Effect of Exogenous Melatonin Supply on Potato Plants Grown In Vitro
Abstract
1. Introduction
1.1. Melatonin
1.2. Degradation Products of MT
1.3. MT and Other Phytohormones
1.4. Quantification of MT
1.5. Enzymes Involved in the Synthesis of MT and IAA
2. Materials and Methods
2.1. MT and Ultrasound Treatments of In Vitro Plant Material
2.2. Sampling Times and Measurements of Morphological Parameters and Chlorophyll Content
2.3. ELISA
2.4. Sample Preparation for UHPLC-MS
2.5. UHPLC-MS Analysis
2.6. Salicylic Acid
2.7. RNA Isolation
2.8. RT-qPCR Reaction
2.9. Statistical Analyses
3. Results
3.1. Effects of the Exogenous MT and After-Effects of Ultrasonication on the Growth Parameters and Chlorophyll Content of In Vitro Potato Plantlets
3.2. Melatonin Concentration by ELISA and UHPLC-MS
3.3. Melatonin Degradation Products
3.4. Indole-3-Acetic Acid (IAA)
3.5. Salicylic Acid
3.6. Relative Fold Change Analysis Compared to Control
3.6.1. TSA Gene
3.6.2. TSB1 and TSB2 Genes
3.6.3. TPH Gene
3.6.4. AANAT and SNAT Genes
3.6.5. ASMT and COMT Genes
3.6.6. TAA Gene
3.6.7. Gene Expression Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
5MTA | 5-Methoxytryptamine |
6HM | 6-Hydroxymelatonin |
AANAT | Arylalkylamine N-acetyltransferase |
AFMK | N-Acetyl-N-formyl-5-methoxykynuramine |
AMK | N-Acetyl-5-methoxykynuramine |
ASDAC | N-Acetylserotonin deacetylase |
ASMT | N-Acetylserotonin methyltransferase |
Chl a | Chlorophyll a |
Chl b | Chlorophyll b |
COMT | Caffeic acid O-methyltransferase |
ELISA | Enzyme-linked immunosorbent assay |
HPLC | High performance liquid chromatography |
IAA | Indole-3-acetic acid |
IDO | Indoleamine-2,3-dioxygenase |
M2H | Melatonin-2-hydroxylase |
M3H | Melatonin-3-hydroxylase |
MT | Melatonin |
MTUS | Melatonin and ultrasound treatment |
RNS | Reactive nitrogen species |
ROS | Reactive oxygen species |
SA | Salicylic acid |
SNAT | Serotonin N-acetyltransferase |
T5H | Tryptamine 5-hydroxylase |
TAA | Tryptophan aminotransferase |
TDC | Tryptophan decarboxylase |
TPH | Tryptophan hydroxylase |
TSA | Tryptophan synthase A |
TSB1 | Tryptophan synthase B1 |
TSB2 | Tryptophan synthase B2 |
US | Ultrasound treatment |
References
- Bateman, A.; Coggill, P.; Finn, R.D. DUFs: Families in search of function. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2010, 66, 1148–1152. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Lone, J.K.; Pandey, R.; Mondal, N.; Dhandapani, R.; . Meena, S.K. Insights into morphological and physio-biochemical adaptive responses in mungbean (Vigna radiata L.) under heat stress. Front. Genet. 2023, 14, 1206451. [Google Scholar] [CrossRef]
- Raza, A.; Salehi, H.; Rahman, M.A.; Zahid, Z.; Madadkar Haghjou, M.; Najafi-Kakavand, S.; Charagh, S.; Osman, H.S.; Albaqami, M.; Zhuang, Y.; et al. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. Front. Plant Sci. 2022, 13, 961872. [Google Scholar] [CrossRef] [PubMed]
- Guzman, M.G.; Cellini, F.; Fotopoulos, V.; Balestrini, R.; Arbona, V. New approaches to improve crop tolerance to biotic and abiotic stresses. Physiol. Plant 2022, 174, e13547. [Google Scholar] [CrossRef]
- Dubbels, R.; Reiter, R.J.; Klenke, E.; Goebel, A.; Schnakenberg, E.; Ehlers, C.; Schiwara, H.W.; Schloot, W. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J. Pineal Res. 1995, 18, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Sheshadri, S.; Nishanth, M.; Yamine, V.; Simon, B. Effect of melatonin on the stability and expression of reference genes in Catharanthus roseus. Sci. Rep. 2018, 8, 2222. [Google Scholar] [CrossRef]
- Park, S.; Back, K. Melatonin promotes seminal root elongation and root growth in transgenic rice after germination. J. Pineal Res. 2012, 53, 385–389. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin promotes adventitious- and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. J. Pineal Res. 2007, 42, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin: A new plant hormone and/or a plant master regulator? Trends. Plant Sci. 2019, 24, 38–48. [Google Scholar] [CrossRef]
- Li, H.; Chang, J.; Chen, H.; Wang, Z.; Gu, X.; Wei, C.; Zhang, Y.; Ma, J.; Yang, J.; Zhang, X. Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front. Plant Sci. 2017, 8, 295. [Google Scholar] [CrossRef]
- Wang, Y.; Zafar, N.; Ali, Q.; Manghwar, H.; Wang, G.; Yu, L. CRISPR/Cas genome editing technologies for plant improvement against biotic and abiotic stresses: Advances, limitations, and future perspectives. Cells 2022, 11, 3928. [Google Scholar] [CrossRef] [PubMed]
- Lerner, A.B.; Case, J.D.; Takahashi, Y.; Lee, T.H.; Mori, W. Isolation of melatonin, a pineal factor that lightens melanocytes. J. Am. Chem. Soc. 1958, 80, 2587. [Google Scholar] [CrossRef]
- Lerner, A.; Case, J.; Mori, W.; Wright, M. Melatonin in peripheral nerve. Nature 1959, 183, 1821. [Google Scholar] [CrossRef] [PubMed]
- Hattori, A.; Migitaka, H.; Iigo, M.; Yamamoto, K.; Ohtani-Kaneko, R.; Hara, M.; Suzuki, T.; Reiter, R.J. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem. Mol. Biol. Int. 1995, 35, 627–634. [Google Scholar]
- Hernández-Ruiz, J.; Cano, A.; Arnao, M.B. Melatonin: Growth-stimulating compound present in lupin tissues. Planta 2004, 220, 140–144. [Google Scholar] [CrossRef]
- Lee, H.Y.; Lee, K.; Back, K. Knockout of Arabidopsis serotonin N-Acetyltransferase-2 reduces melatonin levels and delays flowering. Biomolecules 2019, 9, 712. [Google Scholar] [CrossRef]
- Lei, X.Y.; Zhu, R.Y.; Zhang, G.Y.; Dai, Y.R. Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: The possible involvement of polyamines. J. Pineal Res. 2004, 36, 126–131. [Google Scholar] [CrossRef]
- Zhao, H.; Su, T.; Huo, L.; Wei, H.; Jiang, Y.; Xu, L.; Ma, F. Unveiling the mechanism of melatonin impacts on maize seedling growth: Sugar metabolism as a case. J. Pineal Res. 2015, 59, 255–266. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Functions of melatonin in plants: A review. J. Pineal Res. 2015, 59, 133–150. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin: Plant growth regulator and/or biostimulator during stress? Trends Plant Sci. 2014, 19, 789–797. [Google Scholar] [CrossRef]
- Sharif, R.; Xie, C.; Zhang, H.; Arnao, M.; Ali, M.B.; Ali, Q.; Muhammad, I.; Shalmani, A.; Nawaz, M.; Chen, P.; et al. Melatonin and its effects on plant systems. Molecules 2018, 23, 2352. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.; Hernández-Ruiz, J. Is phytomelatonin a new plant hormone? Agronomy 2020, 10, 95. [Google Scholar] [CrossRef]
- Van Tassel, D.L.; Roberts, N.J.; O’Neill, S.D. Melatonin from higher plants: Isolation and identification of N-acetyl-5-methoxytryptamine. Plant Physiol. 1995, 108S, 101. [Google Scholar]
- Harumi, T.; Matsushima, S. Separation and assay methods for melatonin and its precursors. J. Chromatogr. B 2000, 747, 95–110. [Google Scholar] [CrossRef]
- Yang, S.; Zheng, X.; Xu, Y.; Zhou, X. Rapid determination of serum melatonin by ESI-MS-MS with direct sample injection. J. Pharm. Biomed. Anal. 2002, 30, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.-X.; Manchester, L.C.; Esteban-Zubero, E.; Zhou, Z.; Reiter, R.J. Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism. Molecules 2015, 20, 18886–18906. [Google Scholar] [CrossRef]
- Hernández-Ruiz, J.; Arnao, M.B. Relationship of Melatonin and Salicylic Acid in Biotic/Abiotic Plant Stress Responses. Agronomy 2018, 8, 33. [Google Scholar] [CrossRef]
- Teale, W.D.; Paponov, I.A.; Palme, K. Auxin in action: Signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 2006, 7, 847–859. [Google Scholar] [CrossRef]
- Wang, W.X.; Vinocur, B.; Altman, A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 2003, 218, 1–14. [Google Scholar] [CrossRef]
- Duca, D.R.; Glick, B.R. Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Appl. Microbiol. Biotechnol. 2020, 104, 8607–8619. [Google Scholar] [CrossRef] [PubMed]
- Shamsul, H.; Aqil, A.; Alyemeni, M.N. (Eds.) Salicylic Acid: Plant, Growth and Development; Springer: London, UK, 2013. [Google Scholar]
- Vlot, A.C.; Dempsey, D.A.; Klessig, D.F. Salicylic acid, a multi-faceted hormone to combat disease. Annu. Rev. Phytopathol. 2009, 47, 177–206. [Google Scholar] [CrossRef] [PubMed]
- Eberhard, S.; Doubrava, N.; Marfa, V.; Mohnen, D.; Southwick, A.; Darvill, A.; Albersheim, P. Pectic cell wall fragments regulate tobacco thin-cell-layer explant morphogenesis. Plant Cell. 1989, 1, 747. [Google Scholar] [CrossRef]
- Pál, M.; Kovács, V.; Szalai, G.; Soós, V.; Ma, X.; Liu, H.; Mei, H.; Janda, T. Salicylic acid and abiotic stress responses in rice. J. Agron. Crop Sci. 2014, 200, 1–11. [Google Scholar] [CrossRef]
- Raskin, I.; Ehmann, A.; Melander, W.R.; Bastiaan, J.D.M. Salicylic acid: A natural inducer of heat production in Arum lilies. Science 1987, 237, 1601–1602. [Google Scholar] [CrossRef]
- Marina Pérez-Llorca, M.; Muñoz, P.; Müller, M. Biosynthesis, Metabolism and Function of Auxin, Salicylic Acid and Melatonin in Climacteric and Non-climacteric Fruits. Front. Plant Sci. 2019, 10, 136. [Google Scholar] [CrossRef]
- Kennaway, D.J. A critical review of melatonin assays: Past andpresent. J. Pineal Res. 2019, 67, e12572. [Google Scholar] [CrossRef]
- Fourtillan, J.B.; Gobin, P.; Faye, B.; Girault, J. A highly sensitive assay ofmelatonin at the femotogram level in human plasma by gas chro-matography/negative ion chemical ionization mass spectrometry. Biol. Mass Spectrom. 1994, 23, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Lewy, A.J.; Markey, S.P. Analysis of melatonin in human plasma bygas chromatography negative chemical ionization mass spectrom-etry. Science 1978, 201, 741–743. [Google Scholar] [CrossRef]
- Rodriguez-Naranjo, M.I.; Gil-Izquierdo, A.; Troncoso, A.M.; Cantos, E.; Garcia-Parrilla, M.C. Melatonin: A new bioactive compound in wine. J. Food Compos. Anal. 2011, 24, 603–608. [Google Scholar] [CrossRef]
- Back, K.; Tan, D.-X.; Reiter, R.J. Melatonin biosynthesis in plants: Multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J. Pineal Res. 2016, 61, 426–437. [Google Scholar] [CrossRef]
- Hwang, O.-J.; Back, K. Functional Characterization of Arylalkylamine N-Acetyltransferase, a Pivotal Gene in Antioxidant Melatonin Biosynthesis from Chlamydomonas reinhardtii. Antioxidants 2022, 11, 1531. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Nonhebel, H.M. Tryptophan-Independent Indole-3-Acetic Acid Synthesis: Critical Evaluation of the Evidence. Plant Physiol. 2015, 169, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Teixeira da Silva, J.A.; Hidvégi, N.; Gulyás, A.; Tóth, B.; Dobránszki, J. Transcriptomic response of In vitro potato (Solanum tuberosum L.) to piezoelectric ultrasound. Plant Mol. Biol. Rep. 2020, 38, 404–418. [Google Scholar] [CrossRef]
- Pesti-Asbóth, G.; Bíróné Molnár, P.; Forgács, I.N.; Dobránszki, J.; Gálné Remenyik, J. Ultrasonication affects the melatonin and auxin levels and the antioxidant system in potato in vitro. Front. Plant Sci. 2022, 13, 979141. [Google Scholar] [CrossRef]
- Dobránszki, J.; Mendler-Drienyovszki, N. Cytokinin-induced changes in the chlorophyll content and fluorescence of in vitro apple leaves. J. Plant Physiol. 2014, 171, 1472–1478. [Google Scholar] [CrossRef]
- Dobránszki, J.; Asbóth, G.; Homoki, D.; Bíró-Molnár, P.; Teixeira da Silva, J.A.; Remenyik, J. Ultrasonication of in vitro potato single node explants: Activation and recovery of antioxidant defence system and growth responses. Plant Physiol. Biochem. 2017, 121, 153–160. [Google Scholar] [CrossRef]
- Huang, W.E.; Wang, H.; Zheng, H.; Huang, L.; Singer, A.C.; Thompson, I.; Whiteley, A.S. Chromosomally located gene fusions constructed in Acinetobacter sp. ADP1 for the detection of salicylate. Environ. Microbiol. 2005, 7, 1339–1348. [Google Scholar] [CrossRef]
- Huang, W.E.; Huang, L.; Preston, G.M.; Martin, N.; Carr, J.P.; Yanhong, L.; Singer, A.C.; Whiteley, A.S.; Hui, W. Quantitative in situ assay of salicylic acid in tobacco leaves using a genetically modified biosensor strain of Acinetobacter sp. ADP1. Plant J. 2006, 46, 1073–1083. [Google Scholar] [CrossRef]
- DeFraia, C.T.; Schmelz, E.A.; Mou, Z. A rapid biosensor-based method for quantification of free and glucose-conjugated salicylic acid. Plant Methods 2008, 4, 28. [Google Scholar] [CrossRef]
- Marra, A.; McGrane, T.J.; Henson, C.P.; Pandharipande, P.P. Melatonin in Critical Care. Crit. Care Clin. 2019, 35, 329–340. [Google Scholar] [CrossRef]
- Härtter, S.; Ursing, C.; Morita, S.; Tybring, G.; von Bahr, C.; Christensen, M.; Röjdmark, S.; Bertilsson, L. Orally given melatonin may serve as a probe drug for cytochrome P450 1A2 activity in vivo: A pilot study. Clin. Pharmacol. Ther. 2001, 70, 10–16. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, C.; Xu, L.; Niu, H.; Liu, Q.; Huang, Y.; Lv, G.; Yang, H.; Li, M. Melatonin and Indole-3-Acetic Acid Synergistically Regulate Plant Growth and Stress Resistance. Cells 2022, 11, 3250. [Google Scholar] [CrossRef]
- Comai, S.A.; Bertazzo, A.; Brughera, M.; Crotti, S. Chapter Five—Tryptophan in health and disease. Adv. Clin. Chem. 2020, 95, 165–218. [Google Scholar] [CrossRef]
- Jones, R.W. Melatonin Effects on Potato Yield and Disease Resistance Assessed Through Exogenous application and Endogenous Modification. Potato Res. 2025. [Google Scholar] [CrossRef]
- Shin, S.; Oh, H.; Park, H.R.; Joo, E.Y.; Lee, S.-Y. A Sensitive and Specific Liquid Chromatography-Tandem Mass Spectrometry Assay for Simultaneous Quantification of Salivary Melatonin and Cortisol: Development and Comparison with Immunoassays. Ann. Lab. Med. 2021, 41, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, R.; Khan, T. Application of exogenous melatonin in vitro and in planta: A review of its effects and mechanisms of action. Biotechnol. Lett. 2022, 44, 933–950. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sun, X.; Li, C.; Wei, Z.; Liang, D.; Ma, F. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J. Pineal Res. 2013, 54, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Spoel, S.H.; Dong, X. Salicylic acid in plant immunity and beyond. Plant Cell 2024, 36, 1451–1464. [Google Scholar] [CrossRef]
Gene | Forward Primer | Reverse Primer | Probe |
---|---|---|---|
β-tubulin LOC102577588 | GAT GTT GTG CCA AAG GAT GT | AAC TTG TGG TCA ATG CGA GA | 6-Fam-TGT GGC CAC CAT CAA GAC CAA-BHQ-1 |
COMT LOC102590869 | AGT GGA TTT GTC ATG ATT GGA G | GTG GAA GTT GAT GTG TCT GG | 6-Fam-CAA ATG GGA AAG TGA TAA TTG CGG A-BHQ-1 |
SNAT LOC102597415 | GCT TCT CTT TAA CCC CAT CTC | GGA GAT TGA GAG TTT TGT GG | 6-Fam-TGG TGA TTG GAA TGG GAA TGG G-BHQ-1 |
TSB1 LOC110769205 | TGC TAA TGA CGA GGA CTT TCA G | TCT TCA GAT AAA CGT GAG GCC | |
TSB2 LOC110748759 | TTT GGT CTT GAG TGT GAG GTG | CGG TTA AGT TAG ATG GAG ATG GG | |
TAA LOC110773598 | CCT GTA CCT TTA TGC TTC CTC G | TCT GCC CAA TTA CCC CAA AC | |
TPH LOC4351945 | CCA ACA CAT CTC CAT TGC TG | TGG TGA GCT CCA TAT CGT C | |
AANAT LOC110757692 | GGA GTA CAG GAA GAC GAA GAG | CGT CCC ATA TAG TTG CGT TG | |
ASMT LOC4346795 | GGT AGA GGA TAG CAG TGT CG | GCA CTT GAT GTC AGG TG | |
TSA LOC110763488 | GCA GTT GGT TTT GGC ATC TC | TGC TAG TTC CTT CAA CCC TTC |
Treatments | ||||
---|---|---|---|---|
Control | US | MT | MTUS | |
Shoot number/explant (n = 150/treatment) | 1.2 ± 0.049 a | 1.3 ± 0.54 a | 1.0 ± 0.026 b | 1.3 ± 0.057 a |
Shoot length (mm) (n = 150/treatment) | 23.07 ± 0.61 a | 22.15 ± 0.73 a | 12.43 ± 0.75 c | 17.33 ± 0.90 b |
Number of nodes/plantlet (n = 150/treatment) | 4.22 ± 0.12 b | 4.17 ± 0.12 b | 3.44 ± 0.19 c | 5.07 ± 0.18 a |
Shoot weight (mg/vessel) (n = 5/treatment) | 1004.2 ± 125.8 ab | 1462.5 ± 180.9 a | 623.6 ± 78.2 b | 908.4 ± 163.7 ab |
Root length (mm) (n = 150/treatment) | 19.01 ± 0.88 a | 20.19 ± 0.92 a | 9.66 ± 0.56 c | 16.29 ± 0.93 b |
Root weight (mg/vessel) (n = 5/treatment) | 515.2 ± 31.1 a | 617.3 ± 73.5 a | 136.9 ± 39.6 b | 184.3 ± 30.0 b |
Treatments | ||||
---|---|---|---|---|
Control | US | MT | MTUS | |
Shoot number/explant (n = 150/treatment) | 1.2 ± 0.024 b | 1.1 ± 0.023 b | 1.4 ± 0.040 a | 1.2 ± 0.025 b |
Shoot length (mm) (n = 150/treatment) | 45.41 ± 0.825 a | 39.43 ± 0.703 b | 39.43 ± 0.865 b | 36.33 ± 0.728 c |
Number of nodes/plantlet (n = 150/treatment) | 6.86 ± 0.087 b | 6.91 ± 0.091 b | 7.58 ± 0.114 a | 6.17 ± 0.090 c |
Shoot weight (mg/vessel) (n = 5/treatment) | 2448.0 ± 174.8 b | 3255.5 ± 83.19 a | 2758.5 ± 145.0 ab | 3000.0 ± 115.1 a |
Root length (mm) (n = 150/treatment) | 77.05 ± 1.21 b | 85.91 ± 1.36 a | 72.79 ± 1.85 b | 85.80 ± 1.88 a |
Root weight (mg/vessel) (n = 5/treatment) | 2611.1 ± 262.6 a | 2650.2 ± 194.1 a | 1582.5 ± 113.1 b | 1485.5 ± 118.2 b |
chl a content (µg/g FW) (n = 6/treatment) | 655.5 ± 65.2 b | 610.8 ± 46.1 b | 1944.3 ± 221.1 a | 1688.2 ± 59.01 a |
chl b content (µg/g FW) (n = 6/treatment) | 222.3 ± 19.1 b | 204.0 ± 13.1 b | 634.1 ± 48.9 a | 560.1 ± 13.37 a |
chl a + chl b content (µg/g FW) | 879.4 ± 83.9 b | 816.2 ± 58.7 b | 2582.9 ± 270.4 a | 2252.3 ± 71.2 a |
chl a/chl b | 2.94 ± 0.08 a | 2.99 ± 0.07 a | 3.05 ± 0.11 a | 3.01 ± 0.06 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kun-Nemes, A.; Farkas, D.; Szilágyi-Tolnai, E.; Fazekas, M.É.; Paholcsek, M.; Stündl, L.; Bíróné Molnár, P.; Cziáky, Z.; Dobránszki, J.; Remenyik, J.G. Effect of Exogenous Melatonin Supply on Potato Plants Grown In Vitro. Antioxidants 2025, 14, 917. https://doi.org/10.3390/antiox14080917
Kun-Nemes A, Farkas D, Szilágyi-Tolnai E, Fazekas MÉ, Paholcsek M, Stündl L, Bíróné Molnár P, Cziáky Z, Dobránszki J, Remenyik JG. Effect of Exogenous Melatonin Supply on Potato Plants Grown In Vitro. Antioxidants. 2025; 14(8):917. https://doi.org/10.3390/antiox14080917
Chicago/Turabian StyleKun-Nemes, Andrea, Dóra Farkas, Emese Szilágyi-Tolnai, Mónika Éva Fazekas, Melinda Paholcsek, László Stündl, Piroska Bíróné Molnár, Zoltán Cziáky, Judit Dobránszki, and Judit Gálné Remenyik. 2025. "Effect of Exogenous Melatonin Supply on Potato Plants Grown In Vitro" Antioxidants 14, no. 8: 917. https://doi.org/10.3390/antiox14080917
APA StyleKun-Nemes, A., Farkas, D., Szilágyi-Tolnai, E., Fazekas, M. É., Paholcsek, M., Stündl, L., Bíróné Molnár, P., Cziáky, Z., Dobránszki, J., & Remenyik, J. G. (2025). Effect of Exogenous Melatonin Supply on Potato Plants Grown In Vitro. Antioxidants, 14(8), 917. https://doi.org/10.3390/antiox14080917