Phytochemical Constituents, Antioxidant, Cytotoxic, and Antimicrobial Activities of the Ethanolic Extract of Mexican Brown Propolis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrumentation
2.3. Propolis Samples
2.4. Antioxidant Activity
2.5. Total Phenol and Total Flavonoid Content
2.6. Extraction and Isolation of Compounds 1–12 from EEP GUA-4
2.7. Head Space Solid Phase Microextraction (HS-SPME), GC-MS Analysis, and Identification of Volatile Components
2.8. Cell Culture
2.9. Antibacterial Activity
3. Results and Discussion
3.1. Total Phenol and Flavonoid Content
3.2. Antioxidant Activity Assays
3.3. Cytotoxicity of EEP on Cancer Cells
3.4. Antibacterial Activity
3.5. Chemical Composition of EEP GUA-4
3.6. Volatile Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bankova, V.; Bertelli, D.; Borba, R.; Conti, B.J.; da Silva Cunha, I.B.; Danert, C.; Eberlin, M.N.; I Falcão, S.; Isla, M.I.; Moreno, M.I.N.; et al. Standard methods for Apis mellifera propolis research. J. Apic. Res. 2016, 58, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Salatino, A.; Fernandes-Silva, C.C.; Righi, A.A.; Salatino, M.L. Propolis research and the chemistry of plant products. Nat. Prod. Res. 2011, 28, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Kuropatnicki, A.K.; Szliszka, E.; Krol, W. Historical aspects of propolis research in modern times. Evid. Based Cmnplement. Altern. Med. eCAM 2013, 2013, 964149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toreti, V.C.; Sato, H.H.; Pastore, G.M.; Park, Y.K. Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evid. Based Cmnplement. Altern. Med. eCAM 2013, 2013, 697390. [Google Scholar] [CrossRef]
- Christov, R.; Trusheva, B.; Popova, M.; Bankova, V.; Bertrand, M. Chemical composition of propolis from canada, its antiradical activity and plant origin. Nat. Prod. Res. 2006, 20, 531–536. [Google Scholar] [CrossRef]
- Karapetsas, A.; Voulgaridou, G.-P.; Konialis, M.; Tsochantaridis, I.; Kynigopoulos, S.; Lambropoulou, M.; Stavropoulou, M.-I.; Stathopoulou, K.; Aligiannis, N.; Bozidis, P.; et al. Propolis extracts inhibit UV-induced photodamage in human experimental in vitro skin models. Antioxidants 2019, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Nna, V.U.; Abu Bakar, A.B.; Ahmad, A.; Eleazu, C.O.; Mohamed, M. Oxidative stress, NF-κb-mediated inflammation and apoptosis in the testes of streptozotocin–induced diabetic rats: Combined protective effects of malaysian propolis and metformin. Antioxidants 2019, 8, 465. [Google Scholar] [CrossRef] [Green Version]
- Papotti, G.; Bertelli, D.; Bortolotti, L.; Plessi, M. Chemical and functional characterization of italian propolis obtained by different harvesting methods. J. Agric. Food. Chem. 2012, 60, 2852–2862. [Google Scholar] [CrossRef]
- Navarro-Navarro, M.; Ruiz-Bustos, P.; Valencia, D.; Robles-Zepeda, R.; Ruiz-Bustos, E.; Virues, C.; Hernandez, J.; Dominguez, Z.; Velazquez, C. Antibacterial activity of sonoran propolis and some of its constituents against clinically significant vibrio species. Foodborne Pathog. Dis. 2013, 10, 150–158. [Google Scholar] [CrossRef]
- Li, F.; Awale, S.; Tezuka, Y.; Esumi, H.; Kadota, S. Study on the constituents of mexican propolis and their cytotoxic activity against panc-1 human pancreatic cancer cells. J. Nat. Prod. 2010, 73, 623–627. [Google Scholar] [CrossRef]
- Li, F.; Awale, S.; Tezuka, Y.; Kadota, S. Cytotoxicity of constituents from mexican propolis against a panel of six different cancer cell lines. Nat. Prod. Commun. 2010, 5, 1601–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotti, C.; Campo Fernandez, M.; Piccinelli, A.L.; Cuesta-Rubio, O.; Marquez Hernandez, I.; Rastrelli, L. Chemical constituents of red mexican propolis. J. Agric. Food Chem. 2010, 58, 2209–2213. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Moore, J.; Yu, L. High-throughput relative DPPH radical scavenging capacity assay. J. Agric. Food Chem. 2006, 54, 7429–7436. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Fan, W.; Dong, J.; Lu, J.; Chen, J.; Shan, L.; Lin, Y.; Kong, W. Evaluation of antioxidant activities and total phenolic contents of typical malting barley varieties. Food Chem. 2007, 107, 296–304. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vit. 1965, 16, 144–158. [Google Scholar]
- Marquele, F.D.; Di Mambro, V.M.; Georgetti, S.R.; Casagrande, R.; Valim, Y.M.L.; Fonseca, M.J.V. Assessment of the antioxidant activities of brazilian extracts of propolis alone and in topical pharmaceutical formulations. J. Pharm. Biomed. Anal. 2005, 39, 455–462. [Google Scholar] [CrossRef]
- Torres-González, A.; López-Rivera, P.; Duarte-Lisci, G.; López-Ramírez, Á.; Correa-Benítez, A.; Rivero-Cruz, J.F. Analysis of volatile components from Melipona beecheii geopropolis from Southeast Mexico by headspace solid-phase microextraction. Nat. Prod. Res. 2016, 30, 237–240. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Linstrom, P.J. NIST Chemistry Webbook, NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard, 10th ed.; M07-A11; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Escarpa, A.; González, M. Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Anal. Chim. Acta 2001, 427, 119–127. [Google Scholar] [CrossRef]
- Valencia, D.; Alday, E.; Robles-Zepeda, R.; Garibay-Escobar, A.; Galvez-Ruiz, J.C.; Salas-Reyes, M.; Jimenez-Estrada, M.; Velazquez-Contreras, E.; Hernandez, J.; Velazquez, C. Seasonal effect on chemical composition and biological activities of sonoran propolis. Food Chem. 2012, 131, 645–651. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Chem. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Lima, B.; Tapia, A.; Luna, L.; Fabani, M.P.; Schmeda-Hirschmann, G.; Podio, N.S.; Wunderlin, D.A.; Feresin, G.E. Main flavonoids, dpph activity, and metal content allow determination of the geographical origin of propolis from the province of San Juan (Argentina). J. Agric. Food Chem. 2009, 57, 2691–2698. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, H.; Kobayashi, Y.; Goto, T.; Kasemura, K.; Nomura, M. DPPH radical-scavenging effect of several phenylpropanoid compounds and their glycoside derivatives. Yakugaku Zasshi J. Pharm. Soc. Jpn. 2005, 125, 371–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pengfei, L.; Tiansheng, D.; Xianglin, H.; Jianguo, W. Antioxidant properties of isolated isorhamnetin from the sea buckthorn marc. Plant Foods Hum. Nutr. 2009, 64, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.T.; Zou, Y.L.; Deng, R.; Shan, H. Extraction, purification and antiradical activities of alpinetin and cardamomin from alpinia katsumadai hayata. Asian J. Chem. 2013, 25, 9503–9507. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011, 82, 513–523. [Google Scholar] [CrossRef]
- Benguedouar, L.; Lahouel, M.; Gangloff, S.C.; Durlach, A.; Grange, F.; Bernard, P.; Antonicelli, F. Ethanolic extract of Algerian propolis and galangin decreased murine melanoma T. Anticancer Agents Med. Chem. 2016, 16, 1172–1183. [Google Scholar] [CrossRef]
- Celińska-Janowicz, K.; Zaręba, I.; Lazarek, U.; Teul, J.; Tomczyk, M.; Pałka, J.; Miltyk, W. Constituents of Propolis: Chrysin, Caffeic Acid, p-Coumaric Acid, and Ferulic Acid Induce PRODH/POX-Dependent Apoptosis in Human Tongue Squamous Cell Carcinoma Cell (CAL-27). Front. Pharmacol. 2018, 9, 336. [Google Scholar] [CrossRef] [Green Version]
- Velazquez, C.; Navarro, M.; Acosta, A.; Angulo, A.; Dominguez, Z.; Robles, R.; Robles-Zepeda, R.; Lugo, E.; Goycoolea, F.M.; Velazquez, E.F.; et al. Antibacterial and free-radical scavenging activities of Sonoran propolis. J. Appl. Microbiol. 2007, 103, 1747–1756. [Google Scholar] [CrossRef]
- Bertelli, D.; Papotti, G.; Bortolotti, L.; Marcazzan, G.L.; Plessi, M. 1H-NMR simultaneous identification of health-relevant compounds in propolis extracts. Phytochem. Anal. 2012, 23, 260–266. [Google Scholar] [CrossRef]
- Wawer, I.; Zielinska, A. 13c cp/mas nmr studies of flavonoids. Magn. Reson. Chem. 2001, 39, 374–380. [Google Scholar] [CrossRef]
- Dominguez, X.A.; Franco, R.; Zamudio, A.; Barradas, D.D.M.; Watson, W.H.; Zabel, V.; Merijanian, A. Mexican medicinal plants. Part 38. Flavonoids from Dalea scandens var. Paucifolia and Dalea thyrsiflora. Phytochemistry 1980, 19, 1262–1263. [Google Scholar] [CrossRef]
- Rossi, M.H.; Yoshida, M.; Soares Maia, J.G. Neolignans, styrylpyrones and flavonoids from an aniba species. Phytochemistry 1997, 45, 1263–1269. [Google Scholar] [CrossRef]
- Hosny, M.; Dhar, K.; Rosazza, J.P.N. Hydroxylations and methylations of quercetin, fisetin, and catechin by Streptomyces griseus. J. Nat. Prod. 2001, 64, 462–465. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Wei, Y.; Ito, Y. Preparative isolation of isorhamnetin from Stigma maydis using high-speed countercurrent chromatography. J. Liq. Chromatogr. Relat. Technol. 2009, 32, 273–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagy, M.; Suchy, V.; Uhrin, D.; Ubik, K.; Budesinsky, M.; Grancai, D. Constituents of propolis of Czechoslovak origin. V. Chem. Pap. 1988, 42, 691–696. [Google Scholar]
- Falcão, S.; Vilas-Boas, M.; Estevinho, L.; Barros, C.; Domingues, M.M.; Cardoso, S. Phenolic characterization of northeast portuguese propolis: Usual and unusual compounds. Anal. Bioanal. Chem. 2010, 396, 887–897. [Google Scholar] [CrossRef] [Green Version]
- Gardana, C.; Scaglianti, M.; Pietta, P.; Simonetti, P. Analysis of the polyphenolic fraction of propolis from different sources by liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 2007, 45, 390–399. [Google Scholar] [CrossRef]
- Falcao, S.I.; Vale, N.; Gomes, P.; Domingues, M.R.M.; Freire, C.; Cardoso, S.M.; Vilas-Boas, M. Phenolic profiling of portuguese propolis by LC-MS spectrometry: Uncommon propolis rich in flavonoid glycosides. Phytochem. Anal. 2013, 24, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Pellati, F.; Prencipe, F.P.; Benvenuti, S. Headspace solid-phase microextraction-gas chromatography-mass spectrometry characterization of propolis volatile compounds. J. Pharm. Biomed. Anal. 2013, 84, 103–111. [Google Scholar] [CrossRef]
- Pino, J.A.; Marbot, R.; Delgado, A.; Zumarraga, C.; Sauri, E. Volatile constituents of propolis from honey bees and stingless bees from Yucatan. J. Essent. Oil Res. 2006, 18, 53–56. [Google Scholar] [CrossRef]
Code | Location of Recollection | Year of Recollection | Harvesting Method | Weight (g) |
---|---|---|---|---|
GUA-1 | Silao | 2018 | plastic nest | 6.0 |
GUA-2 | Irapuato | 2018 | plastic nest | 8.50 |
GUA-3 | Irapuato | 2019 | plastic nest | 6.95 |
GUA-4 | Silao | 2019 | plastic nest | 32.0 |
Compounds | IC50 (μg/mL) | |
---|---|---|
DPPH | ABTS | |
EEP GUA-4 | 67.9 ± 0.1 | 98.7 ± 0.5 |
pinocembrin (1) | 23.5 ± 1.8 | 44.8 ± 2.1 |
chrysin (2) | 10.7 ± 0.2 | 16.3 ± 0.8 |
galangin (3) | 15.3 ± 0.5 | 26.8 ± 0.1 |
alpinetin (4) | 47.3 ± 1.9 | 69.5 ± 0.7 |
5-methylpinobanksin ether (5) | 98.4 ± 2.3 | 126.9 ± 4.5 |
dillenetin (6) | 35.7 ± 3.5 | 48.9 ± 2.9 |
isorhamnetin (7) | 21.4 ± 3.1 | 36.7 ± 4.6 |
5-methylgalangin ether (8) | 63.2 ± 2.6 | 94.2 ± 6.2 |
5-methylchrysin ether (9) | 112.9 ± 1.9 | 158.4 ± 4.9 |
ferulic acid (10) | 9.9 ± 0.7 | 16.7 ± 0.2 |
syringic acid (11) | 9.8 ± 0.4 | 13.0 ± 0.9 |
caffeic acid (12) | 5.9 ± 0.4 | 9.7 ± 0.5 |
Quercetin | 9.9 ± 2.5 | 16.1 ± 2.1 |
Trolox | 6.3 ± 1.4 | 3.8 ± 1.2 |
ascorbic acid | 43.2 ± 10.3 | 36.8 ± 2.5 |
Cell Line | IC50 | Reference Drug | Reference Concentration |
---|---|---|---|
C6 | 92.2 µg/mL | Temozolamide | IC30 250 µM (50 µg/mL) |
HeLa | >100 µg/mL (357 µg/mL) | Cisplatin | IC50 46 µM (14 µg/mL) |
SiHa | >100 µg/mL (500 µg/mL) | IC50 121 µM (36 µg/mL) | |
CaSki | >100 µg/mL (538 µg/mL) | IC50 163 µM (50 µg/mL) |
Compounds | MIC b (μg/mL) | |||
---|---|---|---|---|
S. mutans | S. oralis | S. sanguinis | P. gingivalis | |
EEP | 250 | 125 | 125 | 500 |
EOP | 500 | 500 | 500 | 1000 |
pinocembrin (1) | 256 | 128 | 128 | 512 |
chrysin (2) | 512 | 512 | 512 | 1024 |
galangin (3) | 256 | 256 | 256 | 1024 |
alpinetin (4) | 128 | 256 | 128 | 516 |
ferulic acid (10) | 500 | 250 | 250 | 500 |
syringic acid (11) | 250 | 250 | 250 | 500 |
caffeic acid (12) | 128 | 128 | 128 | 256 |
nonanal (13) | 256 | 256 | 128 | 512 |
neryl alcohol (15) | 1024 | 512 | 512 | 1024 |
α-pinene (16) | 250 | 250 | 250 | 500 |
α-pinene (17) | 500 | 500 | 500 | 500 |
a CHX | 0.02 | 0.02 | 0.02 | 0.12 |
Name | Retention Index | Area % | Method of Identification | |
---|---|---|---|---|
1 | α-pinene | 939 | 8.046 | a, b, c |
2 | β-pinene | 979 | 12.179 | a, b, c |
3 | 1-octen-3-ol | 982 | 12.129 | a, b |
4 | ethyl hexanoate | 1003 | 0.042 | a, b, c |
5 | Octanal | 1006 | 1.273 | a, b |
6 | Sylvestrene | 1030 | 3.022 | a, b |
7 | acetophenone | 1076 | 0.486 | a, b |
8 | 1-octanol | 1078 | 0.107 | a, b |
9 | Thujone | 1102 | 0.276 | a, b |
10 | p-cymenene | 1082 | 0.291 | a, b |
11 | Nonanal | 1100 | 18.829 | a, b, c |
12 | 6-methyl-3,5-heptadiene-2-one | 1105 | 6.803 | a, b |
13 | Eucalyptol | 1039 | 0.472 | a, b, c |
14 | Camphor | 1146 | 0.583 | a, b, c |
15 | trans-pinocamphone | 1162 | 2.386 | a, b |
16 | trans-terpineol | 1163 | 0.102 | a, b |
17 | p-menth-1,5-dien-8-ol | 1167 | 1.097 | a, b |
18 | (2E)-nonenal | 1168 | 1.097 | a, b |
19 | m-cymen-8-ol | 1180 | 1.024 | a, b, c |
20 | Unknown 1 | 1185 | 0.064 | - |
21 | α-terpineol | 1189 | 1.571 | a, b |
22 | Myrtenol | 1193 | 1.571 | a, b |
23 | d-fenchone | 1187 | 1.828 | a, b |
24 | p-cymen-9-ol | 1207 | 3.108 | a, b, c |
25 | neryl alcohol | 1217 | 10.135 | a, b |
26 | trans-carveol | 1219 | 2.953 | a, b |
27 | Citronellol | 1228 | 1.916 | a, b |
28 | Ocimenone | 1230 | 0.727 | a, b |
29 | cis-chrysanthenyl acetate | 1253 | 0.243 | a, b |
30 | Geraniol | 1278 | 0.314 | a, b |
31 | neodehydro carveol acetate | 1307 | 1.843 | a, b |
32 | ethyl nonanoate | 1319 | 1.283 | a, b |
33 | trans-carvyl acetate | 1337 | 0.357 | a, b |
34 | α-longipinene | 1352 | 0.181 | a, b |
35 | β-cububene | 1388 | 0.248 | a, b |
36 | β-bourbonene | 1398 | 0.217 | a, b |
37 | n-decyl acetate | 1408 | 0.109 | a, b |
38 | trans-geranylacetone | 1455 | 0.429 | a, b |
39 | γ-gelinene | 1485 | 0.103 | a, b |
40 | β-bisabolene | 1509 | 0.290 | a, b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivero-Cruz, J.F.; Granados-Pineda, J.; Pedraza-Chaverri, J.; Pérez-Rojas, J.M.; Kumar-Passari, A.; Diaz-Ruiz, G.; Rivero-Cruz, B.E. Phytochemical Constituents, Antioxidant, Cytotoxic, and Antimicrobial Activities of the Ethanolic Extract of Mexican Brown Propolis. Antioxidants 2020, 9, 70. https://doi.org/10.3390/antiox9010070
Rivero-Cruz JF, Granados-Pineda J, Pedraza-Chaverri J, Pérez-Rojas JM, Kumar-Passari A, Diaz-Ruiz G, Rivero-Cruz BE. Phytochemical Constituents, Antioxidant, Cytotoxic, and Antimicrobial Activities of the Ethanolic Extract of Mexican Brown Propolis. Antioxidants. 2020; 9(1):70. https://doi.org/10.3390/antiox9010070
Chicago/Turabian StyleRivero-Cruz, J. Fausto, Jessica Granados-Pineda, José Pedraza-Chaverri, Jazmin Marlen Pérez-Rojas, Ajit Kumar-Passari, Gloria Diaz-Ruiz, and Blanca Estela Rivero-Cruz. 2020. "Phytochemical Constituents, Antioxidant, Cytotoxic, and Antimicrobial Activities of the Ethanolic Extract of Mexican Brown Propolis" Antioxidants 9, no. 1: 70. https://doi.org/10.3390/antiox9010070
APA StyleRivero-Cruz, J. F., Granados-Pineda, J., Pedraza-Chaverri, J., Pérez-Rojas, J. M., Kumar-Passari, A., Diaz-Ruiz, G., & Rivero-Cruz, B. E. (2020). Phytochemical Constituents, Antioxidant, Cytotoxic, and Antimicrobial Activities of the Ethanolic Extract of Mexican Brown Propolis. Antioxidants, 9(1), 70. https://doi.org/10.3390/antiox9010070