Potential of Curcumin and Its Analogs in Glioblastoma Therapy
Abstract
:1. Introduction
2. Curcumin
Toxicity
3. Mechanism of Action in Glioblastoma
3.1. Oxidative Stress
3.2. Pl3K/Akt
3.3. NF-κB
3.4. JAK/STAT
3.5. P53
3.6. MAPK
3.7. Shh
3.8. Radiosensitization
Target | Treatment | References |
---|---|---|
Oxidative stress | curcumin | [78,80,82,83,85] |
curcumin + blue light | [79] | |
curcumin + homocysteine | [81] | |
curcumin + temozolomide | [84] | |
bisdemethoxycurcumin | [85] | |
demethoxycurcumin | [85] | |
dimethoxycurcumin | [85] | |
Pl3K/Akt | curcumin | [88,89] |
curcumin + AZD5363, AZD8542, resveratrol | [90] | |
bisdemethoxycurcumin (BDMC) | [92] | |
demethoxycurcumin (DMC) | [91] | |
NF-κB | bisdemethoxycurcumin (BDMC) | [92] |
JAK/STAT | curcumin | [98] |
p53 | curcumin | [100,101,102,103] |
PGV-1 (pentagamavunone-1) | [100] | |
CCA-1.1 (chemoprevention-curcumin analog-1.1) | [100] | |
MAPK | curcumin | [104] |
bisdemethoxycurcumin (BDMC) | [92] | |
demethoxycurcumin (DMC) | [91] | |
Shh | curcumin | [105,106] |
curcumin + AZD5363, AZD8542, resveratrol | [90] | |
Radiosensitization | curcumin | [77,108,109,110,111,112,113] |
4. Curcumin vs. Analogs
5. Novel Delivery Systems
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torp, S.H.; Solheim, O.; Skjulsvik, A.J. The WHO 2021 Classification of Central Nervous System Tumours: A Practical Update on What Neurosurgeons Need to Know—A Minireview. Acta Neurochir. 2022, 164, 2453–2464. [Google Scholar] [CrossRef] [PubMed]
- Price, M.; Pittman Ballard, C.A.; Benedetti, J.; Neff, C.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S.; Ostrom, Q.T. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2017–2021. Neuro-Oncol. 2024, 26, vi1–vi85. [Google Scholar] [CrossRef] [PubMed]
- Lan, Z.; Li, X.; Zhang, X. Glioblastoma: An Update in Pathology, Molecular Mechanisms and Biomarkers. Int. J. Mol. Sci. 2024, 25, 3040. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.D.; Ostrom, Q.T.; Kruchko, C.; Patil, N.; Tihan, T.; Cioffi, G.; Fuchs, H.E.; Waite, K.; Jemal, A.; Siegel, R.L.; et al. Brain and Other Central Nervous System Tumor Statistics, 2021. CA A Cancer J. Clin. 2021, 71, 381–406. [Google Scholar] [CrossRef]
- Sejda, A.; Grajkowska, W.; Trubicka, J.; Szutowicz, E.; Wojdacz, T.K.; Kloc, W.; Izycka-Swieszewska, E. WHO CNS5 2021 Classification of Gliomas: A Practical Review and Road Signs for Diagnosing Pathologists and Proper Patho-Clinical and Neuro-Oncological Cooperation. Folia Neuropathol. 2022, 60, 137–152. [Google Scholar] [CrossRef]
- Bijalwan, G.; Shrivastav, A.K.; Mallik, S.; Dubey, M.K. Glioblastoma Multiforme—A Rare Type of Cancer: A Narrative Review. Cancer Res. Stat. Treat. 2024, 7, 340–351. [Google Scholar] [CrossRef]
- Bruhn, H.; Tavelin, B.; Rosenlund, L.; Henriksson, R. Do Presenting Symptoms Predict Treatment Decisions and Survival in Glioblastoma? -Real World Data from 1458 Patients in the Swedish Brain Tumour Registry. Neuro-Oncol. Pract. 2024, 25, ii25. [Google Scholar] [CrossRef]
- Sekely, A.; Bernstein, L.J.; Campbell, K.L.; Mason, W.P.; Laperriere, N.; Kalidindi, N.; Or, R.; Ramos, R.; Climans, S.A.; Pond, G.R.; et al. Neurocognitive Impairment, Neurobehavioral Symptoms, Fatigue, Sleep Disturbance, and Depressive Symptoms in Patients with Newly Diagnosed Glioblastoma. Neuro-Oncol. Pract. 2022, 10, 89–96. [Google Scholar] [CrossRef]
- Bruhn, H.; Rosenlund, L.; Tavelin, B.; Henriksson, R. Os13.7.a Onset Symptoms Predict Survival in Glioblastoma Patients-Real World Data from 1719 Patients in the Swedish Brain Tumour Registry 2018–2021. Neuro-Oncol. 2023, 25, ii25. [Google Scholar] [CrossRef]
- Mrowczynski, O.D.; Yang, A.L.; Liao, J.; Rizk, E. The Potential of Glioblastoma Patient Symptoms to Diagnose and Predict Survival. Cureus 2021, 13, e16675. [Google Scholar] [CrossRef]
- Bian, Y.L.; Wang, Y.; Chen, X.; Zhang, Y.; Xiong, S.; Su, D. Image-guided Diagnosis and Treatment of Glioblastoma. VIEW 2023, 4, 20220069. [Google Scholar] [CrossRef]
- Alipourfard, I.; Alivirdiloo, V.; Hashemi, S.B.; Yazdani, Y.; Ghazi, F.; Eslami, M.; Ameri Shah Reza, M.; Dadashpour, M. Recent Advances in the Detection of Glioblastoma, from Imaging-Based Methods to Proteomics and Biosensors: A Narrative Review. Cancer Cell Int. 2023, 23, 1–12. [Google Scholar] [CrossRef]
- Aldecoa, I.; Archilla, I.; Ribalta, T. Practice guidelines for the diagnosis of glioblastoma. In New Insights Into Glioblastoma; Academic Press: Cambridge, MA, USA, 2023; pp. 11–32. [Google Scholar] [CrossRef]
- Seyhan, A.A. Circulating Liquid Biopsy Biomarkers in Glioblastoma: Advances and Challenges. Int. J. Mol. Sci. 2024, 25, 7974. [Google Scholar] [CrossRef]
- Linhares, P.; Carvalho, B.; Vaz, R.; Costa, B.M. Glioblastoma: Is There Any Blood Biomarker with True Clinical Relevance? Int. J. Mol. Sci. 2020, 21, 5809. [Google Scholar] [CrossRef]
- Nag, A.; Sachithanandam, S.V.; Lucke-Wold, B. Predictive and Prognostic Significance of Molecular Biomarkers in Glioblastoma. Biomedicines 2024, 12, 2664. [Google Scholar] [CrossRef]
- Yıldırım, Ö.; Önay Uçar, E. The Molecular Landscape of Glioblastoma: Implications for Diagnosis and Therapy. Eur. J. Biol. 2024, 83, 232–246. [Google Scholar] [CrossRef]
- Świątek, W.; Kłodziński, O.; Ciesielski, M.; Adamkiewicz, Z.; Podolak, M.; Mozdziak, P.; Kranc, W. Glioblastoma: A Molecular Insight into Current Discoveries and Treatment Directions. Med. J. Cell Biol. 2024, 12, 1–20. [Google Scholar] [CrossRef]
- Rabah, N.; Ait Mohand, F.-E.; Kravchenko-Balasha, N. Understanding Glioblastoma Signaling, Heterogeneity, Invasiveness, and Drug Delivery Barriers. Int. J. Mol. Sci. 2023, 18, 14256. [Google Scholar] [CrossRef]
- Obrador, E.; Moreno-Murciano, P.; Oriol-Caballo, M.; López-Blanch, R.; Pineda, B.; Gutiérrez-Arroyo, J.L.; Loras, A.; Gonzalez-Bonet, L.G.; Martinez-Cadenas, C.; Estrela, J.M.; et al. Glioblastoma Therapy: Past, Present and Future. Int. J. Mol. Sci. 2024, 25, 2529. [Google Scholar] [CrossRef]
- Thakur, A.; Faujdar, C.; Sharma, R.; Sharma, S.; Malik, B.; Nepali, K.; Liou, J.P. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J. Med. Chem. 2022, 65, 8596–8685. [Google Scholar] [CrossRef]
- Polonara, G.; Aiudi, D.; Iacoangeli, A.; Raggi, A.; Ottaviani, M.M.; Antonini, R.; Iacoangeli, M.; Dobran, M. Glioblastoma: A Retrospective Analysis of the Role of the Maximal Surgical Resection on Overall Survival and Progression Free Survival. Adv. Cardiovasc. Dis. 2023, 11, 739. [Google Scholar] [CrossRef] [PubMed]
- Ishaque, A.; Das, S. Cutting Through History: The Evolution of Glioblastoma Surgery. Curr. Oncol. 2024, 31, 6568–6576. [Google Scholar] [CrossRef] [PubMed]
- Shah, S. Novel Therapies in Glioblastoma Treatment: Review of Glioblastoma; Current Treatment Options; and Novel Oncolytic Viral Therapies. Med. Sci. 2024, 12, 1. [Google Scholar] [CrossRef]
- Aziz, P.A.; Memon, S.; Al Mubarak, H.M.; Memon, A.S.; Abbas, K.; Qazi, S.U.; Memon, R.A.; Qambrani, K.A.; Taj, O.; Ghazanfar, S.; et al. Surg-10. Supratotal Resection: An Emerging Concept of Glioblastoma Multiforme Surgery—Systematic Review and Meta-Analysis. Neuro-Oncol. 2024, 26, viii275–viii276. [Google Scholar] [CrossRef]
- Patel, V.; Chavda, V. Intraoperative Glioblastoma Surgery-Current Challenges and Clinical Trials: An Update. Cancer Pathog. Ther. 2023, 2, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Osawa, S.; Fujita, S.; Tsuchiya, T.; Yanagisawa, S.; Ohno, M.; Takahashi, M.; Narita, Y. 10115-Stmo-4 Surgical Outcomes of Awake Surgery for Glioblastoma. Neuro-Oncol. Adv. 2023, 5, v13. [Google Scholar] [CrossRef]
- Li, N.; Hao, S.; Cao, X.; Lin, Y.; Li, Y.; Dai, T.; Liu, M. Significance of Radiation Therapy in Frontal Glioblastoma Patients and Exploration of Optimal Treatment Modality: A Real-World Multiple-Center Study Based on Propensity Score Matching. Quant. Imaging Med. Surg. 2024, 14, 7576–7586. [Google Scholar] [CrossRef]
- Jing, B.; Sun, R.; Pan, Z.; Wei, S. Current Chemotherapy Strategies for Adults with IDH-Wildtype Glioblastoma. Front. Oncol. 2024, 14, 1438905. [Google Scholar] [CrossRef]
- Hoosemans, L.; Vooijs, M.A.; Hoeben, A. Opportunities and Challenges of Small Molecule Inhibitors in Glioblastoma Treatment: Lessons Learned from Clinical Trials. Cancers 2024, 16, 3021. [Google Scholar] [CrossRef]
- Duan, M.; Cao, R.; Yang, Y.; Chen, X.; Liu, L.; Ren, B.; Wang, L.; Goh, B.-C. Blood–Brain Barrier Conquest in Glioblastoma Nanomedicine: Strategies, Clinical Advances, and Emerging Challenges. Cancers 2024, 16, 3300. [Google Scholar] [CrossRef]
- Shah, S.; Mansour, H.M.; Aguilar, T.M.; Lucke-Wold, B. Advances in Anti-Cancer Drug Development: Metformin as Anti-Angiogenic Supplemental Treatment for Glioblastoma. Int. J. Mol. Sci. 2024, 11, 5694. [Google Scholar] [CrossRef]
- Farooq, M.; Scalia, G.; Umana, G.E.; Parekh, U.A.; Naeem, F.; Abid, S.F.; Khan, M.H.; Zahra, S.G.; Sarkar, H.P.; Chaurasia, B. A Systematic Review of Nanomedicine in Glioblastoma Treatment: Clinical Efficacy, Safety, and Future Directions. Brain Sci. 2023, 13, 1727. [Google Scholar] [CrossRef]
- Persano, F.; Gigli, G.; Leporatti, S. Natural Compounds as Promising Adjuvant Agents in The Treatment of Gliomas. Int. J. Mol. Sci. 2022, 23, 3360. [Google Scholar] [CrossRef] [PubMed]
- Valerius, A.R.; Webb, L.M.; Thomsen, A.; Lehrer, E.J.; Breen, W.G.; Campian, J.L.; Riviere-Cazaux, C.; Burns, T.C.; Sener, U. Review of Novel Surgical, Radiation, and Systemic Therapies and Clinical Trials in Glioblastoma. Int. J. Mol. Sci. 2024, 25, 10570. [Google Scholar] [CrossRef] [PubMed]
- Belue, M.J.; Harmon, S.A.; Chappidi, S.; Zhuge, Y.; Taşçı, E.; Jagasia, S.; Joyce, T.; Camphausen, K.; Türkbey, B.; Krauze, A. Diagnosing Progression in Glioblastoma—Tackling a Neuro-Oncology Problem Using Artificial-Intelligence-Derived Volumetric Change over Time on Magnetic Resonance Imaging to Examine Progression-Free Survival in Glioblastoma. Diagnostics 2024, 14, 1374. [Google Scholar] [CrossRef]
- Dhanavath, N.; Bisht, P.; Jamadade, M.S.; Murti, K.; Wal, P.; Kumar, N. Olaparib: A Chemosensitizer for the Treatment of Glioblastoma. Mini Rev. Med. Chem. 2024, 25, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wu, D.; Chen, Z. Mechanical Nanosurgery Approach: Assistance to Overcome the Chemotherapy Resistance of Glioblastoma. MedComm 2023, 4, e373. [Google Scholar] [CrossRef]
- Sadowski, K.; Jażdżewska, A.; Kozłowski, J.; Zacny, A.; Lorenc, T.; Olejarz, W. Revolutionizing Glioblastoma Treatment: A Comprehensive Overview of Modern Therapeutic Approaches. Int. J. Mol. Sci. 2024, 25, 5774. [Google Scholar] [CrossRef]
- Kaur, K.; Al-Khazaleh, A.K.; Bhuyan, D.J.; Li, F.; Li, C.G. A Review of Recent Curcumin Analogues and Their Antioxidant, Anti-Inflammatory, and Anticancer Activities. Antioxidants 2024, 13, 1092. [Google Scholar] [CrossRef]
- Gupta, B.; Sharma, P.K.; Malviya, R.; Mishra, P.S. Curcumin and Curcumin Derivatives for Therapeutic Applications: In Vitro and In Vivo Studies. Curr. Nutr. Food Sci. 2024, 20, 1189–1204. [Google Scholar] [CrossRef]
- Pandey, P.O.; Ali, B.; Mishra, A. Curcumin: A Pharmacologically Functional Active Ingredient from Nature. Int. J. Adv. Acad. Stud. 2022, 4, 6–11. [Google Scholar] [CrossRef]
- Buniowska-Olejnik, M.; Mykhalevych, A.; Urbański, J.; Berthold-Pluta, A.; Michałowska, D.; Banach, M. The Potential of Using Curcumin in Dairy and Milk-Based Products—A Review. J. Food Sci. 2024, 89, 5245–5254. [Google Scholar] [CrossRef]
- Singh, A.; Soni, U.; Varadwaj, P.K.; Misra, K.; Rizvi, S.I. Anti-Inflammatory Effect of Curcumin in an Accelerated Senescence Model of Wistar Rat: An in Vivo and in-Silico Study. J. Biomol. Struct. Dyn. 2023, 43, 1459–1470. [Google Scholar] [CrossRef]
- Rapti, E.; Adamantidi, T.; Efthymiopoulos, P.; Kyzas, G.Z.; Τσούπρας, A. Potential Applications of the Anti-Inflammatory, Antithrombotic and Antioxidant Health-Promoting Properties of Curcumin: A Critical Review. Nutraceuticals 2024, 4, 562–595. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, L.; Du, S.; Wang, K.; Liu, S. Antioxidant Curcumin Induces Oxidative Stress to Kill Tumor Cells (Review). Oncol. Lett. 2023, 27, 1–12. [Google Scholar] [CrossRef]
- Roman, B.; Retajczyk, M.; Sałaciński, Ł.; Pełech, R. Curcumin-Properties, Applications and Modification of Structure. Mini-Rev. Org. Chem. 2020, 17, 486–495. [Google Scholar] [CrossRef]
- Urosevic, M.; Nikolić, L.; Savic Gajic, I.M.; Nikolić, V.; Dinić, A.; Miljković, V. Curcumin: Biological Activities and Modern Pharmaceutical Forms. Antibiotics 2022, 11, 135. [Google Scholar] [CrossRef]
- Osifová, Z.; Reiberger, R.; Císařová, I.; Machara, A.; Dračínský, M. Diketo-Ketoenol Tautomers in Curcuminoids: Synthesis, Separation of Tautomers, and Kinetic and Structural Studies. J. Org. Chem. 2022, 87, 10309–10318. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, P.; Dutta, S.; Chakraborty, T. Tautomers and Rotamers of Curcumin: A Combined UV Spectroscopy, High-Performance Liquid Chromatography, Ion Mobility Mass Spectrometry, and Electronic Structure Theory Study. J. Phys. Chem. A 2022, 126, 1591–1604. [Google Scholar] [CrossRef]
- Heger, M.; van Golen, R.F.; Broekgaarden, M.; Michel, M.C. The Molecular Basis for the Pharmacokinetics and Pharmacodynamics of Curcumin and Its Metabolites in Relation to Cancer. Pharmacol. Rev. 2014, 66, 222–307. [Google Scholar] [CrossRef]
- Hatamipour, M.; Johnston, T.P.; Sahebkar, A. One Molecule, Many Targets and Numerous Effects: The Pleiotropy of Curcumin Lies in Its Chemical Structure. Curr. Pharm. Des. 2018, 24, 2129–2136. [Google Scholar] [CrossRef]
- da Silva Lopes, L.; Pereira, S.K.S.; Lima, L.K.F. Pharmacokinetics and Pharmacodynamics of Curcumin. In Curcumin and Neurodegenerative Diseases; Rai, M., Feitosa, C.M., Eds.; Springer: Singapore, 2023; p. 3. [Google Scholar] [CrossRef]
- Niwa, T.; Yokoyama, S.; Mochizuki, M.; Osawa, T. Curcumin Metabolism by Human Intestinal Bacteria in Vitro. J. Funct. Foods 2019, 61, 103463. [Google Scholar] [CrossRef]
- Shi, M.; Gao, T.; Zhang, T.; Han, H. Characterization of Curcumin Metabolites in Rats by Ultra-High-Performance Liquid Chromatography with Electrospray Ionization Quadrupole Time-of-Flight Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2019, 33, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Hassaninasab, A.; Hashimoto, Y.; Tomita-Yokotani, K.; Kobayashi, M. Discovery of the Curcumin Metabolic Pathway Involving a Unique Enzyme in an Intestinal Microorganism. Proc. Natl. Acad. Sci. USA 2011, 108, 6615–6620. [Google Scholar] [CrossRef] [PubMed]
- Bresciani, L.; Favari, C.; Calani, L.; Francinelli, V.; Riva, A.; Petrangolini, G.; Allegrini, P.; Mena, P.; Del Rio, D. The Effect of Formulation of Curcuminoids on Their Metabolism by Human Colonic Microbiota. Molecules 2020, 25, 940. [Google Scholar] [CrossRef]
- Jithavech, P.; Ratnatilaka Na Bhuket, P.; Supasena, W.; Qiu, G.; Ye, S.; Wu, J.; Wong, T.W.; Rojsitthisak, P. In Vitro Hepatic Metabolism of Curcumin Diethyl Disuccinate by Liver S9 from Different Animal Species. Front. Pharmacol. 2020, 11, 577998. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Kim, M.S. The Protective Effects of Curcumin on Metabolic Syndrome and Its Components: In-Silico Analysis for Genes, Transcription Factors, and microRNAs Involved. Arch. Biochem. Biophys. 2022, 727, 109326. [Google Scholar] [CrossRef] [PubMed]
- Adiwidjaja, J.; Boddy, A.V.; McLachlan, A.J. Physiologically-Based Pharmacokinetic Predictions of the Effect of Curcumin on Metabolism of Imatinib and Bosutinib: In Vitro and In Vivo Disconnect. Pharm. Res. 2020, 37, 128. [Google Scholar] [CrossRef]
- Zahra, M.; Hadi, F.; Maqbool, T.; Sultana, H.; Abid, F.; Aslam, M.A.; Ahmad, M.; Muhammad, S.; Hassan, M.Q.U. Curcumin (Turmeric): A Carcinogenic, Miscarriage and Cirrhosis Causing Agent. J. Health Rehabil. Res. 2024, 4, 1738–1743. [Google Scholar] [CrossRef]
- Ardana, T.; Yuandani, Y.; Satria, D.; Putra, E.D.L.; Muhammad, M.; Rosidah, R. Acute Toxicity Evaluation of Curcuma Domestica Vahl. Rhizome Vco Curcuminoid Extract. Int. J. Appl. Pharm. 2024, 16, 44–51. [Google Scholar] [CrossRef]
- Mulyani, Y.; Hasimun, P.; Nurjanah, S. Subcrhonic Toxicity of Curcuma Longa (Tumeric) Rhizoma Extract on Rats. Maj. Obat Tradis. 2022, 27, 111. [Google Scholar] [CrossRef]
- Hamdy, S.; Elshopakey, G.E.; Risha, E.; Rezk, S.; Ateya, A.; Abdelhamid, F.M. Curcumin Mitigates Gentamicin Induced-Renal and Cardiac Toxicity via Modulation of Keap1/Nrf2, NF-κB/iNOS and Bcl-2/BAX Pathways. Food Chem. Toxicol. 2023, 183, 114323. [Google Scholar] [CrossRef] [PubMed]
- Radwan, A.M.; Karhib, M.M.; Tousson, E. Curcumin Alleviates Thioacetamide-Induced Kidney Toxicity in Rats: Enhancing Antioxidant System, and Attenuating Oxidative Stress, DNA Damage, and Inflammation. Biomed. Pharmacol. J. 2023, 16, 441–450. [Google Scholar] [CrossRef]
- Jafari-Nozad, A.M.; Jafari, A.M.; Aschner, M.; Farkhondeh, T.; Samarghandian, S. Curcumin Combats Against Organophosphate Pesticides Toxicity: A Review of the Current Evidence and Molecular Pathways. Curr. Med. Chem. 2022, 30, 2312–2339. [Google Scholar] [CrossRef]
- Ghoreyshi, N.; Ghahremanloo, A.; Javid, H.; Homayouni Tabrizi, M.; Hashemy, S.I. Effect of Folic Acid-Linked Chitosan-Coated PLGA-Based Curcumin Nanoparticles on the Redox System of Glioblastoma Cancer Cells. Phytochem. Anal. 2023, 34, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Lambring, C.B.; Chen, L.; Nelson, C.; Stevens, A.; Bratcher, W.; Basha, R. Oxidative Stress and Cancer: Harnessing the Therapeutic Potential of Curcumin and Analogues Against Cancer. Eur. J. Biol. 2023, 82, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Trotta, T.; Panaro, M.A.; Prifti, E.; Porro, C. Modulation of Biological Activities in Glioblastoma Mediated by Curcumin. Nutr. Cancer 2019, 71, 1241–1253. [Google Scholar] [CrossRef]
- Wei, Y.; Li, H.; Li, Y.; Yu, Z.; Quan, T.P.; Leng, Y.; Chang, E.; Bai, Y.; Bian, Y.; Hou, Y. Advances of Curcumin in Nervous System Diseases: The Effect of Regulating Oxidative Stress and Clinical Studies. Front. Pharmacol. 2024, 15, 1496661. [Google Scholar] [CrossRef]
- Rinaldi, M.; Caffo, M.; Minutoli, L.; Marini, H.; Abbritti, R.V.; Squadrito, F.; Trichilo, V.; Valenti, A.; Barresi, V.; Altavilla, D.; et al. ROS and Brain Gliomas: An Overview of Potential and Innovative Therapeutic Strategies. Int. J. Mol. Sci. 2016, 17, 984. [Google Scholar] [CrossRef]
- Snezhkina, A.V.; Kudryavtseva, A.V.; Kardymon, O.L.; Savvateeva, M.V.; Melnikova, N.V.; Krasnov, G.S.; Dmitriev, A.A. ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. Oxidative Med. Cell. Longev. 2019, 2019, 6175804. [Google Scholar] [CrossRef]
- Godoy, P.R.D.V.; Godoy, P.R.D.V.; Pour Khavari, A.; Rizzo, M.; Sakamoto-Hojo, E.T.; Haghdoost, S.; Haghdoost, S. Targeting NRF2, Regulator of Antioxidant System, to Sensitize Glioblastoma Neurosphere Cells to Radiation-Induced Oxidative Stress. Oxidative Med. Cell. Longev. 2020, 2020, 2534643. [Google Scholar] [CrossRef] [PubMed]
- Orlicka-Płocka, M.; Fedoruk-Wyszomirska, A.; Gurda-Woźna, D.; Pawelczak, P.; Krawczyk, P.A.; Giel-Pietraszuk, M.; Framski, G.; Ostrowski, T.; Wyszko, E. Implications of Oxidative Stress in Glioblastoma Multiforme Following Treatment with Purine Derivatives. Antioxidants 2021, 10, 950. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z. Increased Oxidative Stress as a Selective Anticancer Therapy. Oxidative Med. Cell. Longev. 2015, 2015, 294303. [Google Scholar] [CrossRef] [PubMed]
- Krawczynski, K.; Krawczynski, K.; Godlewski, J.; Godlewski, J.; Bronisz, A.; Bronisz, A. Oxidative Stress-Part of the Solution or Part of the Problem in the Hypoxic Environment of a Brain Tumor. Antioxidants 2020, 9, 747. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Jung, C.-W.; Lee, W.; Kim, H.J.; Jeong, H.J.; Park, M.-J.; Jang, W.I.; Kim, E.H. Interaction of Curcumin with Glioblastoma Cells via High and Low Linear Energy Transfer Radiation Therapy Inducing Radiosensitization Effects. J. Radiat. Res. 2022, 63, 342–353. [Google Scholar] [CrossRef]
- Seyithanoglu, M.H.; Abdallah, A.; Kitiş, S.; Guler, E.M.; Kocyigit, A.; Dundar, T.T.; Papaker, M.G. Investigation of Cytotoxic, Genotoxic, and Apoptotic Effects of Curcumin on Glioma Cells. Cell. Mol. Biol. 2019, 65, 101–108. [Google Scholar] [CrossRef]
- Alkahtani, S.; AL-Johani, N.S.; Alarifi, S.; Afzal, M. Cytotoxicity Mechanisms of Blue-Light-Activated Curcumin in T98G Cell Line: Inducing Apoptosis through ROS-Dependent Downregulation of MMP Pathways. Int. J. Mol. Sci. 2023, 24, 3842. [Google Scholar] [CrossRef]
- Öz, A.; Çelik, Ö.; Övey, İ.S. Effects of Different Doses of Curcumin on Apoptosis, Mitochondrial Oxidative Stress and Calcium Ion Influx in DBRG Glioblastoma Cells. J. Cell. Neurosci. Oxidative Stress 2017, 9, 617–629. [Google Scholar] [CrossRef]
- Agca, C.A. Homocysteine-Induced Damage of Cultured Glioblastoma Cells: Amelioration by Curcumin. Neurophysiology 2019, 51, 416–423. [Google Scholar] [CrossRef]
- Gersey, Z.C.; Rodriguez, G.A.; Barbarite, E.; Sanchez, A.; Walters, W.M.; Ohaeto, K.C.; Komotar, R.J.; Graham, R.M. Curcumin Decreases Malignant Characteristics of Glioblastoma Stem Cells via Induction of Reactive Oxygen Species. BMC Cancer 2017, 17, 99. [Google Scholar] [CrossRef]
- Cholia, R.P.; Kumari, S.; Kumar, S.; Kaur, M.; Kaur, M.; Kumar, R.; Dhiman, M.; Mantha, A.K. An in Vitro Study Ascertaining the Role of H2O2 and Glucose Oxidase in Modulation of Antioxidant Potential and Cancer Cell Survival Mechanisms in Glioblastoma U-87 MG Cells. Metab. Brain Dis. 2017, 32, 1705–1716. [Google Scholar] [CrossRef]
- Yin, H.; Zhou, Y.; Wen, C.; Zhou, C.; Zhang, W.; Hu, X.; Wang, L.; You, C.; Shao, J. Curcumin Sensitizes Glioblastoma to Temozolomide by Simultaneously Generating ROS and Disrupting AKT/mTOR Signaling. Oncol. Rep. 2014, 32, 1610–1616. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.-M.; Wu, Y.-P.; Huang, L.-C.; Huang, S.-M.; Hueng, D.-Y. The Anti-Cancer Effect of Four Curcumin Analogues on Human Glioma Cells. OncoTargets Ther. 2021, 14, 4345–4359. [Google Scholar] [CrossRef]
- Wong, S.C.; Kamarudin, M.N.A.; Naidu, R. Anticancer Mechanism of Curcumin on Human Glioblastoma. Nutrients 2021, 13, 950. [Google Scholar] [CrossRef] [PubMed]
- Zoi, V.; Kyritsis, A.P.; Galani, V.; Lazari, D.; Sioka, C.; Voulgaris, S.; Alexiou, G.A. The Role of Curcumin in Cancer: A Focus on the PI3K/Akt Pathway. Cancers 2024, 16, 1554. [Google Scholar] [CrossRef]
- Aoki, H.; Takada, Y.; Kondo, S.; Kondo, S.; Kondo, S.; Sawaya, R.; Aggarwal, B.B.; Kondo, Y. Evidence That Curcumin Suppresses the Growth of Malignant Gliomas in Vitro and in Vivo through Induction of Autophagy: Role of Akt and Extracellular Signal-Regulated Kinase Signaling Pathways. Mol. Pharmacol. 2007, 72, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Bonafé, G.A.; Boschiero, M.N.; Sodré, A.R.; Ziegler, J.; Rocha, T.; Ortega, M.M. Natural Plant Compounds: Does Caffeine, Dipotassium Glycyrrhizinate, Curcumin, and Euphol Play Roles as Antitumoral Compounds in Glioblastoma Cell Lines? Front. Neurol. 2022, 12, 784330. [Google Scholar] [CrossRef]
- Mejía-Rodríguez, R.; Romero-Trejo, D.; González, R.O.; Segovia, J.C. Combined Treatments with AZD5363, AZD8542, Curcumin or Resveratrol Induce Death of Human Glioblastoma Cells by Suppressing the PI3K/AKT and SHH Signaling Pathways. Biochem. Biophys. Rep. 2023, 33, 101430. [Google Scholar] [CrossRef]
- Su, R.-Y.; Hsueh, S.-C.; Chen, C.Y.; Hsu, M.-J.; Lu, H.-F.; Peng, S.-F.; Chen, P.-Y.; Lien, J.-C.; Chen, Y.-L.; Chueh, F.-S.; et al. Demethoxycurcumin Suppresses Proliferation, Migration, and Invasion of Human Brain Glioblastoma Multiforme GBM 8401 Cells via PI3K/Akt Pathway. Anticancer Res. 2021, 41, 1859–1870. [Google Scholar] [CrossRef]
- Chen, C.-J.; Shang, H.S.; Huang, Y.-L.; Tien, N.; Chen, Y.-L.; Hsu, S.-Y.; Wu, R.S.-C.; Tang, C.-L.; Lien, J.-C.; Lee, M.-H.; et al. Bisdemethoxycurcumin Suppresses Human Brain Glioblastoma Multiforme GBM 8401 Cell Migration and Invasion via Affecting NF-κB and MMP-2 and MMP-9 Signaling Pathway in Vitro. Environ. Toxicol. 2022, 37, 2388–2397. [Google Scholar] [CrossRef]
- Afshari, A.R.; Jalili-Nik, M.; Abbasinezhad-Moud, F.; Javid, H.; Karimi, M.H.; Mollazadeh, H.; Jamialahmadi, T.; Sathyapalan, T.; Sahebkar, A. Anti-Tumor Effects of Curcuminoids in Glioblastoma Multiforme: An Updated Literature Review. Curr. Med. Chem. 2020, 27, 8116–8138. [Google Scholar] [CrossRef]
- Uddin, S.; Kabir, T.; Al Mamun, A.; Sarwar, S.; Nasrin, F.; Nasrin, F.; Bin Emran, T.; Alanazi, I.S.; Rauf, A.; Albadrani, G.M.; et al. Natural Small Molecules Targeting NF-κB Signaling in Glioblastoma. Front. Pharmacol. 2021, 12, 703761. [Google Scholar] [CrossRef] [PubMed]
- Hesari, A.; Rezaei, M.; Rezaei, M.; Dashtiahangar, M.; Fathi, M.; Ganji Rad, J.; Momeni, F.; Avan, A.; Ghasemi, F. Effect of Curcumin on Glioblastoma Cells. J. Cell. Physiol. 2019, 234, 10281–10288. [Google Scholar] [CrossRef] [PubMed]
- Ou, A.; Ott, M.; Fang, D.; Heimberger, A.B. The Role and Therapeutic Targeting of JAK/STAT Signaling in Glioblastoma. Cancers 2021, 13, 437. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Rafiei, H.; Mohammadinejad, R.; Ghasemipour Afshar, E.; Farkhondeh, T.; Samarghandian, S. Potential Therapeutic Effects of Curcumin Mediated by JAK/STAT Signaling Pathway: A Review. Phytother. Res. 2020, 34, 1745–1760. [Google Scholar] [CrossRef]
- Weissenberger, J.; Priester, M.; Bernreuther, C.; Rakel, S.; Glatzel, M.; Seifert, V.; Kögel, D. Dietary Curcumin Attenuates Glioma Growth in a Syngeneic Mouse Model by Inhibition of the JAK1,2/STAT3 Signaling Pathway. Clin. Cancer Res. 2010, 16, 5781–5795. [Google Scholar] [CrossRef]
- Fahmideh, H.; Shapourian, H.; Moltafeti, R.; Tavakol, C.; Forghaniesfidvajani, R.; Zalpoor, H.; Nabi-Afjadi, M. The Role of Natural Products as Inhibitors of JAK/STAT Signaling Pathways in Glioblastoma Treatment. Oxidative Med. Cell. Longev. 2022, 2022, 7838583. [Google Scholar] [CrossRef]
- Hermawan, A.; Wulandari, F.; Hanif, N.; Utomo, R.Y.; Jenie, R.I.; Ikawati, M.; Tafrihani, A.S. Identification of Potential Targets of the Curcumin Analog CCA-1.1 for Glioblastoma Treatment: Integrated Computational Analysis and in Vitro Study. Dent. Sci. Rep. 2022, 12, 1–20. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, F.; Liao, W.; Yu, L.; Hu, Z.; Li, M.; Xia, H. Curcumin Suppresses Glioblastoma Cell Proliferation by P-AKT/mTOR Pathway and Increases the PTEN Expression. Arch. Biochem. Biophys. 2020, 689, 108412. [Google Scholar] [CrossRef]
- Oak, S.; Karajgikar, O.; Teni, T. Curcumin Mediates Selective Aggregation of Mutant P53 in Cancer Cells: A Promising Therapeutic Strategy. Biochem. Biophys. Res. Commun. 2023, 677, 141–148. [Google Scholar] [CrossRef]
- Garrido-Armas, M.; Corona, J.C.; Escobar, M.L.; Torres, L.; Ordóñez-Romero, F.; Hernández-Hernández, A.; Arenas-Huertero, F. Paraptosis in Human Glioblastoma Cell Line Induced by Curcumin. Toxicol. Vitr. 2018, 51, 63–73. [Google Scholar] [CrossRef]
- Wang, P.; Hao, X.; Li, X.; Yan, Y.; Tian, W.; Xiao, L.; Wang, Z.; Dong, J. Curcumin Inhibits Adverse Psychological Stress-Induced Proliferation and Invasion of Glioma Cells via down-Regulating the ERK/MAPK Pathway. J. Cell. Mol. Med. 2021, 25, 7190–7203. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Feng, Y.; Wang, X.; Piao, X.-Y.; Cui, Y.-Q.; Chen, L.; Lei, X.-H.; Sun, X.; Liu, X.; Wang, H.; et al. Curcumin Suppresses Malignant Glioma Cells Growth and Induces Apoptosis by Inhibition of SHH/GLI1 Signaling Pathway in Vitro and Vivo. CNS Neurosci. Ther. 2013, 19, 926–936. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Du, W.; Wang, F.; Han, B.; Cui, Y.-Q.; Yang, D.; Chen, H.; Liu, D.; Liu, X.; Zhai, X.; et al. MicroRNA-326 Sensitizes Human Glioblastoma Cells to Curcumin via the SHH/GLI1 Signaling Pathway. Cancer Biol. Ther. 2018, 19, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Zoi, V.; Galani, V.; Tsekeris, P.; Kyritsis, A.P.; Alexiou, G.A. Radiosensitization and Radioprotection by Curcumin in Glioblastoma and Other Cancers. Biomedicines 2022, 10, 312. [Google Scholar] [CrossRef]
- Ryskalin, L.; Biagioni, F.; Busceti, C.L.; Lazzeri, G.; Frati, A.; Fornai, F. The Multi-Faceted Effect of Curcumin in Glioblastoma from Rescuing Cell Clearance to Autophagy-Independent Effects. Molecules 2020, 25, 4839. [Google Scholar] [CrossRef]
- Xiu, Z.; Sun, T.; Yang, Y.; He, Y.; Yang, S.; Xue, X.; Yang, W.T. Curcumin Enhanced Ionizing Radiation-Induced Immunogenic Cell Death in Glioma Cells through Endoplasmic Reticulum Stress Signaling Pathways. Oxidative Med. Cell. Longev. 2022, 2022, 5424411. [Google Scholar] [CrossRef]
- Zoi, V.; Galani, V.; Vartholomatos, E.; Zacharopoulou, N.; Tsoumeleka, E.; Gkizas, G.; Bozios, G.; Tsekeris, P.; Chousidis, I.; Leonardos, I.; et al. Curcumin and Radiotherapy Exert Synergistic Anti-Glioma Effect In Vitro. Biomedicines 2021, 9, 1562. [Google Scholar] [CrossRef]
- Ghanbari, B.; Neshasteh Riz, A.; Hormozi Moghaddam, Z.H.M. The Effect of Curcumin in Combination with Radiation Therapy and Hyperthermia for a Glioblastoma Spheroid Model. Internatuinal J. Radiat. Res. 2024, 22, 145–153. [Google Scholar] [CrossRef]
- Wang, W.H.; Shen, C.Y.; Chien, Y.C.; Chang, W.S.; Tsai, C.-W.; Lin, Y.H.; Hwang, J.J. Validation of Enhancing Effects of Curcumin on Radiotherapy with F98/FGT Glioblastoma-Bearing Rat Model. Int. J. Mol. Sci. 2020, 21, 4385. [Google Scholar] [CrossRef]
- Sminia, P.; van den Berg, J.; van Kootwijk, A.; Hageman, E.; Slotman, B.J.; Verbakel, W.F.A.R. Experimental and clinical studies on radiation and curcumin in human glioma. J. Cancer Res. Clin. Oncol. 2021, 147, 403–409. [Google Scholar] [CrossRef]
- Razali, N.S.C.; Lam, K.W.; Rajab, N.F.; Jamal, A.R.A.; Kamaluddin, N.F.; Chan, K.M. Curcumin Piperidone Derivatives Induce Anti-Proliferative and Anti-Migratory Effects in LN-18 Human Glioblastoma Cells. Dent. Sci. Rep. 2022, 12, 4225–4231. [Google Scholar] [CrossRef]
- Inai, K.; Hamabe-Horiike, T.; Ono, M.; Iwashimizu, S.; Ito, R.; Sunagawa, Y.; Katanasaka, Y.; Arakawa, Y.; Hasegawa, K.; Morimoto, T. 10073-Cbms-6 Curcumin Analog b Exhibit Anti-Tumor Activity against Glioblastomaat Lower Concentrations than Curcumin. Neuro-Oncol. Adv. 2023, 5, v8–v9. [Google Scholar] [CrossRef]
- Inai, K.; Hamabe-Horiike, T.; Ono, M.; Iwashimizu, S.; Ito, R.; Sunagawa, Y.; Katanasaka, Y.; Hawke, P.; Arakawa, Y.; Morimoto, T. Dddr-16. Curcumin Analogs Exhibit Anti-Tumor Activity against Glioblastoma at Lower Concentrations than Curcumin. Neuro-Oncol. 2023, 25, v108. [Google Scholar] [CrossRef]
- Piwowarczyk, L.; Mlynarczyk, D.T.; Krajka-Kuźniak, V.; Majchrzak-Celińska, A.; Budzianowska, A.; Tomczak, S.; Budzianowski, J.; Woźniak-Braszak, A.; Pietrzyk, R.; Baranowski, M.; et al. Natural Compounds in Liposomal Nanoformulations of Potential Clinical Application in Glioblastoma. Cancers 2022, 14, 6222. [Google Scholar] [CrossRef] [PubMed]
- Bulnes, S.; Picó-Gallardo, M.; Bengoetxea, H.; Lafuente, J.V. Effects of curcumin nanodelivery on schizophrenia and glioblastoma. Int. Rev. Neurobiol. 2023, 171, 163–203. [Google Scholar] [CrossRef]
- Zhao, C.; Zhu, X.; Tan, J.; Mei, C.; Cai, X.; Kong, F. Lipid-based nanoparticles to address the limitations of GBM therapy by overcoming the blood-brain barrier, targeting glioblastoma stem cells, and counteracting the immunosuppressive tumor microenvironment. Biomed. Pharmacother. 2024, 171, 116113. [Google Scholar] [CrossRef] [PubMed]
- Jnaidi, R.; Almeida, A.J.; Gonçalves, L. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Smart Drug Delivery Systems in the Treatment of Glioblastoma Multiforme. Pharmaceutics 2020, 12, 860. [Google Scholar] [CrossRef]
- Iturrioz-Rodríguez, N.; Bertorelli, R.; Ciofani, G. Lipid-Based Nanocarriers for The Treatment of Glioblastoma. Adv. NanoBiomed Res. 2021, 1, 2000054. [Google Scholar] [CrossRef]
- Keshavarz, R.; Bakhshinejad, B.; Babashah, S.; Baghi, N.; Sadeghizadeh, M. Dendrosomal Nanocurcumin and P53 Overexpression Synergistically Trigger Apoptosis in Glioblastoma Cells. Iran. J. Basic Med. Sci. 2016, 19, 1353–1362. [Google Scholar] [CrossRef]
- Tondro, G.; Rajabzade, G.; Mohammadi, A.; Moradi, H.; Negah, S.S. Anti-Inflammatory Effects of Nano-Curcumin on a Glioblastoma Cell Line. Neurosci. J. Shefaye Khatam 2022, 10, 48–56. [Google Scholar] [CrossRef]
- Bagherian, A.; Mardani, R.; Roudi, B.; Taghizadeh, M.; Banfshe, H.R.; Ghaderi, A.; Davoodvandi, A.; Shamollaghamsari, S.; Hamblin, M.R.; Hamblin, M.R.; et al. Combination Therapy with Nanomicellar-Curcumin and Temozolomide for In Vitro Therapy of Glioblastoma Multiforme via Wnt Signaling Pathways. J. Mol. Neurosci. 2020, 70, 1471–1483. [Google Scholar] [CrossRef]
- He, Y.; Wu, C.; Duan, J.; Miao, J.; Ren, H.; Liu, J. Anti-Glioma Effect with Targeting Therapy Using Folate Modified Nano-Micelles Delivery Curcumin. J. Biomed. Nanotechnol. 2020, 16, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zheng, S.; Zhuang, J.; Chen, S. Curcumin Combining Temozolomide Formed Localized Nanogel for Inhibition of Postsurgical Chemoresistant Glioblastoma. Nanomedicine 2023, 18, 907–921. [Google Scholar] [CrossRef]
- Gallien, J.; Srinageshwar, B.; Gallo, K.; Holtgrefe, G.; Koneru, S.; Otero, P.S.; Bueno, C.A.; Mosher, J.; Roh, A.; Kohtz, D.S.; et al. Curcumin Loaded Dendrimers Specifically Reduce Viability of Glioblastoma Cell Lines. Molecules 2021, 26, 6050. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Xu, J.; He, S.; Pan, X.; Yang, J.; Zhang, N.; Yang, X. Curcumin-loaded Nanoparticle Based on Poloxamer188 for Glioma Treatment: Synthesis, Characterization and in Vitro Evaluation. Polym. Adv. Technol. 2023, 34, 2993–3002. [Google Scholar] [CrossRef]
- Schulze, J.; Schöne, L.; Ayoub, A.M.; Librizzi, D.; Amin, M.U.; Engelhardt, K.; Yousefi, B.H.; Bender, L.; Schaefer, J.; Preis, E.; et al. Modern Photodynamic Glioblastoma Therapy Using Curcumin- or Parietin-Loaded Lipid Nanoparticles in a CAM Model Study. ACS Appl. Bio Mater. 2023, 6, 5502–5514. [Google Scholar] [CrossRef]
- Sahab-Negah, S.; Ariakia, F.; Jalili-Nik, M.; Afshari, A.R.; Salehi, S.; Samini, F.; Rajabzadeh, G.; Gorji, A. Curcumin Loaded in Niosomal Nanoparticles Improved the Anti-Tumor Effects of Free Curcumin on Glioblastoma Stem-like Cells: An In Vitro Study. Mol. Neurobiol. 2020, 57, 3391–3411. [Google Scholar] [CrossRef]
- Tondro, G.; Mohammadi, A.; Rajabzadeh, G.; Moradi, H.R.; Negah, S.S. Niosomal Curcumin Inhibited Gliomagenesis-Related Markers in U87 Cell Line. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Jiang, B.; Yang, Z.; Shi, H.; Jalil, A.T.; Saleh, M.M.; Mi, W.-Y. Potentiation of Curcumin-Loaded Zeolite Y Nanoparticles/PCL-Gelatin Electrospun Nanofibers for Postsurgical Glioblastoma Treatment. J. Drug Deliv. Sci. Technol. 2022, 80, 104105. [Google Scholar] [CrossRef]
- Zhang, H.; van Os, W.L.; Tian, X.; Zu, G.; Ribovski, L.; Bron, R.; Bussmann, J.; Kros, A.; Liu, Y.; Zuhorn, I.S. Development of Curcumin-Loaded Zein Nanoparticles for Transport across the Blood–Brain Barrier and Inhibition of Glioblastoma Cell Growth. Biomater. Sci. 2021, 9, 7092–7103. [Google Scholar] [CrossRef] [PubMed]
- Senturk, F.; Çakmak, S.; Kocum, I.C.; Gümüşderelioğlu, M.; Öztürk, G.G. GRGDS-Conjugated and Curcumin-Loaded Magnetic Polymeric Nanoparticles for the Hyperthermia Treatment of Glioblastoma Cells. Colloids Surf. A Physicochem. Eng. Asp. 2021, 622, 126648. [Google Scholar] [CrossRef]
- Javed, B.; Zhao, X.; Cui, D.; Curtin, J.; Tian, F. Enhanced Anticancer Response of Curcumin- and Piperine-Loaded Lignin-g-p (NIPAM-Co-DMAEMA) Gold Nanogels against U-251 MG Glioblastoma Multiforme. Biomedicines 2021, 9, 1516. [Google Scholar] [CrossRef] [PubMed]
- Arzani, H.; Adabi, M.; Mosafer, J.; Dorkoosh, F.; Khosravani, M.; Maleki, H.; Nekounam, H.; Kamali, M. Preparation of curcumin-loaded PLGA nanoparticles and investigation of its cytotoxicity effects on human glioblastoma U87MG cells. Biointerface Res. Appl. Chem. 2019, 9, 4225–4231. [Google Scholar] [CrossRef]
- Maiti, P.; Plemmons, A.; Dunbar, G.L. Combination Treatment of Berberine and Solid Lipid Curcumin Particles Increased Cell Death and Inhibited PI3K/Akt/mTOR Pathway of Human Cultured Glioblastoma Cells More Effectively than Did Individual Treatments. PLoS ONE 2019, 14, e0225660. [Google Scholar] [CrossRef]
- Maiti, P.; Scott, J.; Sengupta, D.; Al-Gharaibeh, A.; Dunbar, G.L. Curcumin and Solid Lipid Curcumin Particles Induce Autophagy, but Inhibit Mitophagy and the PI3K-Akt/mTOR Pathway in Cultured Glioblastoma Cells. Int. J. Mol. Sci. 2019, 20, 399. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.-H.; Kim, M.J.; Shim, Y.K.; Yoon, I.C.; Lee, W. Solid Lipid Nanoparticles of Curcumin Designed for Enhanced Bioavailability and Anticancer Efficiency. ACS Omega 2022, 7, 35875–35884. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Yu, H.; Chen, M.-H. Glioma-Targeted Multifunctional Nanoparticles to Co-Deliver Camptothecin and Curcumin for Enhanced Chemo-Immunotherapy. Biomater. Sci. 2022, 10, 1292–1303. [Google Scholar] [CrossRef]
Study | Cell Line | Novel Delivery System | Key Findings | References |
---|---|---|---|---|
Keshavarz et al. | U87-MG | Dendrosomal Nanocurcumin + p53 overexpression | -DNC inhibits cell proliferation in a time- and dose-dependent manner. -Combined treatment significantly increases apoptosis (90%) compared to DNC alone (38%) or p53 overexpression alone (15%). -Combined treatment enhances GADD45 expression and reduces NF-κB and c-Myc expression. | [122] |
Tondro et al. | U87 | Nanocurcumin vs. free curcumin | -Both nanocurcumin and free curcumin reduce IL6 and TNF-α secretion. -Nanocurcumin exhibits superior efficacy in inhibiting cytokine production compared to free curcumin. | [123] |
Hesari et al. | GBM cells | Nanomicelle curcumin | -Decreases p65 expression, a key subunit of the NF-κB complex. -Leads to decreased tumor cell proliferation and increased apoptosis. | [95] |
Bagherian et al. | U87 | Curcumin, nanomicellar-curcumin, temozolomide, and combinations | -All treatments (except 20 μM curcumin alone) significantly reduced cell viability. -Curcumin (50 μM), nanomicellar-curcumin, and the combination of nanomicellar-curcumin and TMZ significantly inhibited cell invasion and migration. -Increased levels of autophagy-related proteins (Beclin 1, LC3-I, and LC3-II). -Promoted apoptosis (increased Bcl-2 and caspase 8, decreased Bax). -Downregulated genes associated with the Wnt signaling pathway (β-catenin, cyclin D1, Twist, and ZEB1). | [124] |
He et al. | GL261 | Curcumin/Fa-PEG-PLA nanoparticles | -Superior efficacy in suppressing cell growth compared to free curcumin and Cur/MPEG-PLA. -Enhanced apoptosis induction. -In vivo: repressed tumor growth in subcutaneous and intracranial models by suppressing angiogenesis and promoting apoptosis. | [125] |
Liang et al. | N/A | Cur/TMZ nanogel | -Excellent drug-loading capacity and sustained drug release. -Effectively inhibited the recurrence of TMZ-resistant tumors. -Low drug-induced toxicity. -Maintained Cur/TMZ ratio for consistent synergistic effects. | [126] |
Ghoreyshi et al. | N/A | Curcumin nanoparticles | -Reduced intracellular reactive oxygen species and malondialdehyde levels (reduced oxidative stress). -Increased gene expression and activity of antioxidant enzymes (superoxide dismutase, catalase, glutaredoxin, thioredoxin). | [67] |
Gallien et al. | Mouse, rat (F98), human (U87) | Curcumin-loaded dendrimer (G4 90/10-Cys-Cur) | -Significantly reduced viability of all three glioblastoma cell lines compared to non-cancerous control cells. -Unencapsulated curcumin did not show similar efficacy. | [127] |
Hou et al. | N/A | Curcumin-loaded poloxamer188-based nanoparticles (P188TT NPs) | -Faster curcumin release at pH 6.8 (tumor microenvironment) than at pH 7.4. -Good brain-targeting efficiency. -Enhanced curcumin uptake in glioma cells and increased anti-tumor activity. | [128] |
Schulze et al. | U87 | Curcumin-loaded lipid nanoparticles + photodynamic therapy | -Enhanced photodynamic therapy against glioblastoma in a chorioallantois membrane model. | [129] |
Negah et al. | N/A | Curcumin-loaded niosome nanoparticles | -Enhanced anti-tumor effects against glioblastoma stem-like cells compared to free curcumin. -Significant reduction in cell viability, proliferation, and migration of GSCs. -Higher levels of apoptosis and cell cycle arrest in GSCs. -Increased Bax expression and decreased Bcl2 expression. -Significant increase in reactive oxygen species production in GSCs. -Impaired GSC migration and invasiveness, potentially through MCP-1-mediated pathways. -Reduced secretion of MMP-2. | [130] |
Tondro et al. | U87 MG | Curcumin-loaded niosome nanoparticles vs. free curcumin | -Both CM and CM-NPs reduced cell proliferation, but CM-NPs induced significantly higher levels of apoptosis. -CM-NPs exhibited superior inhibition of cell migration. -Significant increase in reactive oxygen species production with CM-NPs. -CM-NPs downregulated NF-κB and STAT3 expression and reduced IL-1β and TGF-β production. -Increased DNA fragmentation in U87 cells treated with CM-NPs. | [131] |
Jiang et al. | N/A | Curcumin-loaded zeolite Y nanoparticles incorporated into polycaprolactone/gelatin electrospun nanofibers | -Sustained release of curcumin from the nanofibers. -Inhibited glioblastoma cell proliferation in vitro. -Nanofibers were biocompatible. | [132] |
Zhang et al. | C6 | Curcumin-loaded zein nanoparticles functionalized with a G23 peptide (CUR-ZpD-G23 NPs) | -Improved blood–brain barrier penetration and tumor spheroid infiltration. -Enhanced cellular uptake by C6 glioma cells and increased transcytosis across an in vitro BBB model. -Concentration-dependent cytotoxicity in C6 glioma cells, inhibiting cell migration and colony formation. -Increased reactive oxygen species production and induced apoptosis. -Stable circulation of the nanoparticles without aggregation in zebrafish models. | [133] |
Şentürk et al. | N/A | GRGDS-conjugated and curcumin-loaded magnetic polymeric nanoparticles | -Effective targeting of glioblastoma cells. -Combined targeted drug delivery and hyperthermia treatment significantly reduced cancer cell viability. | [134] |
Javed et al. | U-251 MG | Curcumin-loaded lignin-g-p gold nanogels | -Significant anti-cancer activity with an IC50 value of 30 μM. -Apoptosis induction (caspase-3 and cleaved caspase-3 expression). -Controlled release profile (up to 86% curcumin release within 250 min at pH 4). -Enhanced cellular internalization compared to gold nanoparticles or nanogels alone. | [135] |
Arzani et al. | U87MG | Curcumin-loaded poly(lactic-co-glycolic acid) nanoparticles | -Encapsulation efficiency of 89.77% and loading content of 9.06%. -Biphasic release profile (initial burst followed by sustained release). -Amorphous dispersion of curcumin within the nanoparticles. -Higher cytotoxicity than free curcumin (IC50 values of 32.90 μg/mL vs. 57.99 μg/mL after 72 h). | [136] |
Maiti et al. | U-87MG, U-251MG | Solid lipid curcumin particles | -Enhanced bioavailability and anti-cancer effects compared to natural curcumin. -Significant cell death and inhibited proliferation. -Enhanced effects when combined with berberine. -Induced apoptosis (increased DNA fragmentation). -Disrupted mitochondrial function (decreased mitochondrial membrane potential and ATP levels). -Increased reactive oxygen species production. -Inhibited the PI3K/Akt/mTOR signaling pathway. | [137] |
Maiti et al. | U-87MG, GL261, F98 | Solid lipid curcumin particles vs. curcumin | -SLCPs demonstrated superior induction of autophagy markers compared to Cur. -Stronger inhibition of mitophagy markers by SLCPs than Cur in GBM cells. -Both inhibited the PI3K-Akt/mTOR pathway, with SLCPs showing greater potency. -SLCP treatment resulted in a higher number of autophagy vacuoles in U-87MG cells. | [138] |
Yeo et al. | HeLa, A549, CT-26 | Curcumin-loaded solid lipid nanoparticles | -Enhanced cytotoxicity compared to free curcumin. -Particle size varied depending on the lipid used. -Anti-cancer effect dependent on particle size and cell line. | [139] |
Wang et al. | N/A | Co-delivery of curcumin and camptothecin using neurotransmitter analog-modified liposomes | -Downregulated CPT-induced PD-L1 overexpression, preventing T-cell inactivation and improving chemo-immunotherapy efficacy. -Interfered with the indoleamine 2,3-dioxygenase pathway, reducing regulatory T cell-mediated immunosuppression. -Facilitated targeted drug delivery across the blood–brain barrier and mitigated immunosuppression in the glioma microenvironment. | [140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowacka, A.; Ziółkowska, E.; Smuczyński, W.; Bożiłow, D.; Śniegocki, M. Potential of Curcumin and Its Analogs in Glioblastoma Therapy. Antioxidants 2025, 14, 351. https://doi.org/10.3390/antiox14030351
Nowacka A, Ziółkowska E, Smuczyński W, Bożiłow D, Śniegocki M. Potential of Curcumin and Its Analogs in Glioblastoma Therapy. Antioxidants. 2025; 14(3):351. https://doi.org/10.3390/antiox14030351
Chicago/Turabian StyleNowacka, Agnieszka, Ewa Ziółkowska, Wojciech Smuczyński, Dominika Bożiłow, and Maciej Śniegocki. 2025. "Potential of Curcumin and Its Analogs in Glioblastoma Therapy" Antioxidants 14, no. 3: 351. https://doi.org/10.3390/antiox14030351
APA StyleNowacka, A., Ziółkowska, E., Smuczyński, W., Bożiłow, D., & Śniegocki, M. (2025). Potential of Curcumin and Its Analogs in Glioblastoma Therapy. Antioxidants, 14(3), 351. https://doi.org/10.3390/antiox14030351