Oxidative Stress and Redox Signaling in Gastric Cancer: From Mechanisms to Therapeutic Implications
Abstract
:1. Introduction
2. Oxidative Stress and Redox Signaling
3. Redox Insights into the Essential Features of Gastric Cancer
3.1. Oxidative Stress in the Regulation of Cell Proliferation and Growth in Gastric Cancer
3.2. Oxidative Stress in the Regulation of Cell Death in Gastric Cancer
3.3. Oxidative Stress in the Regulation of Gastric Cancer Metastasis
3.4. Oxidative Stress in the Regulation of Inflammation in Gastric Cancer
3.5. Oxidative Stress in the Regulation of Other Hallmarks of Gastric Cancer
4. Oxidative Stress-Mediated oxPTMs in Gastric Cancer
5. Targeting Oxidative Stress for the Treatment of Gastric Cancer
5.1. Natural Products Modulating Oxidative Stress for Gastric Cancer Treatment
5.2. Nanomaterials Modulating Oxidative Stress for Gastric Cancer Treatment
5.3. Synthetic Compounds Modulating Oxidative Stress for Gastric Cancer Treatment
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Thrift, A.P.; Wenker, T.N.; El-Serag, H.B. Global Burden of Gastric Cancer: Epidemiological Trends, Risk Factors, Screening and Prevention. Nat. Rev. Clin. Oncol. 2023, 20, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xiao, F.; Wang, Y.; Wang, Z.; Liu, D.; Hong, F. Prevalence of Helicobacter Pylori in Non-Cardia Gastric Cancer in China: A Systematic Review and Meta-Analysis. Front. Oncol. 2022, 12, 850389. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-Y.; Han, Y.; Xu, H.-M.; Wang, Z.-N.; Xu, Y.-Y.; Song, Y.-X.; Xu, H.; Yin, S.-C.; Liu, X.-Y.; Miao, Z.-F. Smoking Status and Subsequent Gastric Cancer Risk in Men Compared with Women: A Meta-Analysis of Prospective Observational Studies. BMC Cancer 2019, 19, 377. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.-M. Body Mass Index and Risk of Gastric Cancer in Asian Adults: A Meta-Epidemiological Meta-Analysis of Population-Based Cohort Studies. Cancer Res. Treat. 2020, 52, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Gao, Y.; Xie, S.-H.; Santoni, G.; Lagergren, J. Haemoglobin A1c and Serum Glucose Levels and Risk of Gastric Cancer: A Systematic Review and Meta-Analysis. Br. J. Cancer 2022, 126, 1100–1107. [Google Scholar] [CrossRef] [PubMed]
- Alicandro, G.; Bertuccio, P.; Collatuzzo, G.; Pelucchi, C.; Bonzi, R.; Liao, L.M.; Rabkin, C.S.; Sinha, R.; Negri, E.; Dalmartello, M.; et al. The Mediating Role of Combined Lifestyle Factors on the Relationship between Education and Gastric Cancer in the Stomach Cancer Pooling (StoP) Project. Br. J. Cancer 2022, 127, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Morais, S.; Costa, A.; Albuquerque, G.; Araújo, N.; Pelucchi, C.; Rabkin, C.S.; Liao, L.M.; Sinha, R.; Zhang, Z.-F.; Hu, J.; et al. Salt Intake and Gastric Cancer: A Pooled Analysis within the Stomach Cancer Pooling (StoP) Project. Cancer Causes Control 2022, 33, 779–791. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yu, W.; Xie, F.; Luo, H.; Liu, Z.; Lv, W.; Shi, D.; Yu, D.; Gao, P.; Chen, C.; et al. Neoadjuvant Therapy with Immune Checkpoint Blockade, Antiangiogenesis, and Chemotherapy for Locally Advanced Gastric Cancer. Nat. Commun. 2023, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Bang, Y.-J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in Combination with Chemotherapy versus Chemotherapy Alone for Treatment of HER2-Positive Advanced Gastric or Gastro-Oesophageal Junction Cancer (ToGA): A Phase 3, Open-Label, Randomised Controlled Trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Bragagnoli, A.C.; et al. Nivolumab plus Chemotherapy versus Chemotherapy as First-Line Treatment for Advanced Gastric Cancer/Gastroesophageal Junction Cancer/Oesophageal Adenocarcinoma (CheckMate 649): A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef]
- Li, G.Z.; Doherty, G.M.; Wang, J. Surgical Management of Gastric Cancer: A Review. JAMA Surg. 2022, 157, 446–454. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, C.; Fan, Q.; Yuan, H.; Zhang, X.; Chen, B.; Cai, R.; Zhang, Y.; Lin, M.; Xu, M. Positive Feedback between ROS and Cis-Axis of PIASxα/P38α-SUMOylation/MK2 Facilitates Gastric Cancer Metastasis. Cell Death Dis. 2021, 12, 986. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gong, W. NOX4 Regulates Gastric Cancer Cell Invasion and Proliferation by Increasing Ferroptosis Sensitivity through Regulating ROS. Int. Immunopharmacol. 2024, 132, 112052. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; An, M.; Lee, H.; Mehta, A.; Heo, Y.J.; Kim, K.-M.; Lee, S.-Y.; Moon, J.; Kim, S.T.; Min, B.-H.; et al. Early Tumor-Immune Microenvironmental Remodeling and Response to First-Line Fluoropyrimidine and Platinum Chemotherapy in Advanced Gastric Cancer. Cancer Discov. 2022, 12, 984–1001. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.; Chen, Y.; Wei, L.; Li, G.; Feng, D.; Liu, S.; Jiang, R.; Zheng, S.; Chen, Y. Resistance to FGFR1-Targeted Therapy Leads to Autophagy via TAK1/AMPK Activation in Gastric Cancer. Gastric Cancer 2020, 23, 988–1002. [Google Scholar] [CrossRef]
- Ouyang, S.; Li, H.; Lou, L.; Huang, Q.; Zhang, Z.; Mo, J.; Li, M.; Lu, J.; Zhu, K.; Chu, Y.; et al. Inhibition of STAT3-Ferroptosis Negative Regulatory Axis Suppresses Tumor Growth and Alleviates Chemoresistance in Gastric Cancer. Redox Biol. 2022, 52, 102317. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-Y.; Liu, Z.-Y.; Lin, L.-C.; Song, K.; Tu, B.; Zhang, Y.; Yang, J.-J.; Zhao, J.-Y.; Tao, H. Redox Homeostasis in Cardiac Fibrosis: Focus on Metal Ion Metabolism. Redox Biol. 2024, 71, 103109. [Google Scholar] [CrossRef] [PubMed]
- Kang, Q.; Yang, C. Oxidative Stress and Diabetic Retinopathy: Molecular Mechanisms, Pathogenetic Role and Therapeutic Implications. Redox Biol. 2020, 37, 101799. [Google Scholar] [CrossRef] [PubMed]
- Dionísio, P.A.; Amaral, J.D.; Rodrigues, C.M.P. Oxidative Stress and Regulated Cell Death in Parkinson’s Disease. Ageing Res. Rev. 2021, 67, 101263. [Google Scholar] [CrossRef] [PubMed]
- Moloney, J.N.; Cotter, T.G. ROS Signalling in the Biology of Cancer. Semin. Cell Dev. Biol. 2018, 80, 50–64. [Google Scholar] [CrossRef]
- Su, P.; Wang, Q.; Bi, E.; Ma, X.; Liu, L.; Yang, M.; Qian, J.; Yi, Q. Enhanced Lipid Accumulation and Metabolism Are Required for the Differentiation and Activation of Tumor-Associated Macrophages. Cancer Res. 2020, 80, 1438–1450. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lu, W.; Shi, B.; Klein, S.; Su, X. Peroxisomal Regulation of Redox Homeostasis and Adipocyte Metabolism. Redox Biol. 2019, 24, 101167. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.; Gevezova, M.; Sarafian, V.; Maes, M. Redox Regulation of the Immune Response. Cell Mol. Immunol. 2022, 19, 1079–1101. [Google Scholar] [CrossRef]
- Zhen, Z.; Ren, J.; Zhu, J. The Redox Requirement and Regulation during Cell Proliferation. Trends Endocrinol. Metab. 2024, 35, 385–399. [Google Scholar] [CrossRef] [PubMed]
- Salvatori, S.; Marafini, I.; Laudisi, F.; Monteleone, G.; Stolfi, C. Helicobacter Pylori and Gastric Cancer: Pathogenetic Mechanisms. Int. J. Mol. Sci. 2023, 24, 2895. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, T.; Lu, Y.-X.; Wang, J.-X.; Yu, F.-H.; Yang, M.-Z.; Huang, Y.-J.; Li, Z.-J.; Wang, S.-L.; Huang, L.; et al. Obesity Promotes Gastric Cancer Metastasis via Diacylglycerol Acyltransferase 2-Dependent Lipid Droplets Accumulation and Redox Homeostasis. Redox Biol. 2020, 36, 101596. [Google Scholar] [CrossRef]
- Sies, H.; Jones, D.P. Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, L.; Shang, W.; Yang, Z.; Li, T.; Liu, F.; Shao, W.; Lv, L.; Chai, L.; Qu, L.; et al. Wnt/Beta-Catenin Signaling Confers Ferroptosis Resistance by Targeting GPX4 in Gastric Cancer. Cell Death Differ. 2022, 29, 2190–2202. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, Y.; Luo, W.; Chen, S.; Lin, F.; Zhang, X.; Fan, S.; Shen, X.; Wang, Y.; Liang, G. Celastrol Induces ROS-Mediated Apoptosis via Directly Targeting Peroxiredoxin-2 in Gastric Cancer Cells. Theranostics 2020, 10, 10290–10308. [Google Scholar] [CrossRef]
- Yamamoto, T.; Nakano, H.; Shiomi, K.; Wanibuchi, K.; Masui, H.; Takahashi, T.; Urano, Y.; Kamata, T. Identification and Characterization of a Novel NADPH Oxidase 1 (Nox1) Inhibitor That Suppresses Proliferation of Colon and Stomach Cancer Cells. Biol. Pharm. Bull. 2018, 41, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-Y.; Zhu, C.-Y.; Ding, Y.-X.; Wang, B.; Zhao, S.-F.; Lv, J.; Chen, S.-M.; Wang, S.-S.; Wang, Y.; Wang, R.; et al. Cepharanthine, a Regulator of Keap1-Nrf2, Inhibits Gastric Cancer Growth through Oxidative Stress and Energy Metabolism Pathway. Cell Death Discov. 2023, 9, 450. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Cai, Z.; Zhang, S.; Yin, X.; Jiang, T.; Shen, C.; Yin, Y.; Sun, H.; Chen, Z.; Han, J.; et al. Activation of the FOXM1/ASF1B/PRDX3 Axis Confers Hyperproliferative and Antioxidative Stress Reactivity to Gastric Cancer. Cancer Lett. 2024, 589, 216796. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qi, F.; Su, H.; Zhang, C.; Zhang, Q.; Chen, Y.; Chen, P.; Su, L.; Chen, Y.; Yang, Y.; et al. GRP75-Faciliated Mitochondria-Associated ER Membrane (MAM) Integrity Controls Cisplatin-Resistance in Ovarian Cancer Patients. Int. J. Biol. Sci. 2022, 18, 2914–2931. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Lu, Y.; Wang, S.; Song, J.; Ding, Y.; Wang, Y.; Dong, C.; Liu, J.; Qiu, W.; Qi, W. Nortriptyline Hydrochloride, a Potential Candidate for Drug Repurposing, Inhibits Gastric Cancer by Inducing Oxidative Stress by Triggering the Keap1-Nrf2 Pathway. Sci. Rep. 2024, 14, 6050. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, L.; Zenz, T.; Oliinyk, D.; Meier-Rosar, F.; Jenke, R.; Aigner, A.; Büch, T. Vorinostat Treatment of Gastric Cancer Cells Leads to ROS-Induced Cell Inhibition and a Complex Pattern of Molecular Alterations in Nrf2-Dependent Genes. Pharmaceuticals 2024, 17, 1080. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, Y.; Zhao, T.-L.; Li, Z.-Z.; He, J.-Y.; Zhang, B.-J.; Du, H.-Z.; Jiang, J.-W.; Yuan, S.-T.; Sun, L. Topotecan Induces Apoptosis via ASCT2 Mediated Oxidative Stress in Gastric Cancer. Phytomedicine 2019, 57, 117–128. [Google Scholar] [CrossRef]
- Li, Z.-J.; Chen, W.; Jiang, H.; Li, X.-Y.; Zhu, S.-N.; Liu, X.-H. Effects of Postoperative Parenteral Nutrition Enhanced by Multivitamin on Metabolic Phenotype in Postoperative Gastric Cancer Patients. Mol. Nutr. Food Res. 2018, 62, e1700757. [Google Scholar] [CrossRef] [PubMed]
- Mu, B.; Zeng, Y.; Luo, L.; Wang, K. Oxidative Stress-Mediated Protein Sulfenylation in Human Diseases: Past, Present, and Future. Redox Biol. 2024, 76, 103332. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, X.; Cueto, R.; Effi, C.; Zhang, Y.; Tan, H.; Qin, X.; Ji, Y.; Yang, X.; Wang, H. Biochemical Basis and Metabolic Interplay of Redox Regulation. Redox Biol. 2019, 26, 101284. [Google Scholar] [CrossRef]
- Lennicke, C.; Cochemé, H.M. Redox Metabolism: ROS as Specific Molecular Regulators of Cell Signaling and Function. Mol. Cell 2021, 81, 3691–3707. [Google Scholar] [CrossRef] [PubMed]
- D’Autréaux, B.; Toledano, M.B. ROS as Signalling Molecules: Mechanisms That Generate Specificity in ROS Homeostasis. Nat. Rev. Mol. Cell Biol. 2007, 8, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Kim, Y.K. CARM1 Phosphorylation at S595 by P38γ MAPK Drives ROS-Mediated Cellular Senescence. Redox Biol. 2024, 76, 103344. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Shen, Z.; Yang, Q.; Sui, F.; Pu, J.; Ma, J.; Ma, S.; Yao, D.; Ji, M.; Hou, P. Vitamin C Kills Thyroid Cancer Cells through ROS-Dependent Inhibition of MAPK/ERK and PI3K/AKT Pathways via Distinct Mechanisms. Theranostics 2019, 9, 4461–4473. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lu, H.; Peng, D.; Cao, L.L.; Ballout, F.; Srirmajayam, K.; Chen, Z.; Bhat, A.; Wang, T.C.; Capobianco, A.; et al. Activation of NOTCH Signaling via DLL1 Is Mediated by APE1-Redox-Dependent NF-κB Activation in Oesophageal Adenocarcinoma. Gut 2023, 72, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, X.; Saredy, J.; Yuan, Z.; Yang, X.; Wang, H. Innate-Adaptive Immunity Interplay and Redox Regulation in Immune Response. Redox Biol. 2020, 37, 101759. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Vivancos, P.; de Simone, A.; Kiddle, G.; Foyer, C.H. Glutathione--Linking Cell Proliferation to Oxidative Stress. Free Radic. Biol. Med. 2015, 89, 1154–1164. [Google Scholar] [CrossRef] [PubMed]
- Antelmann, H.; Helmann, J.D. Thiol-Based Redox Switches and Gene Regulation. Antioxid. Redox Signal 2011, 14, 1049–1063. [Google Scholar] [CrossRef] [PubMed]
- García-Giménez, J.L.; Romá-Mateo, C.; Pallardó, F.V. Oxidative Post-Translational Modifications in Histones. Biofactors 2019, 45, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Wu, H.; Xiang, Z.; Huang, G.; He, Q.; Song, J.; Dou, R.; Yang, C.; Wang, S.; Xiong, B. BGN/FAP/STAT3 Positive Feedback Loop Mediated Mutual Interaction between Tumor Cells and Mesothelial Cells Contributes to Peritoneal Metastasis of Gastric Cancer. Int. J. Biol. Sci. 2023, 19, 465–483. [Google Scholar] [CrossRef]
- Wang, R.; Huang, W.; Cai, K.; Xiao, S.; Zhang, W.; Hu, X.; Guo, J.; Mao, L.; Yuan, W.; Xu, Y.; et al. FLOT1 Promotes Gastric Cancer Progression and Metastasis through BCAR1/ERK Signaling. Int. J. Biol. Sci. 2023, 19, 5104–5119. [Google Scholar] [CrossRef] [PubMed]
- Glorieux, C.; Liu, S.; Trachootham, D.; Huang, P. Targeting ROS in Cancer: Rationale and Strategies. Nat. Rev. Drug Discov. 2024, 23, 583–606. [Google Scholar] [CrossRef] [PubMed]
- Park, M.H.; Jo, M.; Kim, Y.R.; Lee, C.-K.; Hong, J.T. Roles of Peroxiredoxins in Cancer, Neurodegenerative Diseases and Inflammatory Diseases. Pharmacol. Ther. 2016, 163, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Xiang, W.; Liu, Z.; Yao, L.; Tang, L.; Tan, W.; Ye, P.; Deng, J.; Xiao, J. Functional Role of the SLC7A11-AS1/xCT Axis in the Development of Gastric Cancer Cisplatin-Resistance by a GSH-Dependent Mechanism. Free Radic. Biol. Med. 2022, 184, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.; Liao, K.; Zhou, Y.; Wen, T.; Quan, G.; Pan, X.; Wu, C. Application of Glutathione Depletion in Cancer Therapy: Enhanced ROS-Based Therapy, Ferroptosis, and Chemotherapy. Biomaterials 2021, 277, 121110. [Google Scholar] [CrossRef] [PubMed]
- Lapenna, D. Glutathione and Glutathione-Dependent Enzymes: From Biochemistry to Gerontology and Successful Aging. Ageing Res. Rev. 2023, 92, 102066. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Luo, L.; Fu, S.; Wang, M.; Wang, Z.; Dong, L.; Wu, X.; Dai, L.; Peng, Y.; Shen, G.; et al. PHGDH Arginine Methylation by PRMT1 Promotes Serine Synthesis and Represents a Therapeutic Vulnerability in Hepatocellular Carcinoma. Nat. Commun. 2023, 14, 1011. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Zhao, Z.; Qu, Y.; Cai, F.; Liu, S.; Liang, H.; Zhang, R.; Deng, J. Cysteine Dioxygenase 1 Attenuates the Proliferation via Inducing Oxidative Stress and Integrated Stress Response in Gastric Cancer Cells. Cell Death Discov. 2022, 8, 493. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhai, E.; Liu, Y.; Qian, Y.; Zhao, R.; Ma, Y.; Liu, J.; Huang, Z.; Chen, J.; Cai, S. ALKBH5-Mediated CHAC1 Depletion Promotes Malignant Progression and Decreases Cisplatin-Induced Oxidative Stress in Gastric Cancer. Cancer Cell Int. 2023, 23, 293. [Google Scholar] [CrossRef]
- Ghoneum, M.H.; Badr El-Din, N.K.; Abdel Fattah, S.M.; Pan, D.; Tolentino, L. Hydroferrate Fluid, MRN-100, Provides Protection against Chemical-Induced Gastric and Esophageal Cancer in Wistar Rats. Int. J. Biol. Sci. 2015, 11, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiang, J.; Zhang, J.; Shen, H.; Wang, M.; Guo, Z.; Zang, X.; Shi, H.; Gao, J.; Cai, H.; et al. CircDIDO1 Inhibits Gastric Cancer Progression by Encoding a Novel DIDO1-529aa Protein and Regulating PRDX2 Protein Stability. Mol. Cancer 2021, 20, 101. [Google Scholar] [CrossRef]
- Torrente, L.; DeNicola, G.M. Targeting NRF2 and Its Downstream Processes: Opportunities and Challenges. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 279–300. [Google Scholar] [CrossRef] [PubMed]
- Adinolfi, S.; Patinen, T.; Jawahar Deen, A.; Pitkänen, S.; Härkönen, J.; Kansanen, E.; Küblbeck, J.; Levonen, A.-L. The KEAP1-NRF2 Pathway: Targets for Therapy and Role in Cancer. Redox Biol. 2023, 63, 102726. [Google Scholar] [CrossRef]
- Dinkova-Kostova, A.T.; Copple, I.M. Advances and Challenges in Therapeutic Targeting of NRF2. Trends Pharmacol. Sci. 2023, 44, 137–149. [Google Scholar] [CrossRef]
- Soutto, M.; Zhang, X.; Bhat, N.; Chen, Z.; Zhu, S.; Maacha, S.; Genoula, M.; El-Gazzaz, O.; Peng, D.; Lu, H.; et al. Fibroblast Growth Factor Receptor-4 Mediates Activation of Nuclear Factor Erythroid 2-Related Factor-2 in Gastric Tumorigenesis. Redox Biol. 2024, 69, 102998. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Y.; Shi, Y.; Wu, L.; Tan, Y.; Li, T.; Chen, Y.; Xia, J.; Hu, R. FAM117B Promotes Gastric Cancer Growth and Drug Resistance by Targeting the KEAP1/NRF2 Signaling Pathway. J. Clin. Investig. 2023, 133, e158705. [Google Scholar] [CrossRef] [PubMed]
- Stockwell, B.R. Ferroptosis Turns 10: Emerging Mechanisms, Physiological Functions, and Therapeutic Applications. Cell 2022, 185, 2401–2421. [Google Scholar] [CrossRef]
- Ping, M.; Li, G.; Li, Q.; Fang, Y.; Fan, T.; Wu, J.; Zhang, R.; Zhang, L.; Shen, B.; Guo, J. The NRF2-CARM1 Axis Links Glucose Sensing to Transcriptional and Epigenetic Regulation of the Pentose Phosphate Pathway in Gastric Cancer. Cell Death Dis. 2024, 15, 670. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Teng, H.; Hang, Q.; Kondiparthi, L.; Lei, G.; Horbath, A.; Liu, X.; Mao, C.; Wu, S.; Zhuang, L.; et al. SLC7A11 Expression Level Dictates Differential Responses to Oxidative Stress in Cancer Cells. Nat. Commun. 2023, 14, 3673. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.; Qin, H.; Sun, C.; Liu, Y.; Ruan, G.; Guo, Q.; Xi, T.; Xing, Y.; Zheng, L. MiR-375 Reduces the Stemness of Gastric Cancer Cells through Triggering Ferroptosis. Stem Cell Res. Ther. 2021, 12, 325. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zou, S.; Zhang, Y.; Zhang, J.; Zhang, P.; Xiao, L.; Xie, Y.; Meng, M.; Feng, J.; Kang, L.; et al. ACTL6A Protects Gastric Cancer Cells against Ferroptosis through Induction of Glutathione Synthesis. Nat. Commun. 2023, 14, 4193. [Google Scholar] [CrossRef]
- Meng, K.; Song, J.; Qi, F.; Li, J.; Fang, Z.; Song, L. MT1G Promotes Iron Autophagy and Inhibits the Function of Gastric Cancer Cell Lines by Intervening in GPX4/SQSTM1. Sci. Rep. 2024, 14, 28539. [Google Scholar] [CrossRef] [PubMed]
- Mo, H.-Y.; Wang, R.-B.; Ma, M.-Y.; Zhang, Y.; Li, X.-Y.; Wen, W.-R.; Han, Y.; Tian, T. MTHFD2-Mediated Redox Homeostasis Promotes Gastric Cancer Progression under Hypoxic Conditions. Redox Rep. 2024, 29, 2345455. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Huang, H.; Fang, S.; Hang, Q. ROS: A “Booster” for Chronic Inflammation and Tumor Metastasis. Biochim. Biophys. Acta Rev. Cancer 2024, 1879, 189175. [Google Scholar] [CrossRef]
- Chatterjee, R.; Chatterjee, J. ROS and Oncogenesis with Special Reference to EMT and Stemness. Eur. J. Cell Biol. 2020, 99, 151073. [Google Scholar] [CrossRef]
- Bae, S.; Lim, J.W.; Kim, H. β-Carotene Inhibits Expression of Matrix Metalloproteinase-10 and Invasion in Helicobacter Pylori-Infected Gastric Epithelial Cells. Molecules 2021, 26, 1567. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, Y.; Dong, C.; Chen, T.; Dong, A.; Ren, J.; Li, W.; Shu, G.; Yang, J.; Shen, W.; et al. CST1 Inhibits Ferroptosis and Promotes Gastric Cancer Metastasis by Regulating GPX4 Protein Stability via OTUB1. Oncogene 2023, 42, 83–98. [Google Scholar] [CrossRef]
- Zhang, F.-F.; Jiang, C.; Jiang, D.-P.; Cui, Y.-Z.; Wang, X.-Y.; Sun, L.-Z.; Chen, M.; Lam, K.-O.; Wu, S.-Y.; Verhoeft, K.; et al. ARHGAP15 Promotes Metastatic Colonization in Gastric Cancer by Suppressing RAC1-ROS Pathway. PLoS Genet. 2023, 19, e1010640. [Google Scholar] [CrossRef] [PubMed]
- El-Kenawi, A.; Ruffell, B. Inflammation, ROS, and Mutagenesis. Cancer Cell 2017, 32, 727–729. [Google Scholar] [CrossRef] [PubMed]
- Shimada, K.; Crother, T.R.; Karlin, J.; Dagvadorj, J.; Chiba, N.; Chen, S.; Ramanujan, V.K.; Wolf, A.J.; Vergnes, L.; Ojcius, D.M.; et al. Oxidized Mitochondrial DNA Activates the NLRP3 Inflammasome during Apoptosis. Immunity 2012, 36, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Ruiz, V.E.; Carroll, J.D.; Moss, S.F. Helicobacter Pylori in the Pathogenesis of Gastric Cancer and Gastric Lymphoma. Cancer Lett. 2011, 305, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative Stress, Inflammation, and Cancer: How Are They Linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef]
- de Martel, C.; Ferlay, J.; Franceschi, S.; Vignat, J.; Bray, F.; Forman, D.; Plummer, M. Global Burden of Cancers Attributable to Infections in 2008: A Review and Synthetic Analysis. Lancet Oncol. 2012, 13, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, Z.; Zhu, S.; Lu, H.; Peng, D.; Soutto, M.; Naz, H.; Peek, R.; Xu, H.; Zaika, A.; et al. PRDX2 Protects against Oxidative Stress Induced by H. Pylori and Promotes Resistance to Cisplatin in Gastric Cancer. Redox Biol. 2020, 28, 101319. [Google Scholar] [CrossRef]
- Chandra, V.; Li, L.; Le Roux, O.; Zhang, Y.; Howell, R.M.; Rupani, D.N.; Baydogan, S.; Miller, H.D.; Riquelme, E.; Petrosino, J.; et al. Gut Epithelial Interleukin-17 Receptor A Signaling Can Modulate Distant Tumors Growth through Microbial Regulation. Cancer Cell 2024, 42, 85–100.e6. [Google Scholar] [CrossRef]
- Brackman, L.C.; Jung, M.S.; Green, E.H.; Joshi, N.; Revetta, F.L.; McClain, M.S.; Markham, N.O.; Piazuelo, M.B.; Scott Algood, H.M. IL-17 Signaling Protects against Helicobacter Pylori-Induced Gastric Cancer. Gut Microbes 2024, 16, 2430421. [Google Scholar] [CrossRef]
- Butcher, L.D.; den Hartog, G.; Ernst, P.B.; Crowe, S.E. Oxidative Stress Resulting From Helicobacter Pylori Infection Contributes to Gastric Carcinogenesis. Cell Mol. Gastroenterol. Hepatol. 2017, 3, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Chan, K.T.; Huang, X.; Cerra, C.; Blake, S.; Trigos, A.S.; Anderson, D.; Creek, D.J.; De Souza, D.P.; Wang, X.; et al. Cystathionine-β-Synthase Is Essential for AKT-Induced Senescence and Suppresses the Development of Gastric Cancers with PI3K/AKT Activation. Elife 2022, 11, e71929. [Google Scholar] [CrossRef] [PubMed]
- Banks, C.J.; Andersen, J.L. Mechanisms of SOD1 Regulation by Post-Translational Modifications. Redox Biol. 2019, 26, 101270. [Google Scholar] [CrossRef]
- Roos, G.; Messens, J. Protein Sulfenic Acid Formation: From Cellular Damage to Redox Regulation. Free Radic. Biol. Med. 2011, 51, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, B.; Lin, Y.; Zhou, Y.; Li, X. Legumain Promotes Gastric Cancer Progression Through Tumor-Associated Macrophages In Vitro and In Vivo. Int. J. Biol. Sci. 2020, 16, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Guo, S.; Khan, F.; Dunterman, M.; Ali, H.; Liu, Y.; Huang, Y.; Chen, P. Hypoxia-Driven Protease Legumain Promotes Immunosuppression in Glioblastoma. Cell Rep. Med. 2023, 4, 101238. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, J.; Zheng, Y.; Zhu, Y.; Zhou, Z.; Liu, Z.; Lin, C.; Wan, Y.; Wen, Y.; Liu, C.; et al. Autocrine Pro-Legumain Promotes Breast Cancer Metastasis via Binding to Integrin Avβ3. Oncogene 2022, 41, 4091–4103. [Google Scholar] [CrossRef] [PubMed]
- Kovalyova, Y.; Bak, D.W.; Gordon, E.M.; Fung, C.; Shuman, J.H.B.; Cover, T.L.; Amieva, M.R.; Weerapana, E.; Hatzios, S.K. An Infection-Induced Oxidation Site Regulates Legumain Processing and Tumor Growth. Nat. Chem. Biol. 2022, 18, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.S.; Badgwell, B.D. Current Treatment and Recent Progress in Gastric Cancer. CA Cancer J. Clin. 2021, 71, 264–279. [Google Scholar] [CrossRef]
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The Re-Emergence of Natural Products for Drug Discovery in the Genomics Era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zheng, W.; Wang, X.; Li, Z.; Shen, X.; Chen, Q.; Lu, Y.; Chen, K.; Ai, S.; Zhu, Y.; et al. Enhanced Photodynamic Therapy Synergizing with Inhibition of Tumor Neutrophil Ferroptosis Boosts Anti-PD-1 Therapy of Gastric Cancer. Adv. Sci. 2024, 11, e2307870. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Chen, Y.; Shi, J. Reactive Oxygen Species (ROS)-Based Nanomedicine. Chem. Rev. 2019, 119, 4881–4985. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Kang, N.; Kim, B.; Hong, H.; Yu, L.; Kim, J.; Kang, H.; Kim, J.S. One-Dimensional Nanomaterials for Cancer Therapy and Diagnosis. Chem. Soc. Rev. 2023, 52, 4488–4514. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Wan, L.; Li, C.; Wen, Y.; Pan, H.; Zhao, M.; Wang, J.; Ma, X.; Nian, Q.; Tang, J.; et al. Natural Products for Gastric Carcinoma Prevention and Treatment: Focus on Their Antioxidant Stress Actions in the Correa’s Cascade. Phytomedicine 2024, 123, 155253. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.W.; Rhee, S.G.; Chang, T.-S.; Jeong, W.; Choi, M.H. 2-Cys Peroxiredoxin Function in Intracellular Signal Transduction: Therapeutic Implications. Trends Mol. Med. 2005, 11, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Luo, L.; Wang, M.; Dong, L.; Fan, J.; Zeng, Y.; Li, S.; Wang, K. PRDX6 Prevents NNMT Ubiquitination and Degradation as a Nonenzymatic Mechanism to Promote Ovarian Cancer Progression. Adv. Sci. 2025, e2416484. [Google Scholar] [CrossRef]
- Chen, P.; Zhong, X.; Song, Y.; Zhong, W.; Wang, S.; Wang, J.; Huang, P.; Niu, Y.; Yang, W.; Ding, Z.; et al. Triptolide Induces Apoptosis and Cytoprotective Autophagy by ROS Accumulation via Directly Targeting Peroxiredoxin 2 in Gastric Cancer Cells. Cancer Lett. 2024, 587, 216622. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Yao, Z.; Wang, Y.; Zhang, C. Asiaticoside Promoted Ferroptosis and Suppressed Immune Escape in Gastric Cancer Cells by Downregulating the Wnt/β-Catenin Pathway. Int. Immunopharmacol. 2024, 134, 112175. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Dang, S.; Sun, M.; Zhou, D.; Sun, Y.; Li, E.; Peng, S.; Li, J.; Li, G. Quercetin Induces Ferroptosis in Gastric Cancer Cells by Targeting SLC1A5 and Regulating the P-Camk2/p-DRP1 and NRF2/GPX4 Axes. Free Radic. Biol. Med. 2024, 213, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W.; Lee, H.G. Anti-Inflammatory 8-Shogaol Mediates Apoptosis by Inducing Oxidative Stress and Sensitizes Radioresistance in Gastric Cancer. Int. J. Mol. Sci. 2024, 26, 173. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Shen, X.; Li, X.; Yang, X.; Chen, C.; Luo, D. The Natural Product Dehydrocurvularin Induces Apoptosis of Gastric Cancer Cells by Activating PARP-1 and Caspase-3. Apoptosis 2023, 28, 525–538. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, D. Ginsenoside Rg5 Induces G2/M Phase Arrest, Apoptosis and Autophagy via Regulating ROS-Mediated MAPK Pathways against Human Gastric Cancer. Biochem. Pharmacol. 2019, 168, 285–304. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Yuan, X.; Yu, L.; Gao, C.; Sun, X.; Wang, D.; Zheng, Q. Licochalcone A-Induced Human Gastric Cancer BGC-823 Cells Apoptosis by Regulating ROS-Mediated MAPKs and PI3K/AKT Signaling Pathways. Sci. Rep. 2015, 5, 10336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J.-Q.; Zhang, T.; Xue, H.; Zuo, W.-B.; Li, Y.-N.; Zhao, Y.; Sun, G.; Fu, Z.-R.; Zhang, Q.; et al. Calycosin Induces Gastric Cancer Cell Apoptosis via the ROS-Mediated MAPK/STAT3/NF-κB Pathway. OncoTargets Ther. 2021, 14, 2505–2517. [Google Scholar] [CrossRef] [PubMed]
- Peri, S.; Ruzzolini, J.; Urciuoli, S.; Versienti, G.; Biagioni, A.; Andreucci, E.; Peppicelli, S.; Bianchini, F.; Bottari, A.; Calorini, L.; et al. An Oleocanthal-Enriched EVO Oil Extract Induces the ROS Production in Gastric Cancer Cells and Potentiates the Effect of Chemotherapy. Antioxidants 2022, 11, 1762. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-L.; Zhang, X.-W.; Zhai, H.-J.; Zhang, D.; Ma, S.-Y. Magnoflorine Inhibits Human Gastric Cancer Progression by Inducing Autophagy, Apoptosis and Cell Cycle Arrest by JNK Activation Regulated by ROS. Biomed. Pharmacother. 2020, 125, 109118. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Wang, P.; Yang, C.; Huang, F.; Wu, H.; Shi, H.; Wu, X. Galangin Inhibits Gastric Cancer Growth Through Enhancing STAT3 Mediated ROS Production. Front. Pharmacol. 2021, 12, 646628. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.-R.; Yang, H. Ginkgolic Acid (GA) Suppresses Gastric Cancer Growth by Inducing Apoptosis and Suppressing STAT3/JAK2 Signaling Regulated by ROS. Biomed. Pharmacother. 2020, 125, 109585. [Google Scholar] [CrossRef] [PubMed]
- Golias, T.; Kery, M.; Radenkovic, S.; Papandreou, I. Microenvironmental Control of Glucose Metabolism in Tumors by Regulation of Pyruvate Dehydrogenase. Int. J. Cancer 2019, 144, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Jin, J.-M.; Liang, X.-H.; Yu, M.-Z.; Yang, C.; Huang, F.; Wu, H.; Zhang, B.-B.; Fei, X.-Y.; Wang, Z.-T.; et al. Helichrysetin Inhibits Gastric Cancer Growth by Targeting C-Myc/PDHK1 Axis-Mediated Energy Metabolism Reprogramming. Acta Pharmacol. Sin. 2022, 43, 1581–1593. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Pan, Q.; Li, W.; Du, T.; Huang, F.; Wu, H.; He, Y.; Wu, X.; Shi, H. Isoliquiritigenin Inhibits Gastric Cancer Growth through Suppressing GLUT4 Mediated Glucose Uptake and Inducing PDHK1/PGC-1α Mediated Energy Metabolic Collapse. Phytomedicine 2023, 121, 155045. [Google Scholar] [CrossRef] [PubMed]
- Mi, X.-J.; Park, H.-R.; Dhandapani, S.; Lee, S.; Kim, Y.-J. Biologically Synthesis of Gold Nanoparticles Using Cirsium Japonicum Var. Maackii Extract and the Study of Anti-Cancer Properties on AGS Gastric Cancer Cells. Int. J. Biol. Sci. 2022, 18, 5809–5826. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, Y.; Liang, W.; Li, L.; Du, J.; Pan, C.; Zhang, C. ROS-Responsive Dimeric Prodrug-Based Nanomedicine Targeted Therapy for Gastric Cancer. Drug Deliv. 2021, 28, 1204–1213. [Google Scholar] [CrossRef]
- Xiao, Y.; Yao, W.; Lin, M.; Huang, W.; Li, B.; Peng, B.; Ma, Q.; Zhou, X.; Liang, M. Icaritin-Loaded PLGA Nanoparticles Activate Immunogenic Cell Death and Facilitate Tumor Recruitment in Mice with Gastric Cancer. Drug Deliv. 2022, 29, 1712–1725. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Shao, Y.; Jiang, X.; Zhou, J.; Yang, L.; Chen, H.; Liu, W. Cytotoxic Effects of NIR Responsive Chitosan-Polymersome Layer Coated Melatonin-Upconversion Nanoparticles on HGC27 and AGS Gastric Cancer Cells: Role of the ROS/PI3K/Akt/mTOR Signaling Pathway. Int. J. Biol. Macromol. 2024, 278, 134187. [Google Scholar] [CrossRef]
- Zhang, S.; Feng, X.; Yang, S.; Shi, X.; Chen, J.; Zhu, R.; Li, T.; Su, W.; Wang, Y.; Cao, X. Acid-Triggered Rattan Ball-like β-Glucan Carrier Embedding Doxorubicin to Synergistically Alleviate Precancerous Lesions of Gastric Cancer via P53 and PI3K Pathways. Int. J. Biol. Macromol. 2024, 281, 136540. [Google Scholar] [CrossRef] [PubMed]
- Bonnot, P.-E.; Piessen, G.; Kepenekian, V.; Decullier, E.; Pocard, M.; Meunier, B.; Bereder, J.-M.; Abboud, K.; Marchal, F.; Quenet, F.; et al. Cytoreductive Surgery with or Without Hyperthermic Intraperitoneal Chemotherapy for Gastric Cancer with Peritoneal Metastases (CYTO-CHIP Study): A Propensity Score Analysis. J. Clin. Oncol. 2019, 37, 2028–2040. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, P.; Wen, Y.; Li, K.; Bi, B.; Li, B.-B.; Qiu, M.; Zhang, S.; Li, Y.; Li, J.; et al. Metal-Enriched HSP90 Nanoinhibitor Overcomes Heat Resistance in Hyperthermic Intraperitoneal Chemotherapy Used for Peritoneal Metastases. Mol. Cancer 2023, 22, 95. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, Z.; Li, C.; Huang, H.; Ren, Y.; Li, Z.; Hu, Y.; Guo, W. Manganese-Containing Polydopamine Nanoparticles as Theranostic Agents for Magnetic Resonance Imaging and Photothermal/Chemodynamic Combined Ferroptosis Therapy Treating Gastric Cancer. Drug Deliv. 2022, 29, 1201–1211. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, X.; Lu, Y.; Zhu, X.; Zheng, W.; Chen, K.; Liu, S.; Wu, J.; Guan, W. Improved Photodynamic Therapy Based on Glutaminase Blockage via Tumor Membrane Coated CB-839/IR-780 Nanoparticles. Small 2024, 20, e2305174. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.-Y.; Zhu, L.; Wu, L.-Y.; Liu, H.-R.; Ma, X.-P.; Li, Q.; Wu, M.-D.; Wang, W.-J.; Li, J.; Wu, H.-G. Helicobacter Pylori-Positive Chronic Atrophic Gastritis and Cellular Senescence. Helicobacter 2023, 28, e12944. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Gong, C.; Li, G.; Wei, J.; Wang, T.; Meng, W.; Shi, M.; Wang, Y. Ebselen Suppresses Inflammation Induced by Helicobacter Pylori Lipopolysaccharide via the P38 Mitogen-Activated Protein Kinase Signaling Pathway. Mol. Med. Rep. 2018, 17, 6847–6851. [Google Scholar] [CrossRef]
- Yun, J.; Mullarky, E.; Lu, C.; Bosch, K.N.; Kavalier, A.; Rivera, K.; Roper, J.; Chio, I.I.C.; Giannopoulou, E.G.; Rago, C.; et al. Vitamin C Selectively Kills KRAS and BRAF Mutant Colorectal Cancer Cells by Targeting GAPDH. Science 2015, 350, 1391–1396. [Google Scholar] [CrossRef]
- Swamynathan, M.M.; Kuang, S.; Watrud, K.E.; Doherty, M.R.; Gineste, C.; Mathew, G.; Gong, G.Q.; Cox, H.; Cheng, E.; Reiss, D.; et al. Dietary Pro-Oxidant Therapy by a Vitamin K Precursor Targets PI 3-Kinase VPS34 Function. Science 2024, 386, eadk9167. [Google Scholar] [CrossRef] [PubMed]
Compounds | Chemical Structures | Targets/Signaling Pathways | Functions | Refs. |
---|---|---|---|---|
Celastrol | Binding to PRDX2 and inhibiting its enzymatic activity; elevating ROS levels | Inducing apoptosis | [30] | |
Triptolide | Binding to PRDX2 and inhibiting its enzymatic activity; elevating ROS levels | Inducing apoptosis and cytoprotective autophagy | [104] | |
Asiaticoside | Downregulating GPX4 expression and suppressing the Wnt/β-catenin pathway; elevating ROS levels | Inducing ferroptosis and inhibiting immune evasion | [105] | |
Quercetin | Binding to SLC1A5, inhibiting NRF2, and downregulating xCT/GPX4; elevating ROS levels | Inducing ferroptosis | [106] | |
8-shogaol | Activating NOX4, elevating ROS levels, and inducing ER stress | Inducing apoptosis and overcoming radioresistance | [107] | |
Dehydrocurvularin | Elevating ROS levels, activating PARP-1, and triggering the nucleus translocation of AIF | Inducing apoptosis | [108] | |
Ginsenoside Rg5 | Elevating ROS levels and activating p38 signaling | Inducing apoptosis | [109] | |
Licochalcone A | Elevating ROS levels and activating p38 signaling | Inducing apoptosis | [110] | |
Calycosin | Elevating ROS levels, inhibiting STAT3/NF-κB pathway, and activating p38 signaling | Inducing apoptosis | [111] | |
Oleocanthal | Elevating ROS levels and activating p53 signaling | Suppressing cell cycle and proliferation, sensitizing chemotherapy | [112] | |
Magnoflorine | Elevating ROS levels and inhibiting Akt and JNK signaling pathways | Inducing autophagic cell death | [113] | |
Galangin | Inhibiting STAT3 pathway, elevating ROS levels, and decreasing NRF2 and NQO-1 expression | Inducing apoptosis and inhibiting proliferation | [114] | |
Ginkgolic acid | Elevating ROS levels and inhibiting the STAT3/JAK2 signaling pathway | Inducing apoptosis | [115] | |
Helichrysetin | Elevating ROS levels and inhibiting the c-Myc/PDHK1 axis | Inhibiting glycolysis and cell growth | [117] | |
Isoliquiritigenin | Elevating ROS levels, inhibiting GLUT4 expression, and blocking the PDHK1/PGC-1α axis | Inhibiting glycolysis and cell growth | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Fan, J.; Chen, X.; Yang, K.; Wang, K. Oxidative Stress and Redox Signaling in Gastric Cancer: From Mechanisms to Therapeutic Implications. Antioxidants 2025, 14, 258. https://doi.org/10.3390/antiox14030258
Chen Z, Fan J, Chen X, Yang K, Wang K. Oxidative Stress and Redox Signaling in Gastric Cancer: From Mechanisms to Therapeutic Implications. Antioxidants. 2025; 14(3):258. https://doi.org/10.3390/antiox14030258
Chicago/Turabian StyleChen, Zehua, Jiawu Fan, Xiaolong Chen, Kun Yang, and Kui Wang. 2025. "Oxidative Stress and Redox Signaling in Gastric Cancer: From Mechanisms to Therapeutic Implications" Antioxidants 14, no. 3: 258. https://doi.org/10.3390/antiox14030258
APA StyleChen, Z., Fan, J., Chen, X., Yang, K., & Wang, K. (2025). Oxidative Stress and Redox Signaling in Gastric Cancer: From Mechanisms to Therapeutic Implications. Antioxidants, 14(3), 258. https://doi.org/10.3390/antiox14030258