Sub-Chronic Methomyl Exposure Induces Oxidative Stress and Inflammatory Responses in Zebrafish with Higher Female Susceptibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Fish and Chemicals
2.3. Experimental Design
2.4. Sample Collection
2.5. Antioxidant Enzyme Activity Assay
2.6. Apoptosis Analysis
2.7. Quantitative Real-Time PCR (qRT-PCR)
2.8. Statistical Analysis
3. Results
3.1. Actual Methomyl Concentrations
3.2. Apoptosis of Zebrafish Livers
3.3. Effects of Methomyl Exposure on Hepatic Antioxidant Defense System of Female and Male Zebrafish
3.4. Effects of Methomyl Exposure on Transcription Levels of Genes Associated with Hepatic Inflammation of Female and Male Zebrafish
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- FAO. Agricultural Production Statistics 2000–2021; FAOSTAT Anal. Brief Ser. No 60; FAO: Rome, Italy, 2022. [Google Scholar]
- Selvam, A.D.G.; Thatheyus, A.J.; Vidhya, R. Biodegradation of the Synthetic Pyrethroid, Fenvalerate by Bacillus cereus Mtcc 1305. World J. Environ. Eng. 2013, 1, 21–26. [Google Scholar] [CrossRef]
- Yang, G.-P.; Zhao, Y.-H.; Lu, X.-L.; Gao, X.-C. Adsorption of Methomyl on Marine Sediments. Colloids Surf. Physicochem. Eng. Asp. 2005, 264, 179–186. [Google Scholar] [CrossRef]
- Zheng, Y.; Fateh, B.; Xu, G. Effects of Methomyl on the Intestinal Microbiome and Hepatic Transcriptome of Tilapia, and the Modifying Effects of Mint Co-Culture. Aquat. Toxicol. 2023, 263, 106675. [Google Scholar] [CrossRef] [PubMed]
- Strathmann, T.J.; Stone, A.T. Reduction of the Carbamate Pesticides Oxamyl and Methomyl by Dissolved FeII and CuI. Environ. Sci. Technol. 2001, 35, 2461–2469. [Google Scholar] [CrossRef] [PubMed]
- Legler, J.; Hamers, T.; van der Sluijs, M.V.; Schoeters, G.; van der Ven, L.; Eggesbo, M.; Koppe, J.; Feinberg, M.; Trnovec, T. The OBELIX Project: Early Life Exposure to Endocrine Disruptors and Obesity. Am. J. Clin. Nutr. 2011, 94, S1933–S1938. [Google Scholar] [CrossRef] [PubMed]
- Cestonaro, L.V.; Garcia, S.C.; Nascimento, S.; Gauer, B.; Sauer, E.; Göethel, G.; Peruzzi, C.; Nardi, J.; Fão, N.; Piton, Y.; et al. Biochemical, Hematological and Immunological Parameters and Relationship with Occupational Exposure to Pesticides and Metals. Environ. Sci. Pollut. Res. 2020, 27, 29291–29302. [Google Scholar] [CrossRef] [PubMed]
- Ruíz-Arias, M.A.; Medina-Díaz, I.M.; Bernal-Hernández, Y.Y.; Agraz-Cibrián, J.M.; González-Arias, C.A.; Barrón-Vivanco, B.S.; Herrera-Moreno, J.F.; Verdín-Betancourt, F.A.; Zambrano-Zaragoza, J.F.; Rojas-García, A.E. Hematological Indices as Indicators of Inflammation Induced by Exposure to Pesticides. Environ. Sci. Pollut. Res. 2023, 30, 19466–19476. [Google Scholar] [CrossRef] [PubMed]
- Madani, F.Z.; Hafida, M.; Merzouk, S.A.; Loukidi, B.; Taouli, K.; Narce, M. Hemostatic, Inflammatory, and Oxidative Markers in Pesticide User Farmers. Biomarkers 2016, 21, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bai, Y.; Bi, Y.; Wu, Q.; Xu, S. Baicalin Suppressed Necroptosis and Inflammation against Chlorpyrifos Toxicity; Involving in ER Stress and Oxidative Stress in Carp Gills. Fish Shellfish Immunol. 2023, 139, 108883. [Google Scholar] [CrossRef] [PubMed]
- Koroglu, P. Lupeol Application Ameliorates Inflammation, Oxidative Stress Mediated Toxicicity and Apoptosis in Pesticides Model. Biol. Bull. 2023, 50, 244–249. [Google Scholar] [CrossRef]
- Feng, H.; Zhou, P.; Liu, F.; Zhang, W.; Yang, H.; Li, X.; Dong, J. Abamectin Causes Toxicity to the Carp Respiratory System by Triggering Oxidative Stress, Inflammation, and Apoptosis and Inhibiting Autophagy. Environ. Sci. Pollut. Res. 2023, 30, 55200–55213. [Google Scholar] [CrossRef] [PubMed]
- Hallauer, J.; Geng, X.; Yang, H.-C.; Shen, J.; Tsai, K.-J.; Liu, Z. The Effect of Chronic Arsenic Exposure in Zebrafish. Zebrafish 2016, 13, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, Y.; Mou, Z.; Li, R.; Hossen, M.A.; Dai, J.; Qin, W.; Lee, K. Characterization and Preliminary Safety Evaluation of Nano-SiO2 Isolated from Instant Coffee. Ecotoxicol. Environ. Saf. 2021, 224, 112694. [Google Scholar] [CrossRef] [PubMed]
- Glaberman, S.; Padilla, S.; Barron, M.G. Evaluating the Zebrafish Embryo Toxicity Test for Pesticide Hazard Screening. Environ. Toxicol. Chem. 2017, 36, 1221–1226. [Google Scholar] [CrossRef] [PubMed]
- Lo, D.; Wang, Y.-T.; Wu, M.-C. Hepatoprotective Effect of Silymarin on Di(2-Ethylhexyl)Phthalate (DEHP) Induced Injury in Liver FL83B Cells. Environ. Toxicol. Pharmacol. 2014, 38, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Batista-Silva, H.; Dambrós, B.F.; Rodrigues, K.; Cesconetto, P.A.; Zamoner, A.; Sousa de Moura, K.R.; Gomes Castro, A.J.; Van Der Kraak, G.; Mena Barreto Silva, F.R. Acute Exposure to Bis(2-Ethylhexyl)Phthalate Disrupts Calcium Homeostasis, Energy Metabolism and Induces Oxidative Stress in the Testis of Danio rerio. Biochimie 2020, 175, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Rieg, C.E.H.; Cattani, D.; Naspolini, N.F.; Cenci, V.H.; de Liz Oliveira Cavalli, V.L.; Jacques, A.V.; Nascimento, M.V.P.D.S.; Dalmarco, E.M.; De Moraes, A.C.R.; Santos-Silva, M.C.; et al. Perinatal Exposure to a Glyphosate Pesticide Formulation Induces Offspring Liver Damage. Toxicol. Appl. Pharmacol. 2022, 454, 116245. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Chen, X.; Song, C.; Fan, L.; Qiu, L.; Zheng, Y.; Chen, J.; Xu, P. Effect of Chronic Exposure to Pesticide Methomyl on Antioxidant Defense System in Testis of Tilapia (Oreochromis niloticus) and Its Recovery Pattern. Appl. Sci. 2021, 11, 3332. [Google Scholar] [CrossRef]
- Milan, F.S.; Maleki, B.R.S.; Moosavy, M.-H.; Mousavi, S.; Sheikhzadeh, N.; Khatibi, S.A. Ameliorating Effects of Dietary Haematococcus pluvialis on Arsenic-Induced Oxidative Stress in Rainbow Trout (Oncorhynchus mykiss) Fillet. Ecotoxicol. Environ. Saf. 2021, 207, 111559. [Google Scholar] [CrossRef] [PubMed]
- Shabab, T.; Khanabdali, R.; Moghadamtousi, S.Z.; Kadir, H.A.; Mohan, G. Neuroinflammation Pathways: A General Review. Int. J. Neurosci. 2017, 127, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Lin, L.; Zhang, Z.; Zhang, H.; Hu, H. Targeting NF-κB Pathway for the Therapy of Diseases: Mechanism and Clinical Study. Signal Transduct. Target. Ther. 2020, 5, 209. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, D.A.; Casero, D.; Zhang, Z.; Wang, D.; Kim, J.; Wu, X.; Vergnes, L.; Mirza, A.H.; Leon-Mimila, P.; Williams, K.J.; et al. Transcriptional Regulation of N6-Methyladenosine Orchestrates Sex-Dimorphic Metabolic Traits. Nat. Metab. 2021, 3, 940–953. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Gao, Y.; Wang, J.; Xie, T.; Zhang, J.; Jia, Y. Gender differences in the hematology, hepatic antioxidant capacity, and gill histology of turbot (Scophthalmus maximus) under hypoxic stress. J. Fish. Sci. China 2023, 30, 878–890. [Google Scholar]
- Saeid, M.H.E.; Turki, A.M.A.; Wable, M.I.A.; Nasser, G.A. Evaluation of Pesticide Residues in Saudi Arabia Ground Water. Res. J. Environ. Sci. 2010, 5, 171–178. [Google Scholar] [CrossRef]
- Van Scoy, A.R.; Yue, M.; Deng, X.; Tjeerdema, R.S. Environmental Fate and Toxicology of Methomyl. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2013; Volume 222, pp. 93–109. ISBN 978-1-4614-4716-0. [Google Scholar]
- Leandro, C.; Souza, V.; Dores, E.F.G.C.; Ribeiro, M.L. Determination of Pesticides Multiresidues in Shallow Groundwater in a Cotton-Growing Region of Mato Grosso, Brazil. J. Braz. Chem. Soc. 2008, 19, 1111–1117. [Google Scholar] [CrossRef]
- Meng, S.L.; Chen, F.; Chen, X.; Li, M.X.; Qiu, L.P.; Li, D.D.; Song, C.; Fan, L.M.; Chen, J.Z.; Xu, P. Acute Toxicity Effects of Methomyl on Organisms in Typical Aquatic Food Chain of Green Algae-Daphnia magna-Fish. Chin. Agric. Sci. Bull. 2023, 39, 121–126. [Google Scholar]
- Pfaffl, M.W. A New Mathematical Model for Relative Quantification in Real-Time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.L.; Li, M.X.; Lu, Y.; Chen, X.; Wang, W.P.; Song, C.; Fan, L.M.; Qiu, L.P.; Li, D.D.; Xu, H.M.; et al. Effect of Environmental Level of Methomyl on Hatching, Morphology, Immunity and Development Related Genes Expression in Zebrafish (Danio rerio) Embryo. Ecotoxicol. Environ. Saf. 2023, 268, 115684. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.-L.; Qu, J.-H.; Fan, L.-M.; Qiu, L.-P.; Chen, J.-Z.; Xu, P. Responses of Glutathione-Related Antioxidant Defense System in Serum of Nile Tilapia (Oreochromis niloticus) Exposed to Sublethal Concentration of Methomyl and Recovery Pattern. Environ. Toxicol. 2015, 30, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.L.; Liu, T.; Chen, X.; Qiu, L.P.; Hu, G.D.; Song, C.; Fan, L.; Zheng, Y.; Chen, J.Z.; Xu, P. Effect of Chronic Exposure to Methomyl on Tissue Damage and Apoptosis in Testis of Tilapia (Oreochromis niloticus) and Recovery Pattern. Bull. Environ. Contam. Toxicol. 2019, 102, 371–376. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Ni, Y.; Jin, Y.; Fu, Z. Pesticides-Induced Energy Metabolic Disorders. Sci. Total Environ. 2020, 729, 139033. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.-L.; Qiu, L.-P.; Hu, G.-D.; Fan, L.-M.; Song, C.; Zheng, Y.; Wu, W.; Qu, J.-H.; Li, D.-D.; Chen, J.-Z.; et al. Effect of Methomyl on Sex Steroid Hormone and Vitellogenin Levels in Serum of Male Tilapia (Oreochromis niloticus) and Recovery Pattern. Environ. Toxicol. 2017, 32, 1869–1877. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman Mohamed, A.; Abdel Rahman, A.N.; Salem, G.A.; Deib, M.M.E.; Nassan, M.A.; Rhouma, N.R.; Khater, S.I. The Antioxidant Role of a Taurine-Enriched Diet in Combating the Immunotoxic and Inflammatory Effects of Pyrethroids and/or Carbamates in Oreochromis niloticus. Animals 2021, 11, 1318. [Google Scholar] [CrossRef] [PubMed]
- Jablonski, C.A.; Pereira, T.C.B.; Teodoro, L.D.S.; Altenhofen, S.; Rübensam, G.; Bonan, C.D.; Bogo, M.R. Acute Toxicity of Methomyl Commercial Formulation Induces Morphological and Behavioral Changes in Larval Zebrafish (Danio rerio). Neurotoxicol. Teratol. 2022, 89, 107058. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wang, W.; Jiang, Y.; Chu, W. Diazinon Exposure Produces Histological Damage, Oxidative Stress, Immune Disorders and Gut Microbiota Dysbiosis in Crucian Carp (Carassius auratus gibelio). Environ. Pollut. 2021, 269, 116129. [Google Scholar] [CrossRef] [PubMed]
- Alak, G.; Yeltekin, A.Ç.; Özgeriş, F.B.; Parlak, V.; Uçar, A.; Sait Keleş, M.; Atamanalp, M. Therapeutic Effect of N- Acetyl Cysteine as an Antioxidant on Rainbow Trout’s Brain in Cypermethrin Toxicity. Chemosphere 2019, 221, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Paulino, M.G.; Souza, N.E.S.; Fernandes, M.N. Subchronic Exposure to Atrazine Induces Biochemical and Histopathological Changes in the Gills of a Neotropical Freshwater Fish, Prochilodus lineatus. Ecotoxicol. Environ. Saf. 2012, 80, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.-S.; Shao, B.; Song, Y.; Xie, H.; Wang, J.; Wang, J.-H.; Liu, W.; Hou, X.-X. DNA Damage and Effects on Antioxidative Enzymes in Zebra Fish (Danio rerio) Induced by Atrazine. Toxicol. Mech. Methods 2011, 21, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.L.; Hu, G.D.; Qiu, L.P.; Song, C.; Fan, L.M.; Chen, J.Z.; Xu, P. Effects of Chronic Exposure of Methomyl on the Antioxidant System in Kidney of Nile Tilapia (Oreochromis niloticus) and Recovery Pattern. J. Toxicol. Environ. Health A 2013, 76, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.L.; Chen, J.Z.; Xu, P.; Qu, J.H.; Fan, L.M.; Song, C.; Qiu, L.P. Hepatic Antioxidant Enzymes SOD and CAT of Nile Tilapia (Oreochromis niloticus) in Response to Pesticide Methomyl and Recovery Pattern. Bull. Environ. Contam. Toxicol. 2014, 92, 388–392. [Google Scholar] [CrossRef]
- Hemalatha, D.; Amala, A.; Rangasamy, B.; Nataraj, B.; Ramesh, M. Sublethal Toxicity of Quinalphos on Oxidative Stress and Antioxidant Responses in a Freshwater Fish Cyprinus Carpio. Environ. Toxicol. 2016, 31, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Chen, A.; Niu, F.; Zhang, Y. Antioxidant Vitamin E Protects Embryos of Xenopus Tropicalis against Lambda-Cyhalothrin Induced Embryotoxicity. Environ. Sci. Pollut. Res. 2019, 26, 21629–21640. [Google Scholar] [CrossRef] [PubMed]
- Capkin, E.; Altinok, I. Effects of Chronic Carbosulfan Exposure on Liver Antioxidant Enzyme Activities in Rainbow Trout. Environ. Toxicol. Pharmacol. 2013, 36, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Karaca, M.; Varışlı, L.; Korkmaz, K.; Özaydın, O.; Perçin, F.; Orhan, H. Organochlorine Pesticides and Antioxidant Enzymes Are Inversely Correlated with Liver Enzyme Gene Expression in Cyprinus carpio. Toxicol. Lett. 2014, 230, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Ozcan Oruc, E.; Sevgiler, Y.; Uner, N. Tissue-Specific Oxidative Stress Responses in Fish Exposed to 2,4-D and Azinphosmethyl. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2004, 137, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Jiang, X.; Qian, H.; Li, X.; Su, J.; Zhang, G.; Li, X. Associations of Arsenic Exposure with Liver Injury in US Adults: NHANES 2003–2018. Environ. Sci. Pollut. Res. 2023, 30, 48260–48269. [Google Scholar] [CrossRef] [PubMed]
- Hanigan, M.H. Gamma-Glutamyl Transpeptidase: Redox Regulation and Drug Resistance. In Advances in Cancer Research; Townsend, D.M., Tew, K.D., Eds.; Redox and Cancer Part A; Academic Press: Cambridge, MA, USA, 2014; Volume 122, pp. 103–141. [Google Scholar]
- Hegazi, M.M.; Attia, Z.I.; Ashour, O.A. Oxidative Stress and Antioxidant Enzymes in Liver and White Muscle of Nile Tilapia Juveniles in Chronic Ammonia Exposure. Aquat. Toxicol. 2010, 99, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Gaber, O.A.; Asran, A.E.A.; Elfayoumi, H.M.K.; El-Shahawy, G.; Khider, F.K.; Abdel-Tawab, H.; Mahmoud, K.A. Influence of Methomyl (Copter 90%) on Certain Biochemical Activities and Histological Structures of Land Snails Monacha cartusiana. Saudi J. Biol. Sci. 2022, 29, 2455–2462. [Google Scholar] [CrossRef] [PubMed]
- Banaee, M.; Akhlaghi, M.; Soltanian, S.; Sureda, A.; Gholamhosseini, A.; Rakhshaninejad, M. Combined Effects of Exposure to Sub-Lethal Concentration of the Insecticide Chlorpyrifos and the Herbicide Glyphosate on the Biochemical Changes in the Freshwater Crayfish Pontastacus leptodactylus. Ecotoxicology 2020, 29, 1500–1515. [Google Scholar] [CrossRef] [PubMed]
- Güngördü, A.; Uçkun, M.; Yoloğlu, E. Integrated Assessment of Biochemical Markers in Premetamorphic Tadpoles of Three Amphibian Species Exposed to Glyphosate- and Methidathion-Based Pesticides in Single and Combination Forms. Chemosphere 2016, 144, 2024–2035. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Jia, K.; Huang, L.; Liao, X.; Guo, X.; Lu, H. Hepatotoxicity of Tricyclazole in Zebrafish (Danio rerio). Chemosphere 2019, 232, 171–179. [Google Scholar] [CrossRef]
- Zhao, X.; Shi, X.; Liu, Q.; Li, X. Tea Polyphenols Alleviates Acetochlor-Induced Apoptosis and Necroptosis via ROS/MAPK/NF-κB Signaling in Ctenopharyngodon idellus Kidney Cells. Aquat. Toxicol. 2022, 246, 106153. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Liu, Q.; Chen, D.; Liu, Y. Atrazine Exposure Induces Necroptosis through the P450/ROS Pathway and Causes Inflammation in the Gill of Common Carp (Cyprinus carpio L.). Fish Shellfish Immunol. 2022, 131, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Liu, L.; Jiang, W.; Zhou, R. DAMP-Sensing Receptors in Sterile Inflammation and Inflammatory Diseases. Nat. Rev. Immunol. 2020, 20, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Arida, A.; Protogerou, A.D.; Kitas, G.D.; Sfikakis, P.P. Systemic Inflammatory Response and Atherosclerosis: The Paradigm of Chronic Inflammatory Rheumatic Diseases. Int. J. Mol. Sci. 2018, 19, 1890. [Google Scholar] [CrossRef] [PubMed]
- Rea, I.M.; Gibson, D.S.; McGilligan, V.; McNerlan, S.E.; Alexander, H.D.; Ross, O.A. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Front. Immunol. 2018, 9, 586. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. TLR Signaling. Semin. Immunol. 2007, 19, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.-S.; Fang, D.-A.; Xu, D.-P. Toll-like Receptors (TLRs) Respond to Tributyltin Chloride (TBT-Cl) Exposure in the River Pufferfish (Takifugu obscurus): Evidences for Its Toxic Injury Function. Fish Shellfish Immunol. 2020, 99, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Zettel, K.; Korff, S.; Zamora, R.; Morelli, A.E.; Darwiche, S.; Loughran, P.A.; Elson, G.; Shang, L.; Salgado-Pires, S.; Scott, M.J.; et al. Toll-Like Receptor 4 on Both Myeloid Cells and Dendritic Cells Is Required for Systemic Inflammation and Organ Damage after Hemorrhagic Shock with Tissue Trauma in Mice. Front. Immunol. 2017, 8, 1672. [Google Scholar] [CrossRef] [PubMed]
- Bugge, M.; Bergstrom, B.; Eide, O.K.; Solli, H.; Kjønstad, I.F.; Stenvik, J.; Espevik, T.; Nilsen, N.J. Surface Toll-like Receptor 3 Expression in Metastatic Intestinal Epithelial Cells Induces Inflammatory Cytokine Production and Promotes Invasiveness. J. Biol. Chem. 2017, 292, 15408–15425. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.; Xiong, H.; Yuan, W.; Huang, L.; Xu, J.; Lu, C.; Hu, Y.; Huang, K.; Luo, Q.; Ma, J.; et al. Diflovidazin Damages the Hematopoietic Stem Cells to Zebrafish Embryos via the TLR4/ NF-κB/ P53 Pathway. Fish Shellfish Immunol. 2023, 135, 108672. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Guo, J.; Jia, K.; Zheng, Z.; Chen, X.; Bai, Z.; Yang, Y.; Chen, B.; Yuan, W.; Chen, W.; et al. Oxyfluorfen Induces Hepatotoxicity through Lipo-Sugar Accumulation and Inflammation in Zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2022, 230, 113140. [Google Scholar] [CrossRef] [PubMed]
- Shah, H.K.; Sharma, T.; Banerjee, B.D. Organochlorine Pesticides Induce Inflammation, ROS Production, and DNA Damage in Human Epithelial Ovary Cells: An in Vitro Study. Chemosphere 2020, 246, 125691. [Google Scholar] [CrossRef]
- Dupuy, C.; Cabon, J.; Louboutin, L.; Le Floch, S.; Morin, T.; Danion, M. Cellular, Humoral and Molecular Responses in Rainbow Trout (Oncorhynchus mykiss) Exposed to a Herbicide and Subsequently Infected with Infectious Hematopoietic Necrosis Virus. Aquat. Toxicol. 2019, 215, 105282. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Abbreviation | mRNA Number | Sequence (5′–3′) |
---|---|---|---|
Interleukin 1 beta | IL-1β | NM_212844.2 | F: GTGGACTTCGCAGCACAAAAR: CGTTCACTTCACGCTCTTGG |
Interleukin 6 | IL6 | NM_001261449.1 | F: GTGAAGACACTCAGAGACGAGCAGR: GGTTTGAGGAGAGGAGTGCTGATC |
Tumor necrosis factor alpha | TNF-α | NM_212859.2 | F: CGTCTGCTTCACGCTCCATAAGR: GTTAAATGGATGGCAGCCTTGG |
nuclear factor-kappaB activating protein | Nκap | NM_001003414.1 | F: TTTACTGCCAGGTGAAGGTGCR: TGACATAGCCAGACTTCTCAAACTC |
Interferon 1 | IFN-γ | NM_207640.1 | F: GAATGGCTTGGCCGATACAGGATAR: TCCTCCACCTTTGACTTGTCCATC |
Toll-like receptor 3 | TLR3 | NM_001013269.3 | F: TGAGTTGGAGCATCACAGGGR: ACTTGTTGATGCCCATGCCT |
Toll-like receptor 4 | TLR4 | XM_009307228.3 | F: GAGAGCCATGCACTCGAATTAR: AACCGAGGAAGGGATACTGGA |
B-cell lymphoma2-associated X | Bax | NM_131562.2 | F: GTGTATGAGCGTGTTCGTCR: CGGCTGAAGATTAGAGTTGT |
B-cell lymphoma2 apoptosis regulator a | Bcl2a | NM_001030253.2 | F: TACTTTGCCTGTCGCCTTGTR: AGCGAGGAAAACTCCGACTG |
Caspase3, apoptosis-related cysteine peptidase a | Caspases3a | NM_131877.3 | F: AAAAGGGCTCGTTAAGCGGTR: GCCGATGTTGGGGTAGTTCA |
Beta-actin | β-actin | NM_131031.2 | F: GTACCCTGGCATTGCTGACR: CTGCTTGCTGATCCACATCTG |
Methomyl Concentration | Control | 0.05 mg/L | 0.10 mg/L | 0.20 mg/L | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Bax/Bcl2a (mRNA) | Female | 1.01 C | 0.12 | 1.10 BC | 0.08 | 1.29 AB | 0.14 | 1.34 A | 0.12 |
Male | 1.00 b | 0.09 | 1.07 b | 0.12 | 1.11 ab | 0.12 | 1.32 a | 0.17 | |
Caspases3a (mRNA) | Female | 1.00 C | 0.07 | 1.09 BC | 0.11 | 1.38 AB | 0.19 | 1.53 A | 0.28 |
Male | 1.01 b | 0.15 | 1.08 b | 0.12 | 1.34 ab | 0.29 | 1.51 a | 0.31 | |
IL-1β (mRNA) | Female | 1.01 C | 0.15 | 1.44 B | 0.10 | 1.99 A | 0.27 | 1.71 AB | 0.25 |
Male | 1.01 b | 0.19 | 1.19 b | 0.25 | 1.51 ab | 0.31 | 1.88 a | 0.44 | |
IL6 (mRNA) | Female | 1.03 B | 0.25 | 1.15 B | 0.19 | 1.25 AB | 0.11 | 1.52 A | 0.25 |
Male | 1.01 b | 0.17 | 1.21 ab | 0.20 | 1.44 ab | 0.32 | 1.54 a | 0.30 | |
INF-γ (mRNA) | Female | 1.01 B | 0.13 | 1.16 B | 0.13 | 1.56 A | 0.17 | 1.69 A | 0.21 |
Male | 1.01 c | 0.17 | 1.23 bc | 0.21 | 1.68 ab | 0.36 | 1.89 a | 0.40 | |
TNF-α (mRNA) | Female | 1.01 C | 0.12 | 1.19 BC | 0.16 | 1.53 B | 0.22 | 2.02 A | 0.29 |
Male | 1.02 b | 0.22 | 1.09 b | 0.14 | 1.47 ab | 0.36 | 1.61 a | 0.42 | |
Nκap (mRNA) | Female | 1.00 B | 0.10 | 1.18 B | 0.15 | 1.31 AB | 0.12 | 1.54 A | 0.30 |
Male | 1.01 b | 0.13 | 0.96 b | 0.25 | 1.36 ab | 0.22 | 1.48 a | 0.34 | |
TLR3 (mRNA) | Female | 1.01 B | 0.11 | 1.08 B | 0.19 | 1.19 B | 0.16 | 2.01 A | 0.30 |
Male | 1.02 b | 0.20 | 0.95 b | 0.12 | 1.31 b | 0.18 | 2.06 a | 0.32 | |
TLR4 (mRNA) | Female | 1.01 B | 0.15 | 1.12 B | 0.16 | 1.75 A | 0.26 | 1.97 A | 0.24 |
Male | 1.01 c | 0.16 | 1.19 bc | 0.17 | 1.45 ab | 0.29 | 1.87 a | 0.35 |
Methomyl Concentration | Control | 0.05 mg/L | 0.10 mg/L | 0.20 mg/L | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
ALT (U/g prot) | Female | 11.99 C | 1.36 | 14.92 B | 0.69 | 17.43 A | 0.97 | 18.99 A | 1.57 |
Male | 20.64 c | 0.77 | 26.39 b | 2.40 | 29.72 a | 1.02 | 32.89 a | 2.69 | |
AST (U/g prot) | Female | 11.01 D | 0.68 | 14.33 C | 1.01 | 17.96 B | 1.21 | 22.43 A | 1.94 |
Male | 17.99 c | 1.90 | 24.24 b | 1.50 | 27.15 b | 1.72 | 33.47 a | 1.88 | |
γ-GT (IU/g prot) | Female | 14.41 C | 1.50 | 18.33 B | 1.05 | 20.82 A | 0.83 | 20.11 AB | 0.84 |
Male | 21.99 c | 2.25 | 28.91 b | 2.31 | 31.24 ab | 1.94 | 32.53 a | 1.21 |
Methomyl Concentration | Control | 0.05 mg/L | 0.10 mg/L | 0.20 mg/L | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
CAT (U/mg prot) | Female | 15.14 C | 1.74 | 17.81 ABC | 1.33 | 18.81 AB | 1.64 | 19.74 A | 2.54 |
Male | 17.89 c | 2.78 | 19.82 c | 1.28 | 24.41 b | 1.69 | 28.78 a | 2.54 | |
SOD (U/mg prot) | Female | 34.81 C | 3.02 | 43.03 B | 3.81 | 48.29 AB | 3.29 | 50.21 A | 5.75 |
Male | 50.42 b | 9.57 | 55.33 b | 4.17 | 62.39 ab | 9.91 | 75.02 a | 7.91 | |
GSH-Px (U/mg prot) | Female | 86.65 C | 6.30 | 97.51 ABC | 12.62 | 109.39 A | 7.86 | 106.43 AB | 13.71 |
Male | 112.13 c | 16.19 | 126.99 bc | 18.13 | 152.02 ab | 16.16 | 164.45 a | 19.65 | |
ROS (ng/mg tissue) | Female | 9.50 C | 1.09 | 11.49 C | 1.97 | 23.18 B | 2.39 | 38.26 A | 2.50 |
Male | 18.62 d | 2.02 | 24.63 c | 3.09 | 41.06 b | 3.34 | 63.58 a | 4.07 | |
MDA (nmol/mg tissue) | Female | 0.35 C | 0.05 | 0.41 BC | 0.11 | 0.51 B | 0.07 | 0.67 A | 0.05 |
Male | 0.66 c | 0.10 | 0.90 b | 0.10 | 1.02 ab | 0.09 | 1.05 a | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Chen, X.; Song, C.; Xu, J.; Fan, L.; Qiu, L.; Li, D.; Xu, H.; Meng, S.; Mu, X.; et al. Sub-Chronic Methomyl Exposure Induces Oxidative Stress and Inflammatory Responses in Zebrafish with Higher Female Susceptibility. Antioxidants 2024, 13, 871. https://doi.org/10.3390/antiox13070871
Li M, Chen X, Song C, Xu J, Fan L, Qiu L, Li D, Xu H, Meng S, Mu X, et al. Sub-Chronic Methomyl Exposure Induces Oxidative Stress and Inflammatory Responses in Zebrafish with Higher Female Susceptibility. Antioxidants. 2024; 13(7):871. https://doi.org/10.3390/antiox13070871
Chicago/Turabian StyleLi, Mingxiao, Xi Chen, Chao Song, Jing Xu, Limin Fan, Liping Qiu, Dandan Li, Huimin Xu, Shunlong Meng, Xiyan Mu, and et al. 2024. "Sub-Chronic Methomyl Exposure Induces Oxidative Stress and Inflammatory Responses in Zebrafish with Higher Female Susceptibility" Antioxidants 13, no. 7: 871. https://doi.org/10.3390/antiox13070871
APA StyleLi, M., Chen, X., Song, C., Xu, J., Fan, L., Qiu, L., Li, D., Xu, H., Meng, S., Mu, X., Xia, B., & Ling, J. (2024). Sub-Chronic Methomyl Exposure Induces Oxidative Stress and Inflammatory Responses in Zebrafish with Higher Female Susceptibility. Antioxidants, 13(7), 871. https://doi.org/10.3390/antiox13070871