High-fat fed rats (Male Sprague Dawley) | ⇩ Body weight ⇩ Adiposity ⇧ Insulin resistance ⇩ Firmicutes (F)-to-Bacteroidetes ratio and Clostridium Cluster XI ⇧ Enterobacteria | Instant caffeinated coffee (20 g/L) for 10 weeks. | [24] |
CGA | C57BL/6 male mice fed a high-fat diet | ⇩ Body weight ⇩ Subcutaneous and visceral weight ⇧ Short chain fatty acid producers (Dubosiella, Romboutsia, Mucispirillum, and Faecalibaculum) ⇧ Akkermansia | 150 mg/Kg CGA solution for 20 weeks. | [25] |
Green coffee extract | Apo−/− mice fed antiatherogenic diet | ⇩ Adiposity ⇩ Weight gain ⇩ Inflammatory infiltrate in adipose tissue Improved microbiota diversity ⇧ Desulfovibrio ⇧ Mogibacteriaceae | Green coffee extract 220 mg/Kg for 14 weeks. | [27] |
Freeze-dried coffee solution | Wistar rats fed high-fat diet | ⇧ Bifidobacterium spp. ⇧ HDL-C reverse cholesterol transport ⇩ II1b mRNA Did not improve weight gain | Freeze-dried coffee solution at a dose of 0.39 g/100 g for 8 weeks. | [28] |
Kahweol | INS-1 cells | ⇩ NF-κB ⇧ Antioxidant enzymes (Hemeoxygenase-1) ⇧ p-AKT ⇧ BCL-2 | Cells were exposed to 3 mM streptozotocin and pre-incubated with 2.5 and 5 μM kahweol. | [29] |
Kahweol | AREc32 cells | ⇧ Nrf2 | 0.02 and 30 μM kahweol. | [30] |
Caffeine | RAW264.7 cells | ⇩ NF-κB ⇩ p-p38MAPK | Cells were exposed to 1 μg/mL LPS and treated with caffeine (0, 100, 400, 800, 1000, and 1200 μM). | [31] |
Caffeine | Peripheral blood mononuclear cells isolated from 3 healthy individuals | ⇩ STAT1 expression ⇩ TNF expression ⇩ IFNG expression ⇩ PPARG expression ⇩ IL-8, IL-4, IL10, and TNF-α levels | Caffeine (0.019 mM, 0.102 mM, and 1.16 mM). | [32] |
Coffee pulp extract/CGA/caffeine | Raw 264.7 cells | ⇩ TNF-α, IL-6, iNOS, COX-2, and PGE2 expression ⇩ NF-κB activation ⇩ MAPK signaling | Cells were stimulated with 1 μg/mL LPS and treated with 1000 μg/mL coffee pulp extract, 13.38 μg/mL CGA, and 3.82 μg/mL caffeine. | [33] |
Coffee/Green coffee | C57BL6 male mice | ⇩ Body weight ⇩ Mesenteric fat weight ⇩ Atf3, Fos, and Socs3 ⇩ Hsp70 | High-fat diet 2% freeze-dried caffeinated coffee, decaffeinated coffee, or green coffee for 9 weeks. | [34] |
Caffeine | Subjects with (n = 40) and without coronary artery disease (n = 40) | ⇩ CRP in plasma Improvement in brachial endothelial function | 200 mg acute caffeine ingestion. | [35] |
Caffeinated and decaffeinated coffee | n = 15,551 women (nurse’s health study) and n = 7397 men (health professionals) | ⇩ CRP ⇩ Leptin ⇩ IL-6 ⇩ C-peptide ⇩ Estrone, total estradiol, free estradiol ⇧ Adiponectin | Regular coffee consumption; Follow-up between 9 and 14 years. | [36] |
Filtered coffee | Healthy women (n = 730) and women with type 2 diabetes (n = 663) aged 43–70 years | ⇩ CRP Prevent endothelial dysfunction ⇩ E-selectin | Regular caffeinated and decaffeinated coffee consumption. Follow-up of 14 to 15 years. | [37] |
High-CGA coffee | Cyclist subjects: men (n = 10), women (n = 5) aged 19 to 51 years | ⇧ Antioxidant capacity in plasma It did not decrease post-exercise inflammation | High-CGA coffee consumption (300 mL/day) for 2 weeks. Coffee was prepared using the Turkish method. Participation in a 50-Km cycling time trial. | [38] |
Filtered coffee | Habitual coffee drinkers (n = 47) younger than 65 years with elevated risk of type 2 diabetes | ⇩ IL-18 ⇩ 8-Isoprostane ⇧ Adiponectin ⇧ Caffeine in serum ⇧ CGA in serum ⇧ Caffeic acid metabolites in serum ⇧ HDL ⇩ LDL/HDL ratio | First month: no coffee Second month: 4 cups/day Third month: 8 cups/day. | [39] |
Caffeine/coffee | Resistance-trained Iranian men (n = 15) around 21 years old. Russian healthy physically active subjects (n = 134) aged 28 to 31 years | ⇩ Myeloperoxidase ⇩ Acetylcholinesterase Association of ADORA2A gene polymorphism with anti-inflammatory effects of caffeine | 6 mg/Kg acute caffeine consumption before resistance exercise. Regular coffee intake in the physically active subjects. | [40] |
Coffee/caffeine | Peripheral blood mononuclear cells isolated from 8 healthy individuals | ⇩ Inflammatory markers in some individuals ⇧ inflammatory markers in some individual | Cells were isolated before and after coffee consumption (3 capsules of coffee containing 165 mg caffeine). Exposed to 1 μg/mL LPS and 5 μg/mL phytohemagglutinin. Cells were treated with 200 ng/mL caffeine in vitro. | [41] |
Caffeine | Healthy subjects: men (n = 112) and women (n = 132) aged 18 to 55 years | ⇩ CRP in plasma ⇩ Body fat total and visceral ⇧ Adiponectin ⇧ Il-10 ⇩ IL-6, TNF-α | Habitual caffeine intake. | [46] |
Coffee | Individuals (n = 109) aged 22 to 70 years | ⇧ Total cholesterol ⇧ Triglycerides ⇧ LDL-C ⇧ VLDL-C | Regular coffee consumption (Turkish method and instant coffee). | [50] |
Coffee | Women with vitamin D deficiency (n = 270) aged 18 to 65 years | ⇧ Total cholesterol/HDL ratio | Turkish coffee consumption during 3 previous months. Moderate consumption (1–2 cups/day). High consumption (≥3 cups/day); 150 mg caffeine per cup. | [54] |
Coffee | Healthy volunteers (n = 3000) | Filtered coffee: ⇩ Serum cholesterol ⇩ Triglycerides Unfiltered coffee: ⇧ Serum cholesterol ⇧ Triglycerides | Filtered and unfiltered coffee consumption (1–5 cups/day). | [52] |
Coffee | Healthy volunteers (n = 1272) over the age of 30. | ⇧ HDL-C levels | Regular plain black coffee consumption (5 cups per week). Follow-up of 13 years. | [55] |
Filtered coffee | ELSA-Brazil cohort (n = 4732) | ⇧ Total cholesterol ⇧ Triglycerides ⇧ VLDL-C ⇧ Triglyceride-rich lipoprotein particles | Regular high consumption of filtered coffee (more than 3 cups/day). | [56] |
Coffee | Tromø study in northern Norway (n = 21,083) aged 40 years | ⇧ Total cholesterol levels | Espresso coffee 3 to 5 cups per day. Boiled/plunger coffee more than 6 cups per day. | [57] |
Caffeic acid, 1-methyluric acid, and 1,3,7-trimethyluric acid | In vitro and ex vivo study on plasma from healthy individuals | Prevention of LDL oxidation by copper | 0.5 μM caffeic acid, 3 μM 1,3,7-trimethyluric acid, 30 μM 1-methyluric acid, caffeic acid. | [62] |
Coffee | Healthy male volunteers aged 20 to 31 (n = 11) | ⇩ Total cholesterol ⇩ LDL-C ⇩ MDA ⇩ LDL oxidation | Coffee intake, 24 g total per day for 1 week | [64] |
Filtered coffee/caffeic acid | Ex vivo and in vitro experiments in plasma from healthy volunteers (n = 10) | ⇩ LDL oxidation Incorporation of caffeic, p-coumaric, and ferulic acids into LDL | Coffee consumption (200 mL) In vitro: 1, 10, 100 nmol/L caffeic acid incubated with isolated LDL from healthy subjects. | [65] |
Filtered coffee | Healthy volunteers (n = 20) | ⇧ SOD ⇧ Catalase ⇧ GPx Did not reduce ox-LDL levels | 482 ± 61 mL/day medium light roast or medium roast paper-filtered for 4 weeks. | [66] |
DHFA | Culture human macrophages | ⇩ ROS production ⇩ 8-Isoprostane ⇩ Ox-LDL uptake ⇩ CD36 expression ⇩ inflammatory mediators (TNF-α, IL-6, and IL-17) ⇧ IL-10 ⇧ PGE1 | THP-1 monocyte-derived macrophages were exposed to 50 μg/mL ox-LDL, 10 ng/mL LPS or 20 μM 7KC treated with 1 μM DHFA. | [67] |
Filtered coffee with high content of CGA and low content of kahweol and cafestol/DHFA in in vitro experiments. | Subjects (n = 74) aged between 20 and 60 years. In vitro experiments in THP-1 monocyte-derived macrophages | ⇩ Oxylipin levels in plasma ⇩ Lipid peroxidation markers ⇩ Inflammatory markers No significant differences in ox-LDL levels in plasma In vitro data: ⇩ Ox-LDL uptake ⇩ CD36 expression ⇩ SR-A expression ⇩ LOX-1 expression ⇩ ROS production ⇩ Oxylipin profile | Consumption of coffee A containing 787 mg CGA (n = 24), coffee B containing 407 mg CGA (n = 25), 400 mL/day for 8 weeks. In vitro experiment: 25 μg/mL ox-LDL, 1 μM DHFA, and 1 μM phenolic acid. | [68] |
Coffee (high content of polyphenols) | Healthy subjects aged 20 years or older (n= 169) | ⇩ Plasma LysoPC levels. | Low coffee consumption (≤100 mL/day), high coffee consumption >100 mL/day). | [69] |
Filtered coffee | Habitual coffee drinkers (n = 47) | ⇩ Plasma LysoPC levels | First month: No coffee consumption. Second month: 4 cups of paper-filtered coffee/day. Third month: 8 cups of paper-filtered coffee/day. | [70] |
4. Additional Considerations
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- International Coffee Organization [ICO]. Coffee Report and Outlook, December 2023 [PDF]. 2023. Available online: https://icocoffee.org/documents/cy2023-24/Coffee_Report_and_Outlook_December_2023_ICO.pdf (accessed on 31 July 2024).
- Farag, M.A.; Zayed, A.; Sallam, I.E.; Abdelwareth, A.; Wessjohann, L.A. Metabolomics-Based Approach for Coffee Beverage Improvement in the Context of Processing, Brewing Methods, and Quality Attributes. Foods 2022, 11, 864. [Google Scholar] [CrossRef] [PubMed]
- Higgins, L.G.; Cavin, C.; Itoh, K.; Yamamoto, M.; Hayes, J.D. Induction of cancer chemopreventive enzymes by coffee is mediated by transcription factor Nrf2. Evidence that the coffee-specific diterpenes cafestol and kahweol confer protection against acrolein. Toxicol. Appl. Pharmacol. 2008, 226, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Martínez-López, S.; Sarriá, B.; Mateos, R.; Bravo-Clemente, L. Moderate consumption of a soluble green/roasted coffee rich in caffeoylquinic acids reduces cardiovascular risk markers: Results from a randomized, cross-over, controlled trial in healthy and hypercholesterolemic subjects. Eur. J. Nutr. 2019, 58, 865–878. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, G. Polyphenols: Potent protectors against chronic diseases. Nat. Prod. Res. 2024, 1–3. [Google Scholar] [CrossRef]
- Reis, J.P.; Loria, C.M.; Steffen, L.M.; Zhou, X.; van Horn, L.; Siscovick, D.S.; Jacobs, D.R., Jr.; Carr, J.J. Coffee, decaffeinated coffee, caffeine, and tea consumption in young adulthood and atherosclerosis later in life: The CARDIA study. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2059–2066. [Google Scholar] [CrossRef]
- Khalili-Moghadam, S.; Hedayati, M.; Golzarand, M.; Mirmiran, P. Effects of green coffee aqueous extract supplementation on glycemic indices, lipid profile, CRP, and malondialdehyde in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Front. Nutr. 2023, 10, 1241844. [Google Scholar] [CrossRef]
- de Melo Pereira, G.V.; de Carvalho Neto, D.P.; Magalhães Júnior, A.I.; do Prado, F.G.; Pagnoncelli, M.G.B.; Karp, S.G.; Soccol, C.R. Chemical composition and health properties of coffee and coffee by-products. Adv. Food Nutr. Res. 2020, 91, 65–96. [Google Scholar] [CrossRef]
- Purushothaman, A.; Babu, S.S.; Naroth, S.; Janardanan, D. Antioxidant activity of caffeic acid: Thermodynamic and kinetic aspects on the oxidative degradation pathway. Free Radic. Res. 2022, 56, 617–630. [Google Scholar] [CrossRef]
- Bulló, M.; Casas-Agustench, P.; Amigó-Correig, P.; Aranceta, J.; Salas-Salvadó, J. Inflammation, obesity and comorbidities: The role of diet. Public Health Nutr. 2007, 10, 1164–1172. [Google Scholar] [CrossRef]
- Engin, A. Endothelial Dysfunction in Obesity. Adv. Exp. Med. Biol. 2017, 960, 345–379. [Google Scholar] [CrossRef]
- Wagner, N.; Wagner, K.D. The Role of PPARs in Disease. Cells 2020, 9, 2367. [Google Scholar] [CrossRef] [PubMed]
- Uner, B.; Macit Celebi, M.S. Anti-obesity effects of chlorogenic acid and caffeine-lipid nanoparticles through PPAR-γ/C/EBP-ɑ pathways. Int. J. Obes. 2023, 47, 1108–1119. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Hu, G.; Lu, Q.; Hong, D.; Al-Romaima, A.; Qiu, M.; Xiong, W. Identification and screening of novel diterpenoids from roasted arabica coffee in the regulation of lipid content in white adipocytes. Food Funct. 2023, 14, 5138–5150. [Google Scholar] [CrossRef] [PubMed]
- Quarta, S.; Scoditti, E.; Carluccio, M.A.; Calabriso, N.; Santarpino, G.; Damiano, F.; Siculella, L.; Wabitsch, M.; Verri, T.; Favari, C.; et al. Coffee Bioactive N-Methylpyridinium Attenuates Tumor Necrosis Factor (TNF)-α-Mediated Insulin Resistance and Inflammation in Human Adipocytes. Biomolecules 2021, 11, 1545. [Google Scholar] [CrossRef] [PubMed]
- Duangjai, A.; Nuengchamnong, N.; Suphrom, N.; Trisat, K.; Limpeanchob, N.; Saokaewm, S. Potential of Coffee Fruit Extract and Quinic Acid on Adipogenesis and Lipolysis in 3T3-L1 Adipocytes. Kobe J. Med. Sci. 2018, 64, E84–E92. [Google Scholar]
- Zheng, G.; Qiu, Y.; Zhang, Q.F.; Li, D. Chlorogenic acid and caffeine in combination inhibit fat accumulation by regulating hepatic lipid metabolism-related enzymes in mice. Br. J. Nutr. 2014, 112, 1034–1040. [Google Scholar] [CrossRef]
- Martins, B.C.; Soares, A.C.; Martinsm, F.F.; Resende, A.C.; Inada, K.O.P.; Souza-Mello, V.; Nunes, N.M.; Daleprane, J.B. Coffee consumption prevents obesity-related comorbidities and attenuates brown adipose tissue whitening in high-fat diet-fed mice. J. Nutr. Biochem. 2023, 117, 109336. [Google Scholar] [CrossRef]
- Kanchanasurakit, S.; Saokaew, S.; Phisalprapa, P.; Duangjai, A. Chlorogenic acid in green bean coffee on body weight: A systematic review and meta-analysis of randomized controlled trials. Syst. Rev. 2023, 12, 163. [Google Scholar] [CrossRef]
- Roshan, H.; Nikpayam, O.; Sedaghat, M.; Sohrab, G. Effects of green coffee extract supplementation on anthropometric indices, glycaemic control, blood pressure, lipid profile, insulin resistance and appetite in patients with the metabolic syndrome: A randomised clinical trial. Br. J. Nutr. 2018, 119, 250–258. [Google Scholar] [CrossRef]
- Costa, M.S.D.; Pontes, K.S.D.S.; Guedes, M.R.; Barreto Silva, M.I.; Klein, M.R.S.T. Association of habitual coffee consumption with obesity, sarcopenia, bone mineral density and cardiovascular risk factors: A two-year follow-up study in kidney transplant recipients. Clin. Nutr. 2023, 42, 1889–1900. [Google Scholar] [CrossRef]
- Henn, M.; Babio, N.; Romaguera, D.; Vázquez-Ruiz, Z.; Konieczna, J.; Vioque, J.; Torres-Collado, L.; Razquin, C.; Buil-Cosiales, P.; Fitó, M.; et al. Increase from low to moderate, but not high, caffeinated coffee consumption is associated with favorable changes in body fat. Clin. Nutr. 2023, 42, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Lara-Guzmán, O.J.; Álvarez-Quintero, R.; Osorio, E.; Naranjo-Cano, M.; Muñoz-Durango, K. GC/MS method to quantify bioavailable phenolic compounds and antioxidant capacity determination of plasma after acute coffee consumption in human volunteers. Food Res. Int. 2016, 89 Pt 1, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Cowan, T.E.; Palmnäs, M.S.; Yang, J.; Bomhof, M.R.; Ardell, K.L.; Reimer, R.A.; Vogel, H.J.; Shearer, J. Chronic coffee consumption in the diet-induced obese rat: Impact on gut microbiota and serum metabolomics. J. Nutr. Biochem. 2014, 25, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Liu, Y.; Hu, J.; Gao, Y.; Ma, Y.; Wen, D. Chlorogenic Acid-Induced Gut Microbiota Improves Metabolic Endotoxemia. Front. Endocrinol. 2021, 12, 762691. [Google Scholar] [CrossRef]
- Jonsson, A.L.; Bäckhed, F. Role of gut microbiota in atherosclerosis. Nat. Rev. Cardiol. 2017, 14, 79–87. [Google Scholar] [CrossRef]
- Caro-Gómez, E.; Sierra, J.A.; Escobar, J.S.; Álvarez-Quintero, R.; Naranjo, M.; Medina, S.; Velásquez-Mejía, E.P.; Tabares-Guevara, J.H.; Jaramillo, J.C.; León-Varela, Y.M.; et al. Green Coffee Extract Improves Cardiometabolic Parameters and Modulates Gut Microbiota in High-Fat-Diet-Fed ApoE−/− Mice. Nutrients 2019, 11, 497. [Google Scholar] [CrossRef]
- Cavalcanti, M.H.; Roseira, J.P.S.; Leandro, E.D.S.; Arruda, S.F. Effect of a freeze-dried coffee solution in a high-fat diet-induced obesity model in rats: Impact on inflammatory response, lipid profile, and gut microbiota. PLoS ONE 2022, 17, e0262270. [Google Scholar] [CrossRef]
- El-Huneidi, W.; Anjum, S.; Bajbouj, K.; Abu-Gharbieh, E.; Taneera, J. The Coffee Diterpene, Kahweol, Ameliorates Pancreatic β-Cell Function in Streptozotocin (STZ)-Treated Rat INS-1 Cells through NF-kB and p-AKT/Bcl-2 Pathways. Molecules 2021, 26, 5167. [Google Scholar] [CrossRef]
- Wu, K.C.; McDonald, P.R.; Liu, J.; Klaassen, C.D. Screening of natural compounds as activators of the keap1-nrf2 pathway. Planta Med. 2014, 80, 97–104. [Google Scholar] [CrossRef]
- Hwang, J.H.; Kim, K.J.; Ryu, S.J.; Lee, B.Y. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish. Chem. Biol. Interact. 2016, 248, 1–7. [Google Scholar] [CrossRef]
- Iris, M.; Tsou, P.S.; Sawalha, A.H. Caffeine inhibits STAT1 signaling and downregulates inflammatory pathways involved in autoimmunity. Clin. Immunol. 2018, 192, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Ontawong, A.; Duangjai, A.; Vaddhanaphuti, C.S.; Amornlerdpison, D.; Pengnet, S.; Kamkaew, N. Chlorogenic acid rich in coffee pulp extract suppresses inflammatory status by inhibiting the p38, MAPK, and NF-κB pathways. Heliyon 2023, 9, e13917. [Google Scholar] [CrossRef]
- Jia, H.; Aw, W.; Egashira, K.; Takahashi, S.; Aoyama, S.; Saito, K.; Kishimoto, Y.; Kato, H. Coffee intake mitigated inflammation and obesity-induced insulin resistance in skeletal muscle of high-fat diet-induced obese mice. Genes Nutr. 2014, 9, 389. [Google Scholar] [CrossRef]
- Shechter, M.; Shalmon, G.; Scheinowitz, M.; Koren-Morag, N.; Feinberg, M.S.; Harats, D.; Sela, B.A.; Sharabi, Y.; Chouraqui, P. Impact of acute caffeine ingestion on endothelial function in subjects with and without coronary artery disease. Am. J. Cardiol. 2011, 107, 1255–1261. [Google Scholar] [CrossRef]
- Hang, D.; Kværner, A.S.; Ma, W.; Hu, Y.; Tabung, F.K.; Nan, H.; Hu, Z.; Shen, H.; Mucci, L.A.; Chan, A.T.; et al. Coffee consumption and plasma biomarkers of metabolic and inflammatory pathways in US health professionals. Am. J. Clin. Nutr. 2019, 109, 635–647. [Google Scholar] [CrossRef]
- Lopez-Garcia, E.; van Dam, R.M.; Qi, L.; Hu, F.B. Coffee consumption and markers of inflammation and endothelial dysfunction in healthy and diabetic women. Am. J. Clin. Nutr. 2006, 84, 888–893. [Google Scholar] [CrossRef]
- Nieman, D.C.; Goodman, C.L.; Capps, C.R.; Shue, Z.L.; Arnot, R. Influence of 2-Weeks Ingestion of High Chlorogenic Acid Coffee on Mood State, Performance, and Postexercise Inflammation and Oxidative Stress: A Randomized, Placebo-Controlled Trial. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 55–65. [Google Scholar] [CrossRef]
- Kempf, K.; Herder, C.; Erlund, I.; Kolb, H.; Martin, S.; Carstensen, M.; Koenig, W.; Sundvall, J.; Bidel, S.; Kuha, S.; et al. Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: A clinical trial. Am. J. Clin. Nutr. 2010, 91, 950–957. [Google Scholar] [CrossRef]
- Rahimi, M.R.; Semenova, E.A.; Larin, A.K.; Kulemin, N.A.; Generozov, E.V.; Łubkowska, B.; Ahmetov, I.I.; Golpasandi, H. The ADORA2A TT Genotype Is Associated with Anti-Inflammatory Effects of Caffeine in Response to Resistance Exercise and Habitual Coffee Intake. Nutrients 2023, 15, 1634. [Google Scholar] [CrossRef]
- Muqaku, B.; Tahir, A.; Klepeisz, P.; Bileck, A.; Kreutz, D.; Mayer, R.L.; Meier, S.M.; Gerner, M.; Schmetterer, K.; Gerner, C. Coffee consumption modulates inflammatory processes in an individual fashion. Mol. Nutr. Food Res. 2016, 60, 2529–2541. [Google Scholar] [CrossRef]
- Yang, A.; Palmer, A.A.; de Wit, H. Genetics of caffeine consumption and responses to caffeine. Psychopharmacology 2010, 211, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.F.; Eltzschig, H.K.; Fredholm, B.B. Adenosine receptors as drug targets—What are the challenges? Nat. Rev. Drug Discov. 2013, 12, 265–286. [Google Scholar] [CrossRef] [PubMed]
- Volz, N.; Boettler, U.; Winkler, S.; Teller, N.; Schwarz, C.; Bakuradze, T.; Eisenbrand, G.; Haupt, L.; Griffiths, L.R.; Stiebitz, H.; et al. Effect of coffee combining green coffee bean constituents with typical roasting products on the Nrf2/ARE pathway in vitro and in vivo. J. Agric. Food Chem. 2012, 60, 9631–9641. [Google Scholar] [CrossRef]
- Sulem, P.; Gudbjartsson, D.F.; Geller, F.; Prokopenko, I.; Feenstra, B.; Aben, K.K.; Franke, B.; den Heijer, M.; Kovacs, P.; Stumvoll, M.; et al. Sequence variants at CYP1A1-CYP1A2 and AHR associate with coffee consumption. Hum. Mol. Genet. 2011, 20, 2071–2077. [Google Scholar] [CrossRef]
- Rodas, L.; Riera-Sampol, A.; Aguilo, A.; Martínez, S.; Tauler, P. Effects of Habitual Caffeine Intake, Physical Activity Levels, and Sedentary Behavior on the Inflammatory Status in a Healthy Population. Nutrients 2020, 12, 2325. [Google Scholar] [CrossRef]
- Guercia, E.; Berti, F.; De Zorzi, R.; Navarini, L.; Geremia, S.; Medagli, B.; De Conto, M.; Cassetta, A.; Forzato, C. On the Cholesterol Raising Effect of Coffee Diterpenes Cafestol and 16-O-Methylcafestol: Interaction with Farnesoid X Receptor. Int. J. Mol. Sci. 2024, 25, 6096. [Google Scholar] [CrossRef]
- Cordoba, N.; Fernandez-Alduenda, M.; Moreno, L.F.; Ruiz, Y. Coffee extraction: A review of parameters and their influence on the physicochemical characteristics and flavour of coffee brews. Trends Food Sci. Technol. 2020, 96, 45–60. [Google Scholar] [CrossRef]
- Janda, K.; Jakubczyk, K.; Baranowska-Bosiacka, I.; Kapczuk, P.; Kochman, J.; Rębacz-Maron, E.; Gutowska, I. Mineral Composition and Antioxidant Potential of Coffee Beverages Depending on the Brewing Method. Foods 2020, 9, 121. [Google Scholar] [CrossRef]
- Al-Fawaeir, S.; Alawneh, J.M.; Al-Odat, I. Influence of coffee consumption on serum lipid profile parameters: Can coffee consumption lead to health consequences in humans? J. Agr. Food Res. 2023, 14, 100904. [Google Scholar] [CrossRef]
- Cai, L.; Ma, D.; Zhang, Y.; Liu, Z.; Wang, P. The effect of coffee consumption on serum lipids: A meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2012, 66, 872–877. [Google Scholar] [CrossRef]
- Naidoo, N.; Chen, C.; Rebello, S.A.; Speer, K.; Tai, E.S.; Lee, J.; Buchmann, S.; Koelling-Speer, I.; van Dam, R.M. Cholesterol-raising diterpenes in types of coffee commonly consumed in Singapore, Indonesia and India and associations with blood lipids: A survey and cross sectional study. Nutr. J. 2011, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Post, S.M.; de Wit, E.C.; Princen, H.M. Cafestol, the cholesterol-raising factor in boiled coffee, suppresses bile acid synthesis by downregulation of cholesterol 7 alpha-hydroxylase and sterol 27-hydroxylase in rat hepatocytes. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 3064–3070. [Google Scholar] [CrossRef] [PubMed]
- Habash, M.; Al-Shakhshir, S.; Abusamak, M.; Mohammad, M.Y.; AbuSamak, M. The association of coffee consumption rate with serum 25-hydroxyvitamin D, non-HDL levels, and TC/HDL ratio in females with vitamin D deficiency. Womens Health 2022, 18, 17455057221112268. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.C.; Nfor, O.N.; Ho, C.C.; Chen, P.H.; Kung, Y.Y.; Hsu, S.Y.; Tantoh, D.M.; Liaw, Y.C.; Hsieh, C.F.; Liaw, Y.P. Changes in High-Density Lipoprotein Cholesterol Levels in Relation to Coffee Consumption Among Taiwanese Adults. J. Multidiscip. Healthc. 2020, 13, 1427–1432. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.M.; Goulart, A.C.; Generoso, G.; Bittencourt, M.S.; Santos, R.D.; Toth, P.P.; Jones, S.R.; Benseñor, I.M.; Lotufo, P.A.; Marchioni, D.M. Association between coffee consumption with serum lipid profile in ELSA-Brasil study: A metabolomic approach. Eur. J. Nutr. 2022, 61, 4205–4214. [Google Scholar] [CrossRef]
- Svatun, Å.L.; Løchen, M.L.; Thelle, D.S.; Wilsgaard, T. Association between espresso coffee and serum total cholesterol: The Tromsø Study 2015–2016. Open Heart 2022, 9, e001946. [Google Scholar] [CrossRef]
- Paapstel, K.; Kals, J.; Eha, J.; Tootsi, K.; Ottas, A.; Piir, A.; Jakobson, M.; Lieberg, J.; Zilmer, M. Inverse relations of serum phosphatidylcholines and lysophosphatidylcholines with vascular damage and heart rate in patients with atherosclerosis. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 44–52. [Google Scholar] [CrossRef]
- Stegemann, C.; Pechlaner, R.; Willeit, P.; Langley, S.R.; Mangino, M.; Mayr, U.; Menni, C.; Moayyeri, A.; Santer, P.; Rungger, G.; et al. Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study. Circulation 2014, 129, 1821–1831. [Google Scholar] [CrossRef]
- Bojic, L.A.; McLaren, D.G.; Harms, A.C.; Hankemeier, T.; Dane, A.; Wang, S.P.; Rosa, R.; Previs, S.F.; Johns, D.G.; Castro-Perez, J.M. Quantitative profiling of oxylipins in plasma and atherosclerotic plaques of hypercholesterolemic rabbits. Anal. Bioanal. Chem. 2016, 408, 97–105. [Google Scholar] [CrossRef]
- Zmysłowski, A.; Szterk, A. Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols. Lipids Health Dis. 2017, 16, 188. [Google Scholar] [CrossRef]
- Gómez-Ruiz, J.A.; Leake, D.S.; Ames, J.M. In vitro antioxidant activity of coffee compounds and their metabolites. J. Agric. Food Chem. 2007, 55, 6962–6969. [Google Scholar] [CrossRef] [PubMed]
- Alnsour, L.; Issa, R.; Awwad, S.; Albals, D.; Al-Momani, I. Quantification of Total Phenols and Antioxidants in Coffee Samples of Different Origins and Evaluation of the Effect of Degree of Roasting on Their Levels. Molecules 2022, 27, 1591. [Google Scholar] [CrossRef] [PubMed]
- Yukawa, G.S.; Mune, M.; Otani, H.; Tone, Y.; Liang, X.M.; Iwahashi, H.; Sakamoto, W. Effects of coffee consumption on oxidative susceptibility of low-density lipoproteins and serum lipid levels in humans. Biochemistry 2004, 69, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Natella, F.; Nardini, M.; Belelli, F.; Scaccini, C. Coffee drinking induces incorporation of phenolic acids into LDL and increases the resistance of LDL to ex vivo oxidation in humans. Am. J. Clin. Nutr. 2007, 86, 604–609. [Google Scholar] [CrossRef]
- Corrêa, T.A.; Monteiro, M.P.; Mendes, T.M.; Oliveira, D.M.; Rogero, M.M.; Benites, C.I.; Vinagre, C.G.; Mioto, B.M.; Tarasoutchi, D.; Tuda, V.L.; et al. Medium light and medium roast paper-filtered coffee increased antioxidant capacity in healthy volunteers: Results of a randomized trial. Plant Foods Hum. Nutr. 2012, 67, 277–282. [Google Scholar] [CrossRef]
- Lara-Guzmán, O.J.; Arango-González, Á.; Rivera, D.A.; Muñoz-Durango, K.; Sierra, J.A. The colonic polyphenol catabolite dihydroferulic acid (DHFA) regulates macrophages activated by oxidized LDL, 7-ketocholesterol, and LPS switching from pro- to anti-inflammatory mediators. Food Funct. 2024, 15, 10399–10413. [Google Scholar] [CrossRef]
- Lara-Guzmán, O.J.; Medina, S.; Álvarez, R.; Oger, C.; Durand, T.; Galano, J.M.; Zuluaga, N.; Gil-Izquierdo, Á.; Muñoz-Durango, K. Oxylipin regulation by phenolic compounds from coffee beverage: Positive outcomes from a randomized controlled trial in healthy adults and macrophage derived foam cells. Free Radic. Biol. Med. 2020, 160, 604–617. [Google Scholar] [CrossRef]
- Miranda, A.M.; Carioca, A.A.F.; Steluti, J.; da Silva, I.D.C.G.; Fisberg, R.M.; Marchioni, D.M. The effect of coffee intake on lysophosphatidylcholines: A targeted metabolomic approach. Clin. Nutr. 2017, 36, 1635–1641. [Google Scholar] [CrossRef]
- Kuang, A.; Erlund, I.; Herder, C.; Westerhuis, J.A.; Tuomilehto, J.; Cornelis, M.C. Lipidomic Response to Coffee Consumption. Nutrients 2018, 10, 1851. [Google Scholar] [CrossRef]
- Tung, W.C.; Rizzo, B.; Dabbagh, Y.; Saraswat, S.; Romanczyk, M.; Codorniu-Hernández, E.; Rebollido-Rios, R.; Needs, P.W.; Kroon, P.A.; Rakotomanomana, N.; et al. Polyphenols bind to low density lipoprotein at biologically relevant concentrations that are protective for heart disease. Arch. Biochem. Biophys. 2020, 694, 108589. [Google Scholar] [CrossRef]
- Surma, S.; Romańczyk, M.; Filipiak, K.J.; Lip, G.Y.H. Coffee and cardiac arrhythmias: Up-date review of the literature and clinical studies. Cardiol. J. 2023, 30, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Voskoboinik, A.; Koh, Y.; Kistler, P.M. Cardiovascular effects of caffeinated beverages. Trends Cardiovasc. Med. 2019, 29, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Raise-Abdullahi, P.; Raeis-Abdollahi, E.; Meamar, M.; Rashidy-Pour, A. Effects of coffee on cognitive function. Prog. Brain Res. 2024, 288, 133–166. [Google Scholar] [CrossRef] [PubMed]
- Amer, S.A.; AlAmri, F.A.; AlRadini, F.A.; Alenezi, M.A.; Shah, J.; Fagehy, A.A.; Shajeri, G.M.; Abdullah, D.M.; Zaitoun, N.A.; Elsayed, M. Caffeine addiction and determinants of caffeine consumption among health care providers: A descriptive national study. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 3230–3242. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buelna-Chontal, M. Coffee: Fuel for Your Day or Foe for Your Arteries. Antioxidants 2024, 13, 1455. https://doi.org/10.3390/antiox13121455
Buelna-Chontal M. Coffee: Fuel for Your Day or Foe for Your Arteries. Antioxidants. 2024; 13(12):1455. https://doi.org/10.3390/antiox13121455
Chicago/Turabian StyleBuelna-Chontal, Mabel. 2024. "Coffee: Fuel for Your Day or Foe for Your Arteries" Antioxidants 13, no. 12: 1455. https://doi.org/10.3390/antiox13121455
APA StyleBuelna-Chontal, M. (2024). Coffee: Fuel for Your Day or Foe for Your Arteries. Antioxidants, 13(12), 1455. https://doi.org/10.3390/antiox13121455