Elevated Oxidative Stress in Patients with Coexisting Multiple Sclerosis and Migraine: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations and Protocol Approval
2.2. Participants
2.3. Reagents and Methods
2.3.1. Blood and Sampling
2.3.2. Protein Assay
2.3.3. Thiol Groups
2.3.4. Amadori Products
2.3.5. 3-Nitrotyrosine
2.3.6. Total Antioxidant Capacity (TAC)
2.3.7. Lipid Peroxidation
2.3.8. Advanced Glycation End Products (AGEs)
2.3.9. Content of Tryptophan, Dityrosine, Kynurenine and N’-Formylkynurenine
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Eva, L.; Pleș, H.; Covache-Busuioc, R.-A.; Glavan, L.A.; Bratu, B.-G.; Bordeianu, A.; Dumitrascu, D.-I.; Corlatescu, A.D.; Ciurea, A.V. A Comprehensive Review on Neuroimmunology: Insights from Multiple Sclerosis to Future Therapeutic Developments. Biomedicines 2023, 11, 2489. [Google Scholar] [CrossRef] [PubMed]
- Vitturi, B.K.; Montecucco, A.; Rahmani, A.; Dini, G.; Durando, P. Occupational Risk Factors for Multiple Sclerosis: A Systematic Review with Meta-Analysis. Front. Public Health 2023, 11, 1285103. [Google Scholar] [CrossRef] [PubMed]
- Katz Sand, I.; Zhu, Y.; Ntranos, A.; Clemente, J.C.; Cekanaviciute, E.; Brandstadter, R.; Crabtree-Hartman, E.; Singh, S.; Bencosme, Y.; Debelius, J.; et al. Disease-Modifying Therapies Alter Gut Microbial Composition in MS. Neurol. Neuroimmunol. Neuroinflam. 2019, 6, e517. [Google Scholar] [CrossRef]
- Huynh, J.L.; Casaccia, P. Epigenetic Mechanisms in Multiple Sclerosis: Implications for Pathogenesis and Treatment. Lancet Neurol. 2013, 12, 195–206. [Google Scholar] [CrossRef]
- Kaliszewska, A.; De Jager, P.L. Exploring the Role of the Epigenome in Multiple Sclerosis: A Window onto Cell-Specific Transcriptional Potential. J. Neuroimmunol. 2012, 248, 2–9. [Google Scholar] [CrossRef]
- Rościszewska-Żukowska, I.; Galiniak, S.; Bartosik-Psujek, H. Clinical Characteristics of Headache in Multiple Sclerosis Patients: A Cross-Sectional Study. J. Clin. Med. 2023, 12, 3518. [Google Scholar] [CrossRef]
- Mrabet, S.; Wafa, M.; Giovannoni, G. Multiple Sclerosis and Migraine: Links, Management and Implications. Mult. Scler. Relat. Disord. 2022, 68, 104152. [Google Scholar] [CrossRef]
- Adamczyk, B.; Morawiec, N.; Boczek, S.; Dańda, K.; Herba, M.; Spyra, A.; Sowa, A.; Szczygieł, J.; Adamczyk-Sowa, M. Headache in Multiple Sclerosis: A Narrative Review. Med. Kaunas Lith. 2024, 60, 572. [Google Scholar] [CrossRef]
- Sîrbu, C.A.; Rotaru, A.R.; Antochi, F.A.; Plesa, A.; Manole, A.M.; Roceanu, A.M. Headache and Other Pain Syndromes in Multiple Sclerosis: A Narrative Review. Life 2024, 14, 87. [Google Scholar] [CrossRef]
- Naseer, M.A.; Shehata, H.S.; Khalil, S.; Fouad, A.M.; Abdelghany, H. Prevalence of Primary Headaches in Multiple Sclerosis Patients. Mult. Scler. Relat. Disord. 2024, 86, 105602. [Google Scholar] [CrossRef]
- Qian, Z.; Li, Y.; Guan, Z.; Guo, P.; Zheng, K.; Du, Y.; Yin, S.; Chen, B.; Wang, H.; Jiang, J.; et al. Global, Regional, and National Burden of Multiple Sclerosis from 1990 to 2019: Findings of Global Burden of Disease Study 2019. Front. Public Health 2023, 11, 1073278. [Google Scholar] [CrossRef] [PubMed]
- Hollen, C.; Neilson, L.E.; Barajas, R.F.; Greenhouse, I.; Spain, R.I. Oxidative Stress in Multiple Sclerosis—Emerging Imaging Techniques. Front. Neurol. 2023, 13, 1025659. [Google Scholar] [CrossRef] [PubMed]
- Pegoretti, V.; Swanson, K.A.; Bethea, J.R.; Probert, L.; Eisel, U.L.M.; Fischer, R. Inflammation and Oxidative Stress in Multiple Sclerosis: Consequences for Therapy Development. Oxid. Med. Cell Longev. 2020, 2020, 7191080. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Janmeda, P.; Docea, A.O.; Yeskaliyeva, B.; Abdull Razis, A.F.; Modu, B.; Calina, D.; Sharifi-Rad, J. Oxidative Stress, Free Radicals and Antioxidants: Potential Crosstalk in the Pathophysiology of Human Diseases. Front. Chem. 2023, 11, 1158198. [Google Scholar] [CrossRef]
- Geyik, S.; Altunısık, E.; Neyal, A.M.; Taysi, S. Oxidative Stress and DNA Damage in Patients with Migraine. J. Headache Pain 2016, 17, 10. [Google Scholar] [CrossRef]
- Gupta, R.; Pathak, R.; Bhatia, M.S.; Banerjee, B.D. Comparison of Oxidative Stress among Migraineurs, Tension-Type Headache Subjects, and a Control Group. Ann. Indian Acad. Neurol. 2009, 12, 167–172. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Yue, G.; Zhao, Y. Energy Metabolism Disturbance in Migraine: From a Mitochondrial Point of View. Front. Physiol. 2023, 14, 1133528. [Google Scholar] [CrossRef]
- Schiavone, S.; Jaquet, V.; Trabace, L.; Krause, K.-H. Severe Life Stress and Oxidative Stress in the Brain: From Animal Models to Human Pathology. Antioxid. Redox Signal. 2013, 18, 1475–1490. [Google Scholar] [CrossRef]
- Liu, X.; Liu, R.; Liu, W.; Hua, R.; Xu, H. Association between Oxidative Balance Score and Self-Reported Severe Headache or Migraine Based on NHANES 1999 to 2004 Data: A Cross-Sectional Study. Heliyon 2024, 10, e27426. [Google Scholar] [CrossRef]
- Topic, A.; Vasic, M.; Markovic, B.; Milinkovic, N.; Dincic, E. The Effects of Disease-Modifying Therapies on Oxidative Stress in Patients With Relapsing-Remitting Multiple Sclerosis. Clin. Neuropharmacol. 2022, 45, 157–161. [Google Scholar] [CrossRef]
- Bizoń, A.; Chojdak-Łukasiewicz, J.; Kołtuniuk, A.; Budrewicz, S.; Pokryszko-Dragan, A.; Piwowar, A. Evaluation of Selected Oxidant/Antioxidant Parameters in Patients with Relapsing-Remitting Multiple Sclerosis Undergoing Disease-Modifying Therapies. Antioxidants 2022, 11, 2416. [Google Scholar] [CrossRef] [PubMed]
- Delic, S.; Miletic Drakulic, S.; Stepovic, M.; Milosavljevic, J.; Kovacevic Dimitrijevic, M.; Jovanovic, K.; Marinkovic, I.; Tepavcevic, M.; Janicijevic, N.; Mitrovic, A.; et al. The Connection Between Oxidative Stress, Mitochondrial Dysfunction, Iron Metabolism and Microglia in Multiple Sclerosis: A Narrative Review. NeuroSci 2025, 6, 23. [Google Scholar] [CrossRef] [PubMed]
- Gross, E.C.; Putananickal, N.; Orsini, A.-L.; Vogt, D.R.; Sandor, P.S.; Schoenen, J.; Fischer, D. Mitochondrial Function and Oxidative Stress Markers in Higher-Frequency Episodic Migraine. Sci. Rep. 2021, 11, 4543. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of Multiple Sclerosis: 2017 Revisions of the McDonald Criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd Edition. Cephalalgia 2018, 38, 629–808. [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue Sulfhydryl Groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Johnson, R.N.; Metcalf, P.A.; Baker, J.R. Fructosamine: A New Approach to the Estimation of Serum Glycosylprotein. An Index of Diabetic Control. Clin. Chim. Acta Int. J. Clin. Chem. 1983, 127, 87–95. [Google Scholar] [CrossRef]
- Mironova, R.; Niwa, T.; Handzhiyski, Y.; Sredovska, A.; Ivanov, I. Evidence for Non-Enzymatic Glycosylation of Escherichia Coli Chromosomal DNA. Mol. Microbiol. 2005, 55, 1801–1811. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Yagi, K. Assay for Blood Plasma or Serum. Methods Enzymol. 1984, 105, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Münch, G.; Keis, R.; Wessels, A.; Riederer, P.; Bahner, U.; Heidland, A.; Niwa, T.; Lemke, H.D.; Schinzel, R. Determination of Advanced Glycation End Products in Serum by Fluorescence Spectroscopy and Competitive ELISA. Eur. J. Clin. Chem. Clin. Biochem. J. Forum Eur. Clin. Chem. Soc. 1997, 35, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Henle, T.; Deppisch, R.; Beck, W.; Hergesell, O.; Hänsch, G.M.; Ritz, E. Advanced Glycated End-Products (AGE) during Haemodialysis Treatment: Discrepant Results with Different Methodologies Reflecting the Heterogeneity of AGE Compounds. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.—Eur. Ren. Assoc. 1999, 14, 1968–1975. [Google Scholar] [CrossRef]
- Diplock, A.T.; Rice-Evans, C.A.; Symons, M.C.R. Techniques in Free Radical Research. Elsevier: Amsterdam, The Netherlands, 1991; ISBN 978-0-444-81304-6. [Google Scholar]
- Arif, B.; Arif, Z.; Ahmad, J.; Perveen, K.; Bukhari, N.A.; Ashraf, J.M.; Moinuddin; Alam, K. Attenuation of Hyperglycemia and Amadori Products by Aminoguanidine in Alloxan-Diabetic Rabbits Occurs via Enhancement in Antioxidant Defenses and Control of Stress. PLoS ONE 2022, 17, e0262233. [Google Scholar] [CrossRef]
- Kurt, A.N.C.; Aydın, A.; Demir, H.; Erel, Ö. Headache in Children and Dynamic Thiol/Disulfide Balance Evaluation with a New Method. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2017, 38, 1495–1499. [Google Scholar] [CrossRef]
- Eren, Y.; Dirik, E.; Neşelioğlu, S.; Erel, Ö. Oxidative Stress and Decreased Thiol Level in Patients with Migraine: Cross-Sectional Study. Acta Neurol. Belg. 2015, 115, 643–649. [Google Scholar] [CrossRef]
- Gruber, H.-J.; Bernecker, C.; Lechner, A.; Weiss, S.; Wallner-Blazek, M.; Meinitzer, A.; Höbarth, G.; Renner, W.; Fauler, G.; Horejsi, R.; et al. Increased Nitric Oxide Stress Is Associated with Migraine. Cephalalgia Int. J. Headache 2010, 30, 486–492. [Google Scholar] [CrossRef]
- Yilmaz, G.; Sürer, H.; Inan, L.E.; Coskun, O.; Yücel, D. Increased Nitrosative and Oxidative Stress in Platelets of Migraine Patients. Tohoku J. Exp. Med. 2007, 211, 23–30. [Google Scholar] [CrossRef]
- Fournet, M.; Bonté, F.; Desmoulière, A. Glycation Damage: A Possible Hub for Major Pathophysiological Disorders and Aging. Aging Dis. 2018, 9, 880–900. [Google Scholar] [CrossRef]
- Tuncel, D.; Tolun, F.I.; Gokce, M.; Imrek, S.; Ekerbiçer, H. Oxidative Stress in Migraine with and without Aura. Biol. Trace Elem. Res. 2008, 126, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Togha, M.; Razeghi Jahromi, S.; Ghorbani, Z.; Ghaemi, A.; Rafiee, P. An Investigation of Oxidant/Antioxidant Balance in Patients with Migraine: A Case-Control Study. BMC Neurol. 2019, 19, 323. [Google Scholar] [CrossRef] [PubMed]
- Dini, E.; Mazzucchi, S.; De Luca, C.; Cafalli, M.; Chico, L.; Lo Gerfo, A.; Siciliano, G.; Bonuccelli, U.; Baldacci, F.; Gori, S. Plasma Levels of Oxidative Stress Markers, before and after BoNT/A Treatment, in Chronic Migraine. Toxins 2019, 11, 608. [Google Scholar] [CrossRef] [PubMed]
- Salahi, M.; Parsa, S.; Nourmohammadi, D.; Razmkhah, Z.; Salimi, O.; Rahmani, M.; Zivary, S.; Askarzadeh, M.; Tapak, M.A.; Vaezi, A.; et al. Immunologic Aspects of Migraine: A Review of Literature. Front. Neurol. 2022, 13, 944791. [Google Scholar] [CrossRef]
- Peggion, C.; Calì, T.; Brini, M. Mitochondria Dysfunction and Neuroinflammation in Neurodegeneration: Who Comes First? Antioxidants 2024, 13, 240. [Google Scholar] [CrossRef]
- Borkum, J.M. Migraine Triggers and Oxidative Stress: A Narrative Review and Synthesis. Headache 2016, 56, 12–35. [Google Scholar] [CrossRef]
- Mezzaroba, L.; Simão, A.N.C.; Oliveira, S.R.; Flauzino, T.; Alfieri, D.F.; de Carvalho Jennings Pereira, W.L.; Kallaur, A.P.; Lozovoy, M.A.B.; Kaimen-Maciel, D.R.; Maes, M.; et al. Antioxidant and Anti-Inflammatory Diagnostic Biomarkers in Multiple Sclerosis: A Machine Learning Study. Mol. Neurobiol. 2020, 57, 2167–2178. [Google Scholar] [CrossRef]
- Pasquali, L.; Pecori, C.; Lucchesi, C.; LoGerfo, A.; Iudice, A.; Siciliano, G.; Bonuccelli, U. Plasmatic Oxidative Stress Biomarkers in Multiple Sclerosis: Relation with Clinical and Demographic Characteristics. Clin. Biochem. 2015, 48, 19–23. [Google Scholar] [CrossRef]
- Ljubisavljevic, S.; Stojanovic, I.; Vojinovic, S.; Stojanov, D.; Stojanovic, S.; Cvetkovic, T.; Savic, D.; Pavlovic, D. The Patients with Clinically Isolated Syndrome and Relapsing Remitting Multiple Sclerosis Show Different Levels of Advanced Protein Oxidation Products and Total Thiol Content in Plasma and CSF. Neurochem. Int. 2013, 62, 988–997. [Google Scholar] [CrossRef]
- Morel, A.; Bijak, M.; Niwald, M.; Miller, E.; Saluk, J. Markers of Oxidative/Nitrative Damage of Plasma Proteins Correlated with EDSS and BDI Scores in Patients with Secondary Progressive Multiple Sclerosis. Redox Rep. 2017, 22, 547–555. [Google Scholar] [CrossRef]
- Arslan, B.; Arslan, G.A.; Tuncer, A.; Karabudak, R.; Dinçel, A.S. Evaluation of Thiol Homeostasis in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Front. Neurol. 2021, 12, 716195. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.R.; Kallaur, A.P.; Reiche, E.M.V.; Kaimen-Maciel, D.R.; Panis, C.; Lozovoy, M.A.B.; Morimoto, H.K.; Maes, M.; Dichi, I.; Simão, A.N.C. Albumin and Protein Oxidation Are Predictors That Differentiate Relapsing-Remitting from Progressive Clinical Forms of Multiple Sclerosis. Mol. Neurobiol. 2017, 54, 2961–2968. [Google Scholar] [CrossRef] [PubMed]
- Obradovic, D.; Andjelic, T.; Ninkovic, M.; Dejanovic, B.; Kotur-Stevuljevic, J. Superoxide Dismutase (SOD), Advanced Oxidation Protein Products (AOPP), and Disease-Modifying Treatment Are Related to Better Relapse Recovery after Corticosteroid Treatment in Multiple Sclerosis. Neurol. Sci. 2021, 42, 3241–3247. [Google Scholar] [CrossRef] [PubMed]
- Förster, M.; Nelke, C.; Räuber, S.; Lassmann, H.; Ruck, T.; Sormani, M.P.; Signori, A.; Hartung, H.-P.; Küry, P.; Meuth, S.G.; et al. Nitrosative Stress Molecules in Multiple Sclerosis: A Meta-Analysis. Biomedicines 2021, 9, 1899. [Google Scholar] [CrossRef]
- Damasiewicz-Bodzek, A.; Łabuz-Roszak, B.; Kumaszka, B.; Tyrpień-Golder, K. Carboxymethyllysine and Carboxyethyllysine in Multiple Sclerosis Patients. Arch. Med. Sci. 2020, 20, 736. [Google Scholar] [CrossRef]
- Sternberg, Z.; Hennies, C.; Sternberg, D.; Bistulfi, G.L.; Kazim, L.; Benedict, R.H.B.; Chadha, K.; Leung, C.; Weinstock-Guttman, B.; Munschauer, F. Plasma Pentosidine: A Potential Biomarker in the Management of Multiple Sclerosis. Mult. Scler. Houndmills Basingstoke Engl. 2011, 17, 157–163. [Google Scholar] [CrossRef]
- Kalousová, M.; Havrdová, E.; Mrázová, K.; Spacek, P.; Braun, M.; Uhrová, J.; Germanová, A.; Zima, T. Advanced Glycoxidation End Products in Patients with Multiple Sclerosis. Prague Med. Rep. 2005, 106, 167–174. [Google Scholar]
- Galiniak, S.; Krawczyk-Marć, I.; Sęk-Mastej, A.; Leksa, N.; Biesiadecki, M.; Orkisz, S. Clinical Aspects of Protein Glycation. Eur. J. Clin. Exp. Med. 2018, 15, 263–267. [Google Scholar] [CrossRef]
- Polykretis, P. Advanced Glycation End-Products as Potential Triggering Factors of Self-Reactivity against Myelin Antigens in Multiple Sclerosis. Med. Hypotheses 2021, 157, 110702. [Google Scholar] [CrossRef]
- Ghonimi, N.A.M.; Elsharkawi, K.A.; Khyal, D.S.M.; Abdelghani, A.A. Serum Malondialdehyde as a Lipid Peroxidation Marker in Multiple Sclerosis Patients and Its Relation to Disease Characteristics. Mult. Scler. Relat. Disord. 2021, 51, 102941. [Google Scholar] [CrossRef]
- Podbielska, M.; O’Keeffe, J.; Pokryszko-Dragan, A. New Insights into Multiple Sclerosis Mechanisms: Lipids on the Track to Control Inflammation and Neurodegeneration. Int. J. Mol. Sci. 2021, 22, 7319. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, G.G.; Pacheco-Moisés, F.P.; Bitzer-Quintero, O.K.; Ramírez-Anguiano, A.C.; Flores-Alvarado, L.J.; Ramírez-Ramírez, V.; Macias-Islas, M.A.; Torres-Sánchez, E.D. Immunology and Oxidative Stress in Multiple Sclerosis: Clinical and Basic Approach. Clin. Dev. Immunol. 2013, 2013, 708659. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Xie, K.; Wang, C.; Bi, J. Oxidative Stress Induced by Lipid Peroxidation Is Related with Inflammation of Demyelination and Neurodegeneration in Multiple Sclerosis. Eur. Neurol. 2014, 72, 249–254. [Google Scholar] [CrossRef]
- Zirngibl, M.; Assinck, P.; Sizov, A.; Caprariello, A.V.; Plemel, J.R. Oligodendrocyte Death and Myelin Loss in the Cuprizone Model: An Updated Overview of the Intrinsic and Extrinsic Causes of Cuprizone Demyelination. Mol. Neurodegener. 2022, 17, 34. [Google Scholar] [CrossRef]
- Adamczyk, B.; Niedziela, N.; Adamczyk-Sowa, M. Novel Approaches of Oxidative Stress Mechanisms in the Multiple Sclerosis Pathophysiology and Therapy. Exon Publ. 2017, 155–171. [Google Scholar] [CrossRef]
- Suneetha, A.; Raja Rajeswari, K. Role of Dimethyl Fumarate in Oxidative Stress of Multiple Sclerosis: A Review. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2016, 1019, 15–20. [Google Scholar] [CrossRef]
- Yevgi, R.; Demir, R. Oxidative Stress Activity of Fingolimod in Multiple Sclerosis. Clin. Neurol. Neurosurg. 2021, 202, 106500. [Google Scholar] [CrossRef]
- Hamamcı, M.; Göcmen, A.Y.; Say, B.; Alpua, M.; Badem, N.D.; Ergün, U.; Ertuğrul İnan, L. Why Do Multiple Sclerosis and Migraine Coexist? Mult. Scler. Relat. Disord. 2020, 40, 101946. [Google Scholar] [CrossRef]
- Moskatel, L.S.; Zhang, N. Migraine and Diet: Updates in Understanding. Curr. Neurol. Neurosci. Rep. 2022, 22, 327–334. [Google Scholar] [CrossRef]
Healthy Controls | Migraine | MS | MS+ Migraine | p | |
---|---|---|---|---|---|
n | 26 | 24 | 30 | 30 | |
Sex (F/M) | 23/3 | 23/1 | 22/8 | 24/6 | |
Age (years) | 38.19 ± 7.7 | 39.75 ± 7.61 | 38.63 ± 9.91 | 37.46 ± 10.85 | 0.867 |
BMI (kg/m2) | 25.86 ± 3.61 | 25.32 ± 4.91 | 25.04 ± 5.75 | 24.92 ± 4.11 | 0.824 |
Disease duration from age of MS diagnosis (years) | - | - | 8.96 ± 6.43 | 8.1 ± 5.97 | 0.623 |
DMT type, n (%) | |||||
Teriflunomide | - | - | 3 (10) | 3 (10) | |
Interferon beta 1a | - | - | 1 (3.3) | 2 (6.7) | |
Interferon beta 1b | - | - | 8 (26.7) | 7 (23.3) | |
Glatirameracetate | - | - | 2 (6.7) | 2 (6.7) | |
Fingolimod | - | - | 3 (10) | 3 (10) | |
Cladribine | - | - | 2 (6.7) | 2 (6.7) | |
Dimethylfumarate | - | - | 8 (26.7) | 8 (26.7) | |
Ozanimod | - | - | 3 (10) | 3 (10) | |
Time DMT (years) | 3.13 ± 2.36 | 5.2 ± 4.1 | 0.069 | ||
EDSS (points) | - | - | 1.23 ± 0.73 | 1.61 ± 0.78 | 0.082 |
9HT RD (s) | - | - | 21.22 ± 3.06 | 20.37 ± 3.22 | 0.362 |
9HT RND (s) | - | - | 21.72 ± 3.26 | 22.4 ± 4.36 | 0.718 |
T25FW (s) | - | - | 5.16 ± 1.03 | 5.07 ± 0.91 | 0.774 |
SDMT score | - | - | 53.18 ± 19.44 | 53.2 ± 13.2 | 0.574 |
Healthy Controls | Migraine | MS | MS + Migraine | p | ||
---|---|---|---|---|---|---|
MDA (μmol/L) | mean ± SD | 3.52 ± 0.27 | 3.61 ± 0.27 | 3.65 ± 0.38 | 3.57 ± 0.33 | 0.479 |
95% CI | 3.41–3.63 | 3.49–3.72 | 3.51–3.79 | 3.45–3.69 | ||
TAC (FRAP, μmol TE/L) | mean ± SD | 169.58 ± 25.63 | 164.08 ± 22.78 | 158.53 ± 20.14 | 153.46 ± 19.92 | 0.161 |
95% CI | 159.22–179.93 | 154.46–173.7 | 151.01–166.05 | 146.02–160.89 | ||
TAC (ABTS•, μmol TE/L) | mean ± SD | 314.33 ± 24.77 | 301.72 ± 16.08 | 290.01 ± 17.66 a** | 281.32 ± 25.7 a***, b* | <0.001 |
95% CI | 304.32–324.33 | 294.93–308.51 | 283.42–296.61 | 271.73–290.92 | ||
AGEs (a.u./mg protein) | mean ± SD | 4.07 ± 0.73 | 5.1 ± 1.17 a** | 4.89 ± 0.95 a* | 5.21 ± 1 a*** | <0.001 |
95% CI | 3.77–4.36 | 4.6–5.59 | 4.53–5.24 | 4.84–5.59 | ||
Dityrosine (a.u./mg protein) | mean ± SD | 2.64 ± 0.36 | 3.52 ± 1.19 a*** | 3.19 ± 0.61a** | 3.39 ± 0.64 a*** | <0.001 |
95% CI | 2.5–2.79 | 3.01–4.02 | 2.97–3.42 | 3.15–3.63 | ||
N’-formylkynurenine (a.u./mg protein) | mean ± SD | 2.94 ± 0.54 | 4 ± 1.68 a*** | 3.65 ± 0.82 a** | 3.81 ± 0.75 a*** | <0.001 |
95% CI | 2.72–3.16 | 3.29–4.71 | 3.34–3.95 | 3.53–4.09 | ||
Kynurenine (a.u./mg protein) | mean ± SD | 4.8 ± 0.81 | 6.38 ± 1.69 a** | 6.04 ± 1.2 a** | 6.12 ± 1.31 a** | <0.001 |
95% CI | 4.48–5.13 | 5.67–7.09 | 5.59–6.49 | 5.63–6.61 | ||
Tryptophan (a.u./mg protein) | mean ± SD | 167.35 ± 16.86 | 161.51 ± 29.06 | 159.25 ± 23.18 | 147.7 ± 25.77 a** | 0.013 |
95% CI | 160.54–174.16 | 149.24–173.78 | 150.59–167.91 | 138.07–157.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rościszewska-Żukowska, I.; Biesiadecki, M.; Mołoń, M.; Rożek, A.; Bartosik-Psujek, H.; Galiniak, S. Elevated Oxidative Stress in Patients with Coexisting Multiple Sclerosis and Migraine: A Cross-Sectional Study. Antioxidants 2025, 14, 511. https://doi.org/10.3390/antiox14050511
Rościszewska-Żukowska I, Biesiadecki M, Mołoń M, Rożek A, Bartosik-Psujek H, Galiniak S. Elevated Oxidative Stress in Patients with Coexisting Multiple Sclerosis and Migraine: A Cross-Sectional Study. Antioxidants. 2025; 14(5):511. https://doi.org/10.3390/antiox14050511
Chicago/Turabian StyleRościszewska-Żukowska, Iwona, Marek Biesiadecki, Mateusz Mołoń, Aleksandra Rożek, Halina Bartosik-Psujek, and Sabina Galiniak. 2025. "Elevated Oxidative Stress in Patients with Coexisting Multiple Sclerosis and Migraine: A Cross-Sectional Study" Antioxidants 14, no. 5: 511. https://doi.org/10.3390/antiox14050511
APA StyleRościszewska-Żukowska, I., Biesiadecki, M., Mołoń, M., Rożek, A., Bartosik-Psujek, H., & Galiniak, S. (2025). Elevated Oxidative Stress in Patients with Coexisting Multiple Sclerosis and Migraine: A Cross-Sectional Study. Antioxidants, 14(5), 511. https://doi.org/10.3390/antiox14050511