Cookies Fortified with Polyphenols Extracts: Impact on Phenolic Content, Antioxidant Activity, Inhibition of α-Amylase and α-Glucosidase Enzyme, Colour and Sensory Attractiveness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Fortified Cookies
2.2. Determination of Polyphenolic Compounds
2.3. Analysis of Polymeric Procyanidins by Phloroglucinolysis
2.4. Determination of Antioxidant Activity Using the Method ABTSo+, FRAP and ORAC
2.5. Inhibition of α-Amylase and α-Glucosidase Activity
2.6. Colour Measurement in the CIE L*a*b* System
2.7. Sensory Evaluation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Content of Polyphenol Compounds in Fortified Cookies
3.2. Biological Activity
3.2.1. Antioxidant Activity
3.2.2. Inhibition of α-Amylase and α-Glucosidase
3.3. Colour Analysis
3.4. Consumer Rating
3.5. Principal Components Analysis (PCA) and Hierarchical Cluster Analysis (HCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, R.H. Dietary Bioactive Compounds and Their Health Implications. J. Food Sci. 2013, 78, A18–A25. [Google Scholar] [CrossRef] [PubMed]
- Biesalski, H.-K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; Müller, M.; Schrenk, D.; Walter, P.; Weber, P. Bioactive Compounds: Definition and Assessment of Activity. Nutrition 2009, 25, 1202–1205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Jin, Z.; Qiu, C. Polyphenols as Plant-Based Nutraceuticals: Health Effects, Encapsulation, Nano-Delivery, and Application. Foods 2022, 11, 2189. [Google Scholar] [CrossRef] [PubMed]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic Compounds in Plants and Agri-Industrial by-Products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Peschel, W.; Sánchez-Rabaneda, F.; Diekmann, W.; Plescher, A.; Gartzía, I.; Jiménez, D.; Lamuela-Raventós, R.; Buxaderas, S.; Codina, C. An Industrial Approach in the Search of Natural Antioxidants from Vegetable and Fruit Wastes. Food Chem. 2006, 97, 137–150. [Google Scholar] [CrossRef]
- Moure, A.; Cruz, J.M.; Franco, D.; Domínguez, J.M.; Sineiro, J.; Domínguez, H.; José Núñez, M.; Parajó, J.C. Natural Antioxidants from Residual Sources. Food Chem. 2001, 72, 145–171. [Google Scholar] [CrossRef]
- Wijngaard, H.H.; Rößle, C.; Brunton, N. A Survey of Irish Fruit and Vegetable Waste and By-Products as a Source of Polyphenolic Antioxidants. Food Chem. 2009, 116, 202–207. [Google Scholar] [CrossRef]
- Oliveira, V.M.; Carraro, E.; Auler, M.E.; Khalil, N.M. Quercetin and Rutin as Potential Agents Antifungal against Cryptococcus spp. Braz. J. Biol. 2016, 76, 1029–1034. [Google Scholar] [CrossRef]
- Mehmood, A.; Usman, M.; Patil, P.; Zhao, L.; Wang, C. A Review on Management of Cardiovascular Diseases by Olive Polyphenols. Food Sci. Nutr. 2020, 8, 4639–4655. [Google Scholar] [CrossRef]
- Lutz, M.; Fuentes, E.; Ávila, F.; Alarcón, M.; Palomo, I. Roles of Phenolic Compounds in the Reduction of Risk Factors of Cardiovascular Diseases. Molecules 2019, 24, 366. [Google Scholar] [CrossRef]
- Udachan, I.S.; Pakhare, K.N.; Dagadkhair, A.C. Enhancement of Nutritional and Functional Characteristics of Noodles by Fortification with Protein and Fiber: A Review. J. Pharmacogn. Phytochem. 2018, 7, 351–357. [Google Scholar]
- Tangpricha, V.; Koutkia, P.; Rieke, S.M.; Chen, T.C.; Perez, A.A.; Holick, M.F. Fortification of Orange Juice with Vitamin D: A Novel Approach for Enhancing Vitamin D Nutritional Health. Am. J. Clin. Nutr. 2003, 77, 1478–1483. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-G.; Kim, Y.-S.; Kim, Y.-S.; Lee, S.-B.; Ryu, K.-S.; Yoon, M.-H.; Lee, J.-B. A Study on the Content of Minerals in Fortified Food. J. Food Hyg. Saf. 2014, 29, 99–104. [Google Scholar] [CrossRef]
- Darnton-Hill, I.; Mora, J.O.; Weinstein, H.; Wilbur, S.; Ritunalubola, P. Iron and Folate Fortification in the Americas to Prevent and Control Micronutrient Malnutrition: An Analysis Background: The Problem. Nutr. Rev. 1999, 57, 25–31. [Google Scholar] [CrossRef]
- Andon, M.B.; Peacock, M.; Kanerva, R.L.; De Castro, J.A. Calcium Absorption from Apple and Orange Juice Fortified with Calcium Citrate Malate (CCM). J. Am. Coll. Nutr. 1996, 15, 313–316. [Google Scholar] [CrossRef]
- Jung, J.; Cavender, G.; Zhao, Y. Impingement Drying for Preparing Dried Apple Pomace Flour and Its Fortification in Bakery and Meat Products. J. Food Sci. Technol. 2015, 52, 5568–5578. [Google Scholar] [CrossRef]
- Raczkowska, E.; Wojdyło, A.; Nowicka, P. The Use of Blackcurrant Pomace and Erythritol to Optimise the Functional Properties of Shortbread Cookies. Sci. Rep. 2024, 14, 3788. [Google Scholar] [CrossRef]
- Siemianowska, E. Wytłoki Owocowe Jako Dodatek Do Kruchych Ciastek. Przemysł Spożywczy 2016, 1, 43–47. [Google Scholar] [CrossRef]
- Alongi, M.; Melchior, S.; Anese, M. Reducing the Glycemic Index of Short Dough Biscuits by Using Apple Pomace as a Functional Ingredient. LWT 2019, 100, 300–305. [Google Scholar] [CrossRef]
- Kolniak-Ostek, J.; Oszmiański, J.; Wojdyło, A. Effect of Apple Leaves Addition on Physicochemical Properties of Cloudy Beverages. Ind. Crops Prod. 2013, 44, 413–420. [Google Scholar] [CrossRef]
- Orbulescu, S.; Serban, A.; Moldovan, C.; Hadaruga, N.-G.; Raba, D.-N.; Popa, V.-M.; Misca, C.-D.; Dumbrava, D.-G. Obtaining and Characterization of Some Sugar-Free Red Beet and Apple Jellies. J. Agroaliment. Process. Technol. 2023, 29, 127–132. [Google Scholar]
- Siniawska, M.; Wojdyło, A. Polyphenol Profiling by LC QTOF/ESI-MS and Biological Activity of Purple Passion Fruit Epicarp Extract. Molecules 2023, 28, 6711. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Oszmiański, J.; Bielicki, P. Polyphenolic Composition, Antioxidant Activity, and Polyphenol Oxidase (PPO) Activity of Quince (Cydonia oblonga Miller) Varieties. J. Agric. Food Chem. 2013, 61, 2762–2772. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Carbonell-Barrachina, Á.A.; Legua, P.; Hernández, F. Phenolic Composition, Ascorbic Acid Content, and Antioxidant Capacity of Spanish Jujube (Ziziphus jujube Mill.) Fruits. Food Chem. 2016, 201, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Nowicka, P.; Bąbelewski, P. Phenolic and Carotenoid Profile of New Goji Cultivars and Their Anti-Hyperglycemic, Anti-Aging and Antioxidant Properties. J. Funct. Foods 2018, 48, 632–642. [Google Scholar] [CrossRef]
- ISO 11136:2014/AMD 1:2020; Sensory Analysis–Methodology—General Guidance for Conducting Hedonic Tests with Consumers in a Controlled Area—Amendment 1. ISO (International Organization for Standardization): Geneva, Switzerland, 2014.
- Plamada, D.; Vodnar, D.C. Polyphenols—Gut Microbiota Interrelationship: A Transition to a New Generation of Prebiotics. Nutrients 2022, 14, 137. [Google Scholar] [CrossRef]
- García-Gómez, B.E.; Salazar, J.A.; Nicolás-Almansa, M.; Razi, M.; Rubio, M.; Ruiz, D.; Martínez-Gómez, P. Molecular Bases of Fruit Quality in Prunus Species: An Integrated Genomic, Transcriptomic, and Metabolic Review with a Breeding Perspective. Int. J. Mol. Sci. 2020, 22, 333. [Google Scholar] [CrossRef]
- Valencia-Hernandez, L.J.; Wong-Paz, J.E.; Ascacio-Valdés, J.A.; Chávez-González, M.L.; Contreras-Esquivel, J.C.; Aguilar, C.N. Procyanidins: From Agro-Industrial Waste to Food as Bioactive Molecules. Foods 2021, 10, 3152. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Ferlemi, A.-V.; Lamari, F. Berry Leaves: An Alternative Source of Bioactive Natural Products of Nutritional and Medicinal Value. Antioxidants 2016, 5, 17. [Google Scholar] [CrossRef]
- Nowicka, P.; Wojdyło, A. Anti-Hyperglycemic and Anticholinergic Effects of Natural Antioxidant Contents in Edible Flowers. Antioxidants 2019, 8, 308. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.; Wojdyło, A. Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus domestica Fruit. Antioxidants 2023, 12, 1380. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Orcajada, S.; Matencio, A.; Vicente-Herrero, C.; García-Carmona, F.; López-Nicolás, J.M. Study of the Fluorescence and Interaction between Cyclodextrins and Neochlorogenic Acid, in Comparison with Chlorogenic Acid. Sci. Rep. 2021, 11, 3275. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, L.; Yang, C.; Li, Z.; Rong, S. Procyanidins and Alzheimer’s Disease. Mol. Neurobiol. 2019, 56, 5556–5567. [Google Scholar] [CrossRef]
- Wang, S.Y.; Lin, H.-S. Antioxidant Activity in Fruits and Leaves of Blackberry, Raspberry, and Strawberry Varies with Cultivar and Developmental Stage. J. Agric. Food Chem. 2000, 48, 140–146. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Turkiewicz, I.P.; Tkacz, K.; Hernandez, F. Comparison of Bioactive Compounds and Health Promoting Properties of Fruits and Leaves of Apple, Pear and Quince. Sci. Rep. 2021, 11, 20253. [Google Scholar] [CrossRef]
- Hellström, J.; Mattila, P.; Karjalainen, R. Stability of Anthocyanins in Berry Juices Stored at Different Temperatures. J. Food Compos. Anal. 2013, 31, 12–19. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Ma, Q.; Zhou, Y. Enhancement of Anthocyanins Extraction from Haskap by Cold Plasma Pretreatment. Innov. Food Sci. Emerg. Technol. 2023, 84, 103294. [Google Scholar] [CrossRef]
- Zhao, Y.-W.; Wang, C.-K.; Huang, X.-Y.; Hu, D.-G. Anthocyanin Stability and Degradation in Plants. Plant Signal Behav. 2021, 16, 1987767. [Google Scholar] [CrossRef]
- Gąsiorowski, K.; Szyba, K.; Brokos, B.; Kołlaczyńska, B.; Jankowiak-Włodarczyk, M.; Oszmiański, J. Antimutagenic Activity of Anthocyanins Isolated from Aronia melanocarpa Fruits. Cancer Lett. 1997, 119, 37–46. [Google Scholar] [CrossRef]
- Liu, H.; Kang, Y.; Zhao, X.; Liu, Y.; Zhang, X.; Zhang, S. Effects of Elicitation on Bioactive Compounds and Biological Activities of Sprouts. J. Funct. Foods 2019, 53, 136–145. [Google Scholar] [CrossRef]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Mofasser Hossain, A.K.M.; Brennan, M.A.; Mason, S.L.; Guo, X.; Brennan, C.S. The Combined Effect of Blackcurrant Powder and Wholemeal Flours to Improve Health Promoting Properties of Cookies. Plant Foods Hum. Nutr. 2017, 72, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Dauber, C.; Romero, M.; Chaparro, C.; Ureta, C.; Ferrari, C.; Lans, R.; Frugoni, L.; Echeverry, M.V.; Calvo, B.S.; Trostchansky, A.; et al. Cookies Enriched with Coffee Silverskin Powder and Coffee Silverskin Ultrasound Extract to Enhance Fiber Content and Antioxidant Properties. Appl. Food Res. 2024, 4, 100373. [Google Scholar] [CrossRef]
- Fernandez-Gomez, B.; Lezama, A.; Amigo-Benavent, M.; Ullate, M.; Herrero, M.; Martín, M.Á.; Mesa, M.D.; del Castillo, M.D. Insights on the Health Benefits of the Bioactive Compounds of Coffee Silverskin Extract. J. Funct. Foods 2016, 25, 197–207. [Google Scholar] [CrossRef]
- Davidov-Pardo, G.; Moreno, M.; Arozarena, I.; Marín-Arroyo, M.R.; Bleibaum, R.N.; Bruhn, C.M. Sensory and Consumer Perception of the Addition of Grape Seed Extracts in Cookies. J. Food Sci. 2012, 77, S430–S438. [Google Scholar] [CrossRef]
- Magliano, D.J.; Boyko, E.J. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2022. [Google Scholar]
- Harborg, S.; Kjærgaard, K.A.; Thomsen, R.W.; Borgquist, S.; Cronin-Fenton, D.; Hjorth, C.F. New Horizons: Epidemiology of Obesity, Diabetes Mellitus, and Cancer Prognosis. J. Clin. Endocrinol. Metab. 2024, 109, 924–935. [Google Scholar] [CrossRef]
- Ramón-Canul, L.G.; Guzmán-Victoria, E.; Ramírez-Rivera, E.d.J.; Cabal-Prieto, A.; Rodríguez-Miranda, J.; Llaguno-Aguiñaga, A.; Sánchez-Orea, J.M.; Ramírez-García, S.A.; Prinyawiwatkul, W.; Herrera-Corredor, J.A. Antidiabetic, Antihypertensive and Antioxidant Activity of Cookies Formulated with Ground Mangifera indica L. Leaves. Int. J. Food Sci. Technol. 2023, 58, 4437–4445. [Google Scholar] [CrossRef]
- Sun, L.; Chen, W.; Meng, Y.; Yang, X.; Yuan, L.; Guo, Y.; Warren, F.J.; Gidley, M.J. Interactions between Polyphenols in Thinned Young Apples and Porcine Pancreatic α-Amylase: Inhibition, Detailed Kinetics and Fluorescence Quenching. Food Chem. 2016, 208, 51–60. [Google Scholar] [CrossRef]
- Sun, L.; Warren, F.J.; Gidley, M.J. Soluble Polysaccharides Reduce Binding and Inhibitory Activity of Tea Polyphenols against Porcine Pancreatic α-Amylase. Food Hydrocoll. 2018, 79, 63–70. [Google Scholar] [CrossRef]
- Jakobek, L. Interactions of Polyphenols with Carbohydrates, Lipids and Proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Lo Piparo, E.; Scheib, H.; Frei, N.; Williamson, G.; Grigorov, M.; Chou, C.J. Flavonoids for Controlling Starch Digestion: Structural Requirements for Inhibiting Human α-Amylase. J. Med. Chem. 2008, 51, 3555–3561. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Warren, F.J.; Netzel, G.; Gidley, M.J. 3 or 3′-Galloyl Substitution Plays an Important Role in Association of Catechins and Theaflavins with Porcine Pancreatic α-Amylase: The Kinetics of Inhibition of α-Amylase by Tea Polyphenols. J. Funct. Foods 2016, 26, 144–156. [Google Scholar] [CrossRef]
- Canalis, M.B.; Baroni, M.V.; León, A.E.; Ribotta, P.D. Effect of peach puree incorportion on cookie quality and on simulated digestion of polyphenols and antioxidant properties. Food Chem. 2020, 333, 127464. [Google Scholar] [CrossRef]
- Abdullah, M.Z.; Guan, L.C.; Lim, K.C.; Karim, A.A. The Applications of Computer Vision System and Tomographic Radar Imaging for Assessing Physical Properties of Food. J. Food Eng. 2004, 61, 125–135. [Google Scholar] [CrossRef]
- Górecka, D.; Pachołek, B.; Dziedzic, K.; Górecka, M. Raspberry Pomace as a Potential Fiber Source For Cookies Enrichment. ACTA Acta Sci. Pol. Technol. Aliment. 2010, 9, 451–462. [Google Scholar]
- Osakabe, N.; Shimizu, T.; Fujii, Y.; Fushimi, T.; Calabrese, V. Sensory Nutrition and Bitterness and Astringency of Polyphenols. Biomolecules 2024, 14, 234. [Google Scholar] [CrossRef]
- Padilla-González, G.; Grosskopf, E.; Sadgrove, N.; Simmonds, M. Chemical Diversity of Flavan-3-ols in Grape Seeds: Modulating Factors and Quality Requirements. Plants 2022, 11, 809. [Google Scholar] [CrossRef]
- Paissoni, M.A.; Waffo-Teguo, P.; Ma, W.; Jourdes, M.; Rolle, L.; Teissedre, P.-L. Chemical and Sensorial Investigation of In-Mouth Sensory Properties of Grape Anthocyanins. Sci. Rep. 2018, 8, 17098. [Google Scholar] [CrossRef]
- Nishiyama-Hortense, Y.P.d.O.; Rossi, M.J.d.P.; Shimizu-Marin, V.D.; Janzantti, N.S.; Gómez-Alonso, S.; Da-Silva, R.; Lago-Vanzela, E.S. Jelly Candy Enriched with BRS Violeta Grape Juice: Anthocyanin Retention and Sensory Evaluation. Future Foods 2022, 6, 100179. [Google Scholar] [CrossRef]
Cookie + | Polyphenol Compounds | Antioxidant Activity | Inhibition [%] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Flavan-3-ols | Phenolic Acids | Flavonols | Anthocyanins | Total Polyphenols | ABTSo+ | FRAP | ORAC | α-Amylase | α-Glucosidase | ||
Monomeric | Polymeric Procyanidins | ||||||||||
quince (fruits) | 34.0 ± 1.7 a | 44.0 ± 2.2 cd | 23.1 ± 1.2 b | 2.8 ± 0.1 d | nd c | 103.8 c | 0.6 ± 0.1 e | 0.43 ± 0.0 de | 2.4 ± 0.1 cd | 46.0 ± 2.3 e | 21.4 ± 1.2 ab |
tilia (flowers) | 21.1 ± 1.1 c | 155.2 ± 7.8 a | 3.3 ± 0.2 e | 33.1 ± 1.7 b | nd c | 212.6 a | 1.4 ± 0.1 c | 0.5 ± 0.0 cd | 3.2 ± 0.2 b | 46.4 ± 2.3 e | 10.5 ± 0.5 de |
pomegranate (skin) | nd g | 40.5 ± 2.0 c–e | 29.0 ± 1.5 a | 0.6 ± 0.1 de | nd c | 70.1 d | 1.7 ± 0.1 b | 0.6 ± 0.0 c | 1.4 ± 0.1 e | 48.5 ± 2.4 de | 14.5 ± 0.7 c |
passionfruits (endocarp) | 24.8 ± 1.2 b | 37.1 ± 1.9 de | 1.1 ± 0.1 f | 1.3 ± 0.1 de | nd c | 64.3 de | 0.3 ± 0.0 fg | 0.3 ± 0.0 f | 2.1 ± 0.1 d | 61.6 ± 3.1 a–c | 8.8 ± 0.4 ef |
sour cherry (leaves) | 16.4 ± 0.8 de | 37.7 ± 1.9 de | 12.9 ± 0.6 c | 52.5 ± 2.6 a | nd c | 119.3 b | 0.7 ± 0.0 ef | 0.5 ± 0.0 cd | 3.5 ± 0.2 ab | 58.3 ± 3.7 bc | 6.1 ± 0.3 g |
haskap (berry) | 13.4 ± 0.7 f | 41.7 ± 2.1 c–e | 7.2 ± 0.4 d | 6.2 ± 0.3 c | 65.6 ± 3.3 a | 134.1 b | 2.2 ± 0.2 a | 0.9 ± 0.1 a | 3.5 ± 0.2 a | 60.6 ± 3.0 a–c | 23.0 ± 1.2 a |
chokeberry (berry) | 15.3 ± 0.8 de | 59.8 ±3.0 b | 14.4 ± 0.7 c | 6.2 ± 0.3 c | 31.2 ± 1.6 b | 126.9 b | 1.0 ± 0.1 d | 0.8 ± 0.1 b | 2.5 ± 0.1 c | 65.5 ± 3.3 ab | 11.6 ± 0.6 d |
silver skin (coffee beans) | 35.2 ± 1.8 a | 36.1 ± 1.8 de | 3.1 ± 0.2 e | nd e | nd c | 74.4 d | 0.4 ± 0.1 ef | 0.3 ± 0.0 f | 2.1 ± 0.1 d | 56.0 ± 2.8 cd | 20.4 ± 1.0 b |
roseship (seeds) | nd g | 48.5 ± 2.4 c | 27.2 ± 1.4 a | nd e | nd c | 75.6 d | 0.5 ± 0.1 ef | 0.4 ± 0.0 ef | 2.2 ± 0.1 cd | 62.2 ± 3.1 a–c | 8.5 ± 0.4 f |
control | 18.6 ± 0.9 de | 35.1 ± 1.8 e | nd g | nd e | nd c | 53.7 e | 0.0 ± 0.0 g | 0.0 ± 0.0 g | 0.9 ± 0.0 f | 6.7 ± 3.4 a | 8.6 ± 4.4 ef |
Cookie + | L* | a* | b* | DE* | dL* | da* | db* | EP |
---|---|---|---|---|---|---|---|---|
quince (fruits) | 69.5 ± 0.7 ab | 4.0 ± 0.1 de | 30.8 ± 0.4 a | 2.5 | −2.2 | −0.8 | −1.0 | 40.5 |
tilia (flowers) | 69.8 ± 0.4 ab | 3.7 ± 0.1 e | 27.9 ± 0.4 cd | 4.5 | −1.9 | −1.1 | −3.9 | 36.7 |
pomegranate (skin) | 65.5 ± 0.1 cd | 3.7 ± 0.1 e | 29.3 ± 0.1 b | 6.8 | −6.3 | −1.1 | −2.5 | 40.3 |
passionfruits (endocarp) | 53.2 ± 0.7 e | 6.7 ± 0.4 b | 17.5 ± 0.1 f | 23.5 | −18.5 | 1.9 | −14.3 | 29.9 |
sour cherry (leaves) | 67.5 ± 0.8 bc | 4.7 ± 0.1 cd | 27.1 ± 0.3 d | 6.3 | −4.2 | −0.1 | −4.7 | 36.9 |
haskap (berry) | 30.5 ± 0.2 g | 5.4 ± 0.1 c | −1.5 ± 0.0 h | 53.0 | −41.2 | 0.6 | −33.3 | 8.1 |
chokeberry (berry) | 33.2 ± 0.1 f | 6.7 ± 0.1 b | 0.3 ± 0.1 g | 49.8 | −38.5 | 1.9 | −31.5 | 7.7 |
silver skin (coffee beans) | 52.3 ± 0.2 e | 7.8 ± 0.1 a | 25.4 ± 0.3 e | 20.6 | −19.4 | 3.0 | −6.4 | 42.7 |
roseship (seeds) | 64.7 ± 0.4 d | 6.6 ± 0.1 b | 28.7 ± 0.3 bc | 7.8 | −7.0 | 1.8 | −3.1 | 40.5 |
control | 71.7 ± 0.8 a | 4.8 ± 0.3 cd | 31.8 ± 0.2 a | - | - | - | - | 40.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pędziwiatr, D.; Lamadrid, M.C.; Wojdyło, A. Cookies Fortified with Polyphenols Extracts: Impact on Phenolic Content, Antioxidant Activity, Inhibition of α-Amylase and α-Glucosidase Enzyme, Colour and Sensory Attractiveness. Antioxidants 2024, 13, 1108. https://doi.org/10.3390/antiox13091108
Pędziwiatr D, Lamadrid MC, Wojdyło A. Cookies Fortified with Polyphenols Extracts: Impact on Phenolic Content, Antioxidant Activity, Inhibition of α-Amylase and α-Glucosidase Enzyme, Colour and Sensory Attractiveness. Antioxidants. 2024; 13(9):1108. https://doi.org/10.3390/antiox13091108
Chicago/Turabian StylePędziwiatr, Daria, Marina Cano Lamadrid, and Aneta Wojdyło. 2024. "Cookies Fortified with Polyphenols Extracts: Impact on Phenolic Content, Antioxidant Activity, Inhibition of α-Amylase and α-Glucosidase Enzyme, Colour and Sensory Attractiveness" Antioxidants 13, no. 9: 1108. https://doi.org/10.3390/antiox13091108
APA StylePędziwiatr, D., Lamadrid, M. C., & Wojdyło, A. (2024). Cookies Fortified with Polyphenols Extracts: Impact on Phenolic Content, Antioxidant Activity, Inhibition of α-Amylase and α-Glucosidase Enzyme, Colour and Sensory Attractiveness. Antioxidants, 13(9), 1108. https://doi.org/10.3390/antiox13091108