Hydroxytyrosol-Infused Extra Virgin Olive Oil: A Key to Minimizing Oxidation, Boosting Antioxidant Potential, and Enhancing Physicochemical Stability During Frying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Olive Fruit Extract (OFE) and Oil Sampling
- I.
- Nine different EVOO varieties, representing the widely consumed Spanish EVOOs, were selected for this study: (1) EVOO Picual (supplied by La casa del aceite, Navarra, Spain), (2) EVOO Cornicabra (supplied by COOSUR, Jaén, Spain), (3) EVOO Empeltre (supplied by La casa del aceite, Navarra, Spain), (4) EVOO Arbequina (supplied by COOSUR, Jaén, Spain), (5) EVOO Hojiblanca (supplied by COOSUR, Jaén, Spain), (6) EVOO Manzanilla Cacereña (supplied by Aceite Artajo, Navarra, Spain), (7) EVOO Royuela/Arróniz (supplied by Aceite Artajo, Navarra, Spain), (8) EVOO Koroneiki (supplied by Aceite Artajo, Navarra, Spain), (9) EVOO Arbosana (supplied by Aceite Artajo, Navarra, Spain);
- II.
- One EVOO mixed with refined olive oil (ROO), e.g., olive oil 1° (with maximum %acidity 1) (La Masia, Oleo Masia, S.A. Sevilla, Spain);
- III.
- One Pomace ROO mixed with EVOO, e.g., Pomace olive oil (known as Orujo olive oil in Spain), supplied by Simply, Spain);
- IV.
- One virgin olive oil (VOO) mixed with ROO, e.g., olive oil 0.4° (with maximum %acidity 0.4) (purchased from La Española Oils, Seville, Spain);
- V.
- One refined sunflower oil (RSO) (supplied by Abaco, Tarragona, Spain);
- VI.
- One refined high oleic sunflower oil (RSOHO) (bought from Mercadona, Logroño, Spain).
2.3. Olive Oil Fortification Process with Hydroxytyrosol Extract
2.4. Determination of Total Polyphenols in Olive Oils Supplemented with Hydroxytyrosol Extract by High-Performance Liquid Chromatography (HPLC)
2.5. The Experimental Design
2.6. Deep-Frying Process
2.7. Physicochemical Characteristics of Deep-Fried Vegetable Oils
2.7.1. Acidity
2.7.2. Peroxide Value
2.7.3. Conjugated Trienes and Conjugated Dienes
2.8. Anisidine Value (AnV)
- As = Absorbance of the oil solution after reaction with the p-anisidine reagent;
- Ab = Absorbance of the oil solution in the solvent (isooctane);
- m = Mass of the sample in grams.
2.9. TOTOX
2.10. Refractive Index
2.11. Carotenoids and Chlorophyll
2.12. Extraction of Phenolic Compounds
2.13. Antioxidant Activity (% DPPH Scavenging Activity)
2.14. Statistical Analyses
3. Results
3.1. Changes in the Evolution of Acidity in EVOO Varieties, Olive Oils, and Sunflwoer Oils After Deep-Frying
3.2. Changes in the Evolution of Oxidation Indicators in EVOO Varieties, Olive Oils, and Sunflwoer Oils After Deep-Frying
3.3. Changes in the Carotenoids and Chlorophyll in EVOO Varieties, Olive Oils, and Sunflwoer Oils After Deep-Frying
3.4. DPPH Scavenging Activity in EVOO Varieties, Olive Oils, and Sunflwoer Oils After Deep-Frying
4. Discussion
5. The Limitation and Commercial Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morkovin, E.; Litvinov, R.; Koushner, A.; Babkov, D. Resveratrol and Extra Virgin Olive Oil: Protective Agents Against Age-Related Disease. Nutrients 2024, 16, 4258. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.F.A.; Elhawary, E.; Hafez, A.M.; Çapanoğlu, E.; Fang, Y.; Farag, M.A. How Does Olive Seed Chemistry, Health Benefits and Action Mechanisms Compare to Its Fruit Oil? A Comprehensive Review for Valorization Purposes and Maximizing Its Health Benefits. Food Biosci. 2024, 59, 104017. [Google Scholar]
- Alaziqi, B.; Beckitt, L.; Townsend, D.J.; Morgan, J.; Price, R.; Maerivoet, A.; Madine, J.; Rochester, D.; Akien, G.; Middleton, D.A. Characterization of Olive Oil Phenolic Extracts and Their Effects on the Aggregation of the Alzheimer’s Amyloid-β Peptide and Tau. ACS Omega 2024, 9, 32557–32578. [Google Scholar] [CrossRef] [PubMed]
- Unsal, V.; Yıldız, R.; Korkmaz, A.; Mert, B.D.; Calıskan, C.G.; Oner, E. Evaluation of Extra Virgin Olive Oil Compounds Using Computational Methods: In Vitro, ADMET, DFT, Molecular Docking and Human Gene Network Analysis Study. BMC Chem. 2025, 19, 3. [Google Scholar]
- Satteih, M.; Errachidi, F.; Chahdi, F.O. Optimizing the Stability and Antioxidant Potential of Used Edible Oils with Rosemary Residue Powder Enrichment. Ecol. Eng. Environ. Technol. 2025, 26, 153–163. [Google Scholar] [CrossRef]
- Mehany, T.; González-Sáiz, J.M.; Pizarro, C. Recent Advances in Spectroscopic Approaches for Assessing the Stability of Bioactive Compounds and Quality Indices of Olive Oil during Deep-Frying: Current Knowledge, Challenges, and Implications. Food Chem. 2025, 464, 141624. [Google Scholar] [CrossRef]
- Wu, G.; Chang, C.; Hong, C.; Zhang, H.; Huang, J.; Jin, Q.; Wang, X. Phenolic Compounds as Stabilizers of Oils and Antioxidative Mechanisms under Frying Conditions: A Comprehensive Review. Trends Food Sci. Technol. 2019, 92, 33–45. [Google Scholar]
- Chiou, A.; Kalogeropoulos, N. Virgin Olive Oil as Frying Oil. Compr. Rev. Food Sci. Food Saf. 2017, 16, 632–646. [Google Scholar] [CrossRef]
- Granados-Principal, S.; Quiles, J.L.; Ramirez-Tortosa, C.L.; Sanchez-Rovira, P.; Ramirez-Tortosa, M.C. Hydroxytyrosol: From Laboratory Investigations to Future Clinical Trials. Nutr. Rev. 2010, 68, 191–206. [Google Scholar]
- Frumuzachi, O.; Gavrilaș, L.I.; Vodnar, D.C.; Rohn, S.; Mocan, A. Systemic Health Effects of Oleuropein and Hydroxytyrosol Supplementation: A Systematic Review of Randomized Controlled Trials. Antioxidants 2024, 13, 1040. [Google Scholar] [CrossRef]
- Li, X.; Muñoz-Díez, C.; Miho, H.; Zhang, L.; Li, P.; Priego, F.; Oulbi, S.; Uyanik, E.B.; Koubouris, G.; Perri, E. Evaluation of Phenolics in the Analysis of Virgin Olive Oil Using near Infrared Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025, 326, 125262. [Google Scholar] [CrossRef] [PubMed]
- Achour, O.; Haffani, Y.Z.; Mbarek, S.; Hammami, O.; Feki, M.; Zemmel, A.; Picaud, S.; Boudhrioua, N.; Ben Chaouacha-Chekir, R. Hydroxytyrosol-rich Olive Mill Wastewater, A Potential Protector Against Dyslipidemia, Diabetes and Diabetic Retinopathy in Psammomys Obesus. Chem. Biodivers. 2025, e202401351. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, B.; Paul, K.; Bakshi, P.; Bajaj, P.; Kumar, M.; Dhiman, S.; Jasrotia, S.; Kumar, P.; Dutta, R. Hydroxytyrosol in Cancer Research: Recent and Historical Insights on Discoveries and Mechanisms of Action. Future J. Pharm. Sci. 2024, 10, 129. [Google Scholar] [CrossRef]
- Mehany, T.; González-Sáiz, J.M.; Martínez, J.; Pizarro, C. Evaluation of Sensorial Markers in Deep-Fried Extra Virgin Olive Oils: First Report on the Role of Hydroxytyrosol and Its Derivatives. Foods 2024, 13, 3953. [Google Scholar] [CrossRef]
- Martínez-Zamora, L.; Peñalver, R.; Ros, G.; Nieto, G. Olive Tree Derivatives and Hydroxytyrosol: Their Potential Effects on Human Health and Its Use as Functional Ingredient in Meat. Foods 2021, 10, 2611. [Google Scholar] [CrossRef]
- Xiong, T.; Li, X.; Liu, W.; Yue, H.; Liu, J.; Bai, D.; Li, W.; Fan, G. Multienzyme Cascade for Synthesis of Hydroxytyrosol via Engineered Escherichia coli. Sci. Rep. 2025, 15, 471. [Google Scholar] [CrossRef] [PubMed]
- International Olive Council. Determination of Biophenols in Olive Oils by HPLC; COI/T.20/Doc No 29, November 2009; IOC: Madrid, Spain, 2009; pp. 1–8. [Google Scholar]
- Box, G.E.P.; Hunter, W.H.; Hunter, S. Statistics for Experimenters; John Wiley and Sons: New York, NY, USA, 1978; Volume 664, ISBN 0471718130. [Google Scholar]
- Commission Regulation (EEC) No. 2568/91 of 11 July 1991 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis Official Journal L 248, 5 September 1991. Offic. JL 1991, 248.
- AOAC. Official Methods and Recommended Practices of the American Oil Chemists Society; AOAC Press: Champaign, IL, USA, 1998; pp. 18–90. [Google Scholar]
- Aşkın, B.; Kaya, Y. Effect of Deep Frying Process on the Quality of the Refined Oleic/Linoleic Sunflower Seed Oil and Olive Oil. J. Food Sci. Technol. 2020, 57, 4716–4725. [Google Scholar] [CrossRef]
- El Sohaimy, A.A.S.; El-Sheikh, H.M.; Refaay, M.T.; Zaytoun, A.M.M. Effect of Harvesting in Different Ripening Stages on Olive (Olea europea) Oil Quality. Am. J. Food Technol. 2016, 11, 1–11. [Google Scholar] [CrossRef]
- Cayuela, J.A.; Yousfi, K.; Carmen Martínez, M.; García, J.M. Rapid Determination of Olive Oil Chlorophylls and Carotenoids by Using Visible Spectroscopy. JAOCS J. Am. Oil Chem. Soc. 2014, 91, 1677–1684. [Google Scholar] [CrossRef]
- Mathieu, D.; Nony, J.; Phan-Tan-Luu, R. Nemrod-W Software; LPRAI: Marseille, France, 2000. [Google Scholar]
- Echeverría, F.; Ortiz, M.; Valenzuela, R.; Videla, L.A. Hydroxytyrosol and Cytoprotection: A Projection for Clinical Interventions. Int. J. Mol. Sci. 2017, 18, 930. [Google Scholar] [CrossRef] [PubMed]
- Harzalli, Z.; Nieva-Echevarria, B.; Martinez-Yusta, A.; Oueslati, I.; Medfai, W.; Mhamdi, R.; Goicoechea-Oses, E. Addition of Olive By-Product Extracts to Sunflower Oil: Study by 1H NMR on the Antioxidant Effect during Potato Deep-Frying and Further in Vitro Digestion. LWT 2024, 206, 116574. [Google Scholar]
- Harzalli, Z.; Willenberg, I.; Medfai, W.; Matthäus, B.; Mhamdi, R.; Oueslati, I. Potential Use of the Bioactive Compounds of the Olive Mill Wastewater: Monitoring the Aldehydes, Phenolic Compounds, and Polymerized Triacylglycerols in Sunflower and Olive Oil during Frying. J. Food Process Preserv. 2022, 46, e17006. [Google Scholar] [CrossRef]
- Baltazar, P.; Hernández-Sánchez, N.; Diezma, B.; Lleó, L. Development of Rapid Extra Virgin Olive Oil Quality Assessment Procedures Based on Spectroscopic Techniques. Agronomy 2019, 10, 41. [Google Scholar] [CrossRef]
- Martin, M.E.; Millan-Linares, M.C.; Naranjo, M.C.; Toscano, R.; Abia, R.; Muriana, F.J.G.; Bermudez, B.; Montserrat-de la Paz, S. Minor Compounds from Virgin Olive Oil Attenuate LPS-induced Inflammation via Visfatin-related Gene Modulation on Primary Human Monocytes. J. Food Biochem. 2019, 43, e12941. [Google Scholar] [CrossRef]
- Rubio-Senent, F.; Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Lama-Muñoz, A.; Fernández-Bolaños, J. Structural and Antioxidant Properties of Hydroxytyrosol-Pectin Conjugates: Comparative Analysis of Adsorption and Free Radical Methods and Their Impact on in Vitro Gastrointestinal Process. Food Hydrocoll. 2025, 162, 110954. [Google Scholar]
- Issaoui, N.; Olivares, I.; Habsaoui, A.; Touhami, M.E.; Khtira, A.; Sánchez, S. New Insights into the Combined Effects of Geographical Origin, Cultivar and Crop Season on the Physicochemical Characteristics of Moroccan Olive Oils Produced in Northern Morocco. A Comparative Study. Oil Crop Sci. 2024, 9, 255–264. [Google Scholar]
- Mikołajczak, N.; Tańska, M.; Ogrodowska, D. Phenolic Compounds in Plant Oils: A Review of Composition, Analytical Methods, and Effect on Oxidative Stability. Trends Food Sci. Technol. 2021, 113, 110–138. [Google Scholar]
- Rey-Giménez, R.; Sánchez-Gimeno, A.C. Effect of Cultivar and Environment on Chemical Composition and Geographical Traceability of Spanish Olive Oils. J. Am. Oil Chem. Soc. 2024, 101, 371–382. [Google Scholar] [CrossRef]
- Mehany, T.; González-Sáiz, J.M.; Pizarro, C. Improving the Biostability of Extra Virgin Olive Oil with Olive Fruit Extract During Prolonged Deep Frying. Foods 2025, 14, 260. [Google Scholar] [CrossRef]
- Aladedunye, F.; Przybylski, R.; Matthaus, B. Performance of Antioxidative Compounds under Frying Conditions: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 1539–1561. [Google Scholar]
- Zhang, N.; Li, Y.; Wen, S.; Sun, Y.; Chen, J.; Gao, Y.; Sagymbek, A.; Yu, X. Analytical Methods for Determining the Peroxide Value of Edible Oils: A Mini-Review. Food Chem. 2021, 358, 129834. [Google Scholar] [PubMed]
- Liu, Z.; Liu, M.; Lyu, C.; Li, B.; Meng, X.; Si, X.; Shu, C. Effect of Heat Treatment on Oxidation of Hazelnut Oil. J. Oleo Sci. 2022, 71, 1711–1723. [Google Scholar] [PubMed]
- Esfahani, S.T.; Zamindar, N.; Esmaeili, Y.; Sharifian, S. Effect of Initial Quality of Oil and Thermal Processing on Oxidation Indexes in Canned Tuna. Appl. Food Res. 2024, 4, 100553. [Google Scholar]
- Mohammadi, M.; Hajeb, P.; Seyyedian, R.; Hossein Mohebbi, G.; Barmak, A. Evaluation of Oxidative Quality Parameters in Imported Edible Oils in Iran. Br. Food J. 2013, 115, 789–795. [Google Scholar]
- Wang, H.; Wang, L.; Chen, J.; Hu, M.; Fang, F.; Zhou, J. Promoting FADH2 Regeneration of Hydroxylation for High-Level Production of Hydroxytyrosol from Glycerol in Escherichia coli. J. Agric. Food Chem. 2023, 71, 16681–16690. [Google Scholar]
- Krumreich, F.D.; Mendonça, C.R.B.; Borges, C.D.; Crizel-Cardozo, M.M.; dos Santos, M.A.Z.; Otero, D.M.; Zambiazi, R.C. Margarida Avocado Oil: Effect of Processing on Quality, Bioactive Compounds and Fatty Acid Profile. Food Chem. Adv. 2024, 4, 100617. [Google Scholar]
- Papageorgiou, C.S.; Lyri, P.; Xintaropoulou, I.; Diamantopoulos, I.; Zagklis, D.P.; Paraskeva, C.A. High-Yield Production of a Rich-in-Hydroxytyrosol Extract from Olive (Olea europaea) Leaves. Antioxidants 2022, 11, 1042. [Google Scholar] [CrossRef]
- Esposto, S.; Taticchi, A.; Maio, I.; Urbani, S.; Veneziani, G.; Selvaggini, R.; Servili, M. Effect of an Olive Phenolic Extract on the Quality of Vegetable Oils during Frying. Food Chem. 2015, 176, 184–192. [Google Scholar]
- Bulotta, S.; Celano, M.; Lepore, S.M.; Montalcini, T.; Pujia, A.; Russo, D. Beneficial Effects of the Olive Oil Phenolic Components Oleuropein and Hydroxytyrosol: Focus on Protection against Cardiovascular and Metabolic Diseases. J. Transl. Med. 2014, 12, 1–9. [Google Scholar]
- Rufino-Palomares, E.E.; Pérez-Jiménez, A.; García-Salguero, L.; Mokhtari, K.; Reyes-Zurita, F.J.; Peragón-Sánchez, J.; Lupiáñez, J.A. Nutraceutical Role of Polyphenols and Triterpenes Present in the Extracts of Fruits and Leaves of Olea Europaea as Antioxidants, Anti-Infectives and Anticancer Agents on Healthy Growth. Molecules 2022, 27, 2341. [Google Scholar] [CrossRef]
Vegetable Oil | Acidity | K232 | K270 | ∆K | PV | AnV | TOTOX | RI |
---|---|---|---|---|---|---|---|---|
EVOO Picual | 0.32 ± 0.01 d | 2.50 ± 0.06 d | 0.84 ± 0.02 d | 0.05 ± 0.02 d | 9.51 ± 0.13 c | 17.76 ± 0.39 d | 36.77 ± 0.51 e | 1.4684 ± 0.0001 d |
EVOO Cornicabra | 0.38 ± 0.02 c | 2.64 ± 0.09 cd | 1.12 ± 0.00 c | 0.07 ± 0.00 c | 11.52 ± 0.37 b | 17.54 ± 0.21d | 40.73 ± 0.64 e | 1.4683 ± 0.0001 d |
EVOO Empeltre | 0.33 ± 0.01 d | 1.79 ± 0.24 f | 0.35 ± 0.00 f | 0.03 ± 0.00 e | 9.71 ± 0.19 c | 7.76 ± 0.36 e | 27.06 ± 0.56 f | 1.4684 ± 0.0001 d |
EVOO Arbequina | 0.34 ± 0.01 d | 2.21 ± 0.18 e | 0.69 ± 0.01 e | 0.05 ± 0.01 d | 9.36 ± 0.53 c | 9.00 ± 0.13 e | 27.73 ± 0.97 f | 1.4684 ± 0.0001 d |
EVOO Hojiblanca | 0.56 ± 0.02 b | 2.31 ± 0.04 e | 0.68 ± 0.01 e | 0.01 ± 0.00 f | 19.83 ± 0.70 a | 26.18 ± 0.15 c | 65.84 ± 1.59 c | 1.4691 ± 0.0001c |
EVOO Manzanilla | 0.22 ± 0.00 f | 1.81 ± 0.06 f | 0.22 ± 0.00 h | 0.00 ± 0.00 g | 9.41 ± 0.24 c | 4.86 ± 0.33 fg | 23.85 ± 0.50 g | 1.4683 ± 0.0001 d |
EVOO Royuela | 0.27 ± 0.01 e | 1.36 ± 0.09 g | 0.11 ± 0.00 i | 0.00 ± 0.00 g | 9.86 ± 0.20 c | 1.03 ± 0.28 h | 20.76 ± 0.16 g | 1.4683 ± 0.0001 d |
Pomace olive oil | 0.33 ± 0.01 d | 3.03 ± 0.07 bc | 1.36 ± 0.03 b | 0.13 ± 0.03 b | 11.67 ± 0.51 b | 38.36 ± 0.26 b | 61.28 ± 1.13 c | 1.4690 ± 0.0001 c |
EVOO Koroneiki | 0.27 ± 0.02 e | 1.67 ± 0.10 f | 0.25 ± 0.01 h | 0.01 ± 0.00 f | 9.87 ± 0.19 a | 3.63 ± 0.41 fg | 23.38 ± 0.70 g | 1.4682 ± 0.0001 de |
EVOO Arbosana | 0.28 ± 0.01 e | 1.82 ± 0.09 f | 0.31 ± 0.00 g | 0.01 ± 0.00 f | 11.40 ± 0.41 b | 5.46 ± 0.29 f | 28.27 ± 1.05 f | 1.4679 ± 0.0001 f |
Olive oil 1° | 0.62 ± 0.01 a | 2.83 ± 0.13 c | 0.74 ± 0.00 e | 0.03 ± 0.00 e | 21.59 ± 0.41 a | 29.24 ± 0.28 c | 72.43 ± 0.69 b | 1.4682 ± 0.0000 de |
Olive oil 0.4° | 0.28 ± 0.01 e | 2.36 ± 0.24 de | 0.83 ± 0.01 d | 0.07 ± 0.01 c | 9.87 ± 0.14 c | 20.34 ± 0.04 d | 40.07 ± 0.41 e | 1.4676 ± 0.0000 fg |
Sunflower oil | 0.28 ± 0.01 e | 4.41 ± 0.02 a | 2.55 ± 0.01 a | 0.39 ± 0.01 a | 13.85 ± 0.20 b | 52.04 ± 0.01 a | 79.59 ± 0.48 a | 1.4732 ± 0.0000 a |
Sunflower oil—high oleic acid | 0.17 ± 0.01 g | 3.25 ± 0.09 b | 1.21 ± 0.00 c | 0.14 ± 0.00 b | 5.95 ± 0.23 d | 40.99 ± 0.82 b | 52.50 ± 0.65 d | 1.4709 ± 0.0001 b |
Vegetable Oil | Carotenoids | Chlorophyll | Antioxidant Activity % (DPPH Scavenging Activity) |
---|---|---|---|
EVOO Picual | 9.3 ± 0.0 d | 31.4 ± 0.7 b | 87.0 ± 2.2 ab |
EVOO Cornicabra | 8.1 ± 0.2 e | 30.3 ± 0.7 b | 84.3 ± 2.8 b |
EVOO Empeltre | 9.9 ± 0.2 cd | 30.8 ± 0.5 b | 86.3 ± 1.0 ab |
EVOO Arbequina | 10.1 ± 0.0 c | 29.6 ± 0.9 b | 86.1 ± 0.3 ab |
EVOO Hojiblanca | 6.4 ± 1.2 f | 29.8 ± 1.3 b | 87.6 ± 1.7 ab |
EVOO Manzanilla | 8.0 ± 0.5 e | 31.1 ± 1.5 b | 87.6 ± 0.2 ab |
EVOO Royuela | 10.9 ± 0.1 c | 31.8 ± 0.7 b | 86.7 ± 1.7 ab |
Pomace olive oil | 8.8 ± 0.5 de | 21.5 ± 0.5 c | 83.3 ± 1.0 b |
EVOO Koroneiki | 13.7 ± 0.4 b | 50.2 ± 2.1 a | 86.8 ± 0.9 ab |
EVOO Arbosana | 17.5 ± 0.5 a | 53.7 ± 0.7 a | 90.8 ± 1.0 a |
Olive oil 1° | 10.9 ± 0.2 c | 47.5 ± 1.1 a | 82.7 ± 1.9 b |
Olive oil 0.4° | 9.7 ± 0.2 d | 21.9 ± 0.4 c | 83.8 ± 1.1 b |
Sunflower oil | 6.6 ± 0.4 f | 15.7 ± 0.1 d | 26.0 ± 0.3 c |
Sunflower oil—high oleic acid | 8.7 ± 0.0 e | 21.3 ± 0.2 c | 26.6 ± 1.1 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehany, T.; González-Sáiz, J.M.; Pizarro, C. Hydroxytyrosol-Infused Extra Virgin Olive Oil: A Key to Minimizing Oxidation, Boosting Antioxidant Potential, and Enhancing Physicochemical Stability During Frying. Antioxidants 2025, 14, 368. https://doi.org/10.3390/antiox14030368
Mehany T, González-Sáiz JM, Pizarro C. Hydroxytyrosol-Infused Extra Virgin Olive Oil: A Key to Minimizing Oxidation, Boosting Antioxidant Potential, and Enhancing Physicochemical Stability During Frying. Antioxidants. 2025; 14(3):368. https://doi.org/10.3390/antiox14030368
Chicago/Turabian StyleMehany, Taha, José M. González-Sáiz, and Consuelo Pizarro. 2025. "Hydroxytyrosol-Infused Extra Virgin Olive Oil: A Key to Minimizing Oxidation, Boosting Antioxidant Potential, and Enhancing Physicochemical Stability During Frying" Antioxidants 14, no. 3: 368. https://doi.org/10.3390/antiox14030368
APA StyleMehany, T., González-Sáiz, J. M., & Pizarro, C. (2025). Hydroxytyrosol-Infused Extra Virgin Olive Oil: A Key to Minimizing Oxidation, Boosting Antioxidant Potential, and Enhancing Physicochemical Stability During Frying. Antioxidants, 14(3), 368. https://doi.org/10.3390/antiox14030368