3′-Caffeoylquercetin Glycosides and 4′-Caffeoylkaempferol Glycosides—Novel Antioxidant Flavonoids Discovered in the Freesia Yellow Flowers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Solvents and Reagents
2.3. Spectroscopic Analysis Using Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS)
2.4. Isolation of Flavonoid Compounds from the ‘f2’ Flowers
2.5. Isolation of Flavonoid Compounds from the ‘Kayak’ Flowers
2.6. Analysis of Total Flavonoid Compounds in Individual Freesia Cultivars and Wild Species
2.7. Purification of Glucose from Compound 5 Using Acid Hydrolysis
2.8. Determination of L-Rhamnose in Compound 4 by L-Rhamnosidase
2.9. Determination of D-Glucuronic Acid in Compound 8 by D-Glucuronidase
2.10. Assessment of Lipid Peroxidation-Inhibiting Activity
2.11. DPPH Radical-Scavenging Assay
2.12. Statistical Analysis
2.13. Physicochemical Data for Compounds 1–8
3. Results
3.1. Isolation of Antioxidative Compounds from the Flowers of Freesia ‘f2’ and ‘Kayak’
3.2. Structural Determination of Compounds 1–8
3.3. Analysis of Flavonoid Compounds in the Petals of Individual Freesia Species
3.4. Antioxidant Activities of Compounds 1–8
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brouillard, R.; Dangles, O. Flavonoids and Flower Color. In The Flavonoids Advances in Research Since 1986; Routledge: Oxford, UK, 2017; ISBN 9780203736692. [Google Scholar]
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J. 2008, 54, 733–749. [Google Scholar] [CrossRef]
- Zhao, D.; Tao, J. Recent advances on the development and regulation of flower color in ornamental plants. Front. Plant Sci. 2015, 6, 261. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, J.; Dong, G.; Zhang, X.; Liu, Y.; Sun, W.; Liu, A. Flavonoids and caffeoylquinic acids in Chrysanthemum morifolium Ramat flowers: A potentially rich source of bioactive compounds. Food Chem. 2021, 344, 128733. [Google Scholar] [CrossRef]
- Shen, Y.; Rao, Y.; Ma, M.; Li, Y.; He, Y.; Wang, Z.; Liang, M.; Ning, G. Coordination among flower pigments, scents and pollinators in ornamental plants. Hortic. Adv. 2024, 2, 6. [Google Scholar] [CrossRef]
- Matyjaszczyk, E.; Śmiechowska, M. Edible flowers. Benefits and risks pertaining to their consumption. Trends Food Sci. Technol. 2019, 91, 670–674. [Google Scholar] [CrossRef]
- Teixeira, M.; Tao, W.; Fernandes, A.; Faria, A.; Ferreira, I.M.P.L.V.O.; He, J.; Freitas, V.de; Mateus, M.; Oliveira, H. Anthocyanin-rich edible flowers, current understanding of a potential new trend in dietary patterns. Trends Food Sci. Technol. 2023, 138, 708–725. [Google Scholar] [CrossRef]
- Utvineantu, A.; Vamanu, E. In vitro antioxidant potential and anti-Escherichia coli effect of crude extracts from common edible yellow flower petals. Alger. J. Nat. Prod. 2020, 8, 767–773. [Google Scholar]
- Gilbertson-Ferriss, T.L. Freesia × hybrida En., Fr., Ge., Sp., Freesia. In CRC Handbook of Flowering Vol III; Halevy, A.H., Ed.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9781351072557. [Google Scholar]
- Wang, L. Freesia. In Flower Breeding and Genetics; Springer: Dordrecht, The Netherlands, 2006; ISBN 978-1-4020-4427-4. [Google Scholar]
- Li, Y.; Liu, X.; Cai, X.; Shan, X.; Gao, R.; Yang, S.; Han, T.; Wang, S.; Wang, L.; Gao, X. Dihydroflavonol 4-reductase genes from Freesia hybrida play important and partially overlapping roles in the biosynthesis of flavonoids. Front. Plant Sci. 2017, 8, 428. [Google Scholar] [CrossRef] [PubMed]
- Shindo, K.; Sakemi, Y.; Shimode, S.; Takagi, C.; Uwagaki, Y.; Hattan, J.; Akao, M.; Usui, S.; Kiyokawa, A.; Komaki, M.; et al. Changes of crocin and other crocetin glycosides in saffron through cooking models, and discovery of rare crocetin glycosides in the yellow flowers of Freesia hybrida. Front. Nutr. 2022, 9, 885412. [Google Scholar] [CrossRef]
- Murahama, M.; Matsuda, E.; Hirano, H.; Isu, H. Breeding of a new freesia cultivar ‘Ishikawa f2 go’ (Freesia spp.). Hort. Res. 2020, 19, 309–311. [Google Scholar] [CrossRef]
- Buchin, Y.; Sakemi, Y.; Hamashima, R.; Morioka, Y.; Yamanaka, D.; Hakuno, F.; Takahashi, S.; Shindo, K. Strucures and biological activities of new carnosic acid- and carnosol-related compounds generated by heat treatment of rosemary. Phytochem. Lett. 2019, 30, 43–48. [Google Scholar] [CrossRef]
- Moryneux, P. The use of stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 2004, 26, 211–219. [Google Scholar]
- Hanse, P.E. Carbon-hydrogen spin-spin coupling constants. Prog. Nucl. Magn. Reson. Spectrosc. 1981, 14, 175–295. [Google Scholar] [CrossRef]
- Mikanagi, Y.; Yokoi, M.; Ueda, Y.; Saito, N. Flower flavonol and anthocyanin distribution in subgenus Rosa. Biochem. Syst. Ecol. 1995, 23, 183–200. [Google Scholar] [CrossRef]
- Tang, Y.; Lou, F.; Wang, J.; Li, Y.; Zhuang, S. Coumaroyl flavonol glycosides from the leaves of Ginkgo biloba. Phytochemistry 2001, 58, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Tripoli, E.; Guardia, M.L.; Giammanco, S.; MaJo, D.D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Meng, X.; Li, Y.; Zhou, T.; Sun, W.; Shan, X.; Gao, X.; Wang, L. Functional differentiation of duplicated flavonoid 3-O-glycosyltransferases in the flavonol and anthocyanin biosynthesis of Freesia hybrida. Front. Plant Sci. 2019, 10, 1330. [Google Scholar] [CrossRef]
- Martina, D.; Miroslav, V.; Ernest, S.; Sona, J. Antioxidant action and cytotoxicity on Hela and NIH-3T3 cells of new quercetin derivatives. Interdiscip. Toxicol. 2013, 6, 209–216. [Google Scholar]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res. Int. 2018, 105, 580–588. [Google Scholar] [CrossRef]
- Russo, M.; Spagnuolo, C.; Tedesco, I.; Bilotto, S.; Russo, G.L. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochem. Pharmacol. 2012, 83, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Lu, Y.; Qian, Y.; Chen, B.; Wu, T.; Ji, G. Recent progress regarding kaempferol for the treatment of various diseases. Exp. Ther. Med. 2019, 18, 2759–2776. [Google Scholar] [CrossRef] [PubMed]
- Cizmarova, B.; Hubkova, B.; Bolerazska, B.; Marekova, M.; Birkova, A. Caffeic acid: A brief overview of its presence, metabolism, and bioactivity. Bioact. Compd. Health Dis. 2020, 3, 74–81. [Google Scholar]
Compound | IC50 (μM) | IC50 (μM) |
---|---|---|
Lipid Peroxidation-Inhibiting Activity | DPPH Radical-Quenching Activity | |
1 | 5.2 ± 0.62 | 32 ± 2.2 |
2 | 4.5 ± 0.73 | 29 ± 2.0 |
3 | 22 ± 0.96 | 38 ± 2.2 |
4 | 1.9 ± 0.21 | 22 ± 4.4 |
5 | 0.63 ± 0.04 | 12 ± 0.77 |
6 | 20 ± 1.7 | 56 ± 5.1 |
7 | 1.1 ± 0.82 | 10 ± 0.54 |
8 | 27 ± 3.1 | 16 ± 2.2 |
Quercetin | 0.45 ± 0.04 | 23 ± 0.89 |
Caffeic acid | 25 ± 2.7 | 41 ± 0.52 |
Rutin | 11 ± 0.82 | 14 ± 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shindo, K.; Iwamoto, N.; Usami, M.; Saito, A.; Sato, M.; Sugaya, M.; Miyashita, N.; Murahama, M.; Higashimura, Y.; Takemura, M.; et al. 3′-Caffeoylquercetin Glycosides and 4′-Caffeoylkaempferol Glycosides—Novel Antioxidant Flavonoids Discovered in the Freesia Yellow Flowers. Antioxidants 2025, 14, 158. https://doi.org/10.3390/antiox14020158
Shindo K, Iwamoto N, Usami M, Saito A, Sato M, Sugaya M, Miyashita N, Murahama M, Higashimura Y, Takemura M, et al. 3′-Caffeoylquercetin Glycosides and 4′-Caffeoylkaempferol Glycosides—Novel Antioxidant Flavonoids Discovered in the Freesia Yellow Flowers. Antioxidants. 2025; 14(2):158. https://doi.org/10.3390/antiox14020158
Chicago/Turabian StyleShindo, Kazutoshi, Nozomi Iwamoto, Mayu Usami, Ayuna Saito, Miho Sato, Maho Sugaya, Nao Miyashita, Minoru Murahama, Yasuki Higashimura, Miho Takemura, and et al. 2025. "3′-Caffeoylquercetin Glycosides and 4′-Caffeoylkaempferol Glycosides—Novel Antioxidant Flavonoids Discovered in the Freesia Yellow Flowers" Antioxidants 14, no. 2: 158. https://doi.org/10.3390/antiox14020158
APA StyleShindo, K., Iwamoto, N., Usami, M., Saito, A., Sato, M., Sugaya, M., Miyashita, N., Murahama, M., Higashimura, Y., Takemura, M., Furihata, K., & Misawa, N. (2025). 3′-Caffeoylquercetin Glycosides and 4′-Caffeoylkaempferol Glycosides—Novel Antioxidant Flavonoids Discovered in the Freesia Yellow Flowers. Antioxidants, 14(2), 158. https://doi.org/10.3390/antiox14020158