Current Advances in Zika Vaccine Development
Abstract
:1. Introduction
2. ZIKV DNA Vaccines
3. ZIKV mRNA Vaccines
4. ZIKV Viral Vector Vaccines
5. ZIKV Virus-Like Particles (VLPs) Vaccines
6. ZIKV Purified Inactivated Vaccine
7. ZIKV Live Attenuated Vaccine
8. ZIKV Peptide-Based Vaccines
9. ZIKV Recombinant Protein Vaccines
10. Anti-ZIKV Monoclonal Antibodies Vaccines
11. Anti-ZIKV Mosquito Salivary Protein Vaccines
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Shan, C.; Xia, H.; Haller, S.L.; Azar, S.R.; Liu, Y.; Liu, J.; Muruato, A.E.; Chen, R.; Rossi, S.L.; Wakamiya, M.; et al. A zika virus envelope mutation preceding the 2015 epidemic enhances virulence and fitness for transmission. Proc. Natl. Acad. Sci. USA 2020, 117, 20190–20197. [Google Scholar] [CrossRef] [PubMed]
- Prasad, V.M.; Miller, A.S.; Klose, T.; Sirohi, D.; Buda, G.; Jiang, W.; Kuhn, R.J.; Rossmann, M.G. Structure of the immature zika virus at 9 a resolution. Nat. Struct Mol. Biol. 2017, 24, 184–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Fernandez, E.; Dowd, K.A.; Speer, S.D.; Platt, D.J.; Gorman, M.J.; Govero, J.; Nelson, C.A.; Pierson, T.C.; Diamond, M.S.; et al. Structural basis of zika virus-specific antibody protection. Cell 2016, 166, 1016–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dick, G.W.; Kitchen, S.F.; Haddow, A.J. Zika virus. I. Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 1952, 46, 509–520. [Google Scholar] [CrossRef]
- Safadi, M.A.P.; Almeida, F.J.; de Avila Kfouri, R. Zika virus outbreak in brazil-lessons learned and perspectives for a safe and effective vaccine. Anat. Rec. (Hoboken) 2021, 304, 1194–1201. [Google Scholar] [CrossRef]
- Gao, D.; Lou, Y.; He, D.; Porco, T.C.; Kuang, Y.; Chowell, G.; Ruan, S. Prevention and control of zika as a mosquito-borne and sexually transmitted disease: A mathematical modeling analysis. Sci. Rep. 2016, 6, 28070. [Google Scholar] [CrossRef] [Green Version]
- Brasil, P.; Vasconcelos, Z.; Kerin, T.; Gabaglia, C.R.; Ribeiro, I.P.; Bonaldo, M.C.; Damasceno, L.; Pone, M.V.; Pone, S.; Zin, A.; et al. Zika virus vertical transmission in children with confirmed antenatal exposure. Nat. Commun. 2020, 11, 3510. [Google Scholar] [CrossRef]
- Messina, J.P.; Kraemer, M.U.; Brady, O.J.; Pigott, D.M.; Shearer, F.M.; Weiss, D.J.; Golding, N.; Ruktanonchai, C.W.; Gething, P.W.; Cohn, E.; et al. Mapping global environmental suitability for zika virus. Elife 2016, 5, e15272. [Google Scholar] [CrossRef]
- Musso, D.; Gubler, D.J. Zika virus. Clin. Microbiol. Rev. 2016, 29, 487–524. [Google Scholar] [CrossRef] [Green Version]
- Plourde, A.R.; Bloch, E.M. A literature review of zika virus. Emerg. Infect. Dis. 2016, 22, 1185–1192. [Google Scholar] [CrossRef]
- Beattie, J.; Parajuli, S.; Sanger, M.; Lee, G.; Pleninger, P.; Crowley, G.; Kwon, S.; Murthy, V.; Manko, J.A.; Caplan, A.; et al. Zika virus-associated guillain-barre syndrome in a returning us traveler. Infect. Dis. Clin. Pract. (Baltim Md.) 2018, 26, e80–e84. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.J.; Blackman, M.A.; Lin, J.S. Pre-clinical pregnancy models for evaluating zika vaccines. Trop. Med. Infect. Dis. 2019, 4, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmgren, J.; Czerkinsky, C. Mucosal immunity and vaccines. Nat. Med. 2005, 11, S45–S53. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Chen, H.; An, J. Advances in zika vaccines. Wei Sheng Wu Xue Bao 2017, 57, 188–196. [Google Scholar] [PubMed]
- Ethics Working Group on, Z.R.; Pregnancy. Ethics, pregnancy, and zikv vaccine research & development. Vaccine 2017, 35, 6819–6822. [Google Scholar]
- Saiz, J.C. Therapeutic advances against zikv: A quick response, a long way to go. Pharmaceuticals 2019, 12, 127. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.H.; Yip, B.S.; Huang, L.M.; Wu, S.C. Zika virus structural biology and progress in vaccine development. Biotechnol. Adv. 2018, 36, 47–53. [Google Scholar] [CrossRef]
- Castanha, P.M.S.; Marques, E.T.A. A glimmer of hope: Recent updates and future challenges in zika vaccine development. Viruses 2020, 12, 1371. [Google Scholar] [CrossRef]
- Poland, G.A.; Ovsyannikova, I.G.; Kennedy, R.B. Zika vaccine development: Current status. Mayo. Clin. Proc. 2019, 94, 2572–2586. [Google Scholar] [CrossRef] [Green Version]
- Prakash, S. Development of covid 19 vaccine: A summarized review on global trials, efficacy, and effectiveness on variants. Diabetes. Metab. Syndr. 2022, 16, 102482. [Google Scholar] [CrossRef]
- Lowe, R.; Barcellos, C.; Brasil, P.; Cruz, O.G.; Honorio, N.A.; Kuper, H.; Carvalho, M.S. The zika virus epidemic in brazil: From discovery to future implications. Int. J. Environ. Res. Public Health 2018, 15, 96. [Google Scholar] [CrossRef] [PubMed]
- Vannice, K.S.; Cassetti, M.C.; Eisinger, R.W.; Hombach, J.; Knezevic, I.; Marston, H.D.; Wilder-Smith, A.; Cavaleri, M.; Krause, P.R. Demonstrating vaccine effectiveness during a waning epidemic: A who/nih meeting report on approaches to development and licensure of zika vaccine candidates. Vaccine 2019, 37, 863–868. [Google Scholar] [CrossRef] [PubMed]
- Barouch, D.H.; Thomas, S.J.; Michael, N.L. Prospects for a zika virus vaccine. Immunity 2017, 46, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Dickens, B.L.; Jit, M.; Cook, A.R.; Carrasco, L.R. Mapping the cryptic spread of the 2015-2016 global zika virus epidemic. BMC Med. 2020, 18, 399. [Google Scholar] [CrossRef] [PubMed]
- Pardy, R.D.; Valbon, S.F.; Cordeiro, B.; Krawczyk, C.M.; Richer, M.J. An epidemic zika virus isolate suppresses antiviral immunity by disrupting antigen presentation pathways. Nat. Commun. 2021, 12, 4051. [Google Scholar] [CrossRef]
- Wang, X.; Tai, W.; Zhang, X.; Zhou, Y.; Du, L.; Shen, C. Effects of adjuvants on the immunogenicity and efficacy of a zika virus envelope domain iii subunit vaccine. Vaccines 2019, 7, 161. [Google Scholar] [CrossRef] [Green Version]
- Lunardelli, V.A.S.; Apostolico, J.S.; Fernandes, E.R.; Santoro Rosa, D. Zika virus-an update on the current efforts for vaccine development. Hum. Vaccin. Immunother. 2021, 17, 904–908. [Google Scholar] [CrossRef]
- Sharma, A.; Zhang, X.; Dejnirattisai, W.; Dai, X.; Gong, D.; Wongwiwat, W.; Duquerroy, S.; Rouvinski, A.; Vaney, M.C.; Guardado-Calvo, P.; et al. The epitope arrangement on flavivirus particles contributes to mab c10’s extraordinary neutralization breadth across zika and dengue viruses. Cell 2021, 184, 6052–6066. [Google Scholar] [CrossRef]
- Davidson, A.H.; Traub-Dargatz, J.L.; Rodeheaver, R.M.; Ostlund, E.N.; Pedersen, D.D.; Moorhead, R.G.; Stricklin, J.B.; Dewell, R.D.; Roach, S.D.; Long, R.E.; et al. Immunologic responses to west nile virus in vaccinated and clinically affected horses. J. Am. Vet. Med. Assoc. 2005, 226, 240–245. [Google Scholar] [CrossRef]
- Garver, K.A.; LaPatra, S.E.; Kurath, G. Efficacy of an infectious hematopoietic necrosis (ihn) virus DNA vaccine in chinook oncorhynchus tshawytscha and sockeye o. Nerka salmon. Dis. Aquat. Organ. 2005, 64, 13–22. [Google Scholar] [CrossRef]
- Martin, J.E.; Sullivan, N.J.; Enama, M.E.; Gordon, I.J.; Roederer, M.; Koup, R.A.; Bailer, R.T.; Chakrabarti, B.K.; Bailey, M.A.; Gomez, P.L.; et al. A DNA vaccine for ebola virus is safe and immunogenic in a phase i clinical trial. Clin. Vaccine Immunol. 2006, 13, 1267–1277. [Google Scholar] [CrossRef] [PubMed]
- Boshra, H.; Lorenzo, G.; Rodriguez, F.; Brun, A. A DNA vaccine encoding ubiquitinated rift valley fever virus nucleoprotein provides consistent immunity and protects ifnar(-/-) mice upon lethal virus challenge. Vaccine 2011, 29, 4469–4475. [Google Scholar] [CrossRef] [PubMed]
- Porter, K.R.; Ewing, D.; Chen, L.; Wu, S.J.; Hayes, C.G.; Ferrari, M.; Teneza-Mora, N.; Raviprakash, K. Immunogenicity and protective efficacy of a vaxfectin-adjuvanted tetravalent dengue DNA vaccine. Vaccine 2012, 30, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Mallilankaraman, K.; Shedlock, D.J.; Bao, H.; Kawalekar, O.U.; Fagone, P.; Ramanathan, A.A.; Ferraro, B.; Stabenow, J.; Vijayachari, P.; Sundaram, S.G.; et al. A DNA vaccine against chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates. PLoS Negl. Trop. Dis. 2011, 5, e928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, K.M.; Tzeng, T.T.; Shen, K.Y.; Liao, H.C.; Lin, J.J.; Chen, M.Y.; Yu, G.Y.; Dou, H.Y.; Liao, C.L.; Chen, H.W.; et al. DNA vaccination induced protective immunity against sars cov-2 infection in hamsterss. PLoS Negl. Trop. Dis. 2021, 15, e0009374. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, B.; Morrow, M.P.; Hutnick, N.A.; Shin, T.H.; Lucke, C.E.; Weiner, D.B. Clinical applications of DNA vaccines: Current progress. Clin. Infect. Dis. 2011, 53, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Tebas, P.; Roberts, C.C.; Muthumani, K.; Reuschel, E.L.; Kudchodkar, S.B.; Zaidi, F.I.; White, S.; Khan, A.S.; Racine, T.; Choi, H.; et al. Safety and immunogenicity of an anti-zika virus DNA vaccine. N. Engl. J. Med. 2021, 385, e35. [Google Scholar] [CrossRef]
- Larocca, R.A.; Abbink, P.; Peron, J.P.; Zanotto, P.M.; Iampietro, M.J.; Badamchi-Zadeh, A.; Boyd, M.; Ng’ang’a, D.; Kirilova, M.; Nityanandam, R.; et al. Vaccine protection against zika virus from brazil. Nature 2016, 536, 474–478. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.H. DNA vaccines: Roles against diseases. Germs 2013, 3, 26–35. [Google Scholar] [CrossRef]
- Dowd, K.A.; Ko, S.Y.; Morabito, K.M.; Yang, E.S.; Pelc, R.S.; DeMaso, C.R.; Castilho, L.R.; Abbink, P.; Boyd, M.; Nityanandam, R.; et al. Rapid development of a DNA vaccine for zika virus. Science 2016, 354, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Gaudinski, M.R.; Houser, K.V.; Morabito, K.M.; Hu, Z.; Yamshchikov, G.; Rothwell, R.S.; Berkowitz, N.; Mendoza, F.; Saunders, J.G.; Novik, L.; et al. Safety, tolerability, and immunogenicity of two zika virus DNA vaccine candidates in healthy adults: Randomised, open-label, phase 1 clinical trials. Lancet 2018, 391, 552–562. [Google Scholar] [CrossRef]
- Lee, Y.H.; Lim, H.; Lee, J.A.; Kim, S.H.; Hwang, Y.H.; In, H.J.; Kim, M.Y.; Chung, G.T. Optimization of zika DNA vaccine by delivery systems. Virology 2021, 559, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Kudchodkar, S.B.; Choi, H.; Reuschel, E.L.; Esquivel, R.; Jin-Ah Kwon, J.; Jeong, M.; Maslow, J.N.; Reed, C.C.; White, S.; Kim, J.J.; et al. Rapid response to an emerging infectious disease—lessons learned from development of a synthetic DNA vaccine targeting zika virus. Microbes. Infect. 2018, 20, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Grubor-Bauk, B.; Wijesundara, D.K.; Masavuli, M.; Abbink, P.; Peterson, R.L.; Prow, N.A.; Larocca, R.A.; Mekonnen, Z.A.; Shrestha, A.; Eyre, N.S.; et al. Ns1 DNA vaccination protects against zika infection through t cell-mediated immunity in immunocompetent mice. Sci. Adv. 2019, 5, eaax2388. [Google Scholar] [CrossRef] [Green Version]
- Schlake, T.; Thess, A.; Fotin-Mleczek, M.; Kallen, K.J. Developing mrna-vaccine technologies. RNA Biol. 2012, 9, 1319–1330. [Google Scholar] [CrossRef] [Green Version]
- Wong, G.; Gao, G.F. An mrna-based vaccine strategy against zika. Cell Res. 2017, 27, 1077–1078. [Google Scholar] [CrossRef] [Green Version]
- Wollner, C.J.; Richner, J.M. Mrna vaccines against flaviviruses. Vaccines 2021, 9, 148. [Google Scholar] [CrossRef]
- Maruggi, G.; Zhang, C.; Li, J.; Ulmer, J.B.; Yu, D. Mrna as a transformative technology for vaccine development to control infectious diseases. Mol. Ther. 2019, 27, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Richner, J.M.; Himansu, S.; Dowd, K.A.; Butler, S.L.; Salazar, V.; Fox, J.M.; Julander, J.G.; Tang, W.W.; Shresta, S.; Pierson, T.C.; et al. Modified mrna vaccines protect against zika virus infection. Cell 2017, 168, 1114–1125. [Google Scholar] [CrossRef] [Green Version]
- VanBlargan, L.A.; Himansu, S.; Foreman, B.M.; Ebel, G.D.; Pierson, T.C.; Diamond, M.S. An mrna vaccine protects mice against multiple tick-transmitted flavivirus infections. Cell Rep. 2018, 25, 3382–3392. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Xu, K.; Li, J.; Huang, Q.; Song, J.; Han, Y.; Zheng, T.; Gao, P.; Lu, X.; Yang, H.; et al. Protective zika vaccines engineered to eliminate enhancement of dengue infection via immunodominance switch. Nat. Immunol. 2021, 22, 958–968. [Google Scholar] [CrossRef] [PubMed]
- Pardi, N.; Hogan, M.J.; Pelc, R.S.; Muramatsu, H.; Andersen, H.; DeMaso, C.R.; Dowd, K.A.; Sutherland, L.L.; Scearce, R.M.; Parks, R.; et al. Zika virus protection by a single low-dose nucleoside-modified mrna vaccination. Nature 2017, 543, 248–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina-Magues, L.G.; Gergen, J.; Jasny, E.; Petsch, B.; Lopera-Madrid, J.; Medina-Magues, E.S.; Salas-Quinchucua, C.; Osorio, J.E. Mrna vaccine protects against zika virus. Vaccines 2021, 9, 1464. [Google Scholar] [CrossRef] [PubMed]
- Brito, L.A.; Chan, M.; Shaw, C.A.; Hekele, A.; Carsillo, T.; Schaefer, M.; Archer, J.; Seubert, A.; Otten, G.R.; Beard, C.W.; et al. A cationic nanoemulsion for the delivery of next-generation rna vaccines. Mol. Ther. 2014, 22, 2118–2129. [Google Scholar] [CrossRef] [Green Version]
- Bloom, K.; van den Berg, F.; Arbuthnot, P. Self-amplifying rna vaccines for infectious diseases. Gene. Ther. 2021, 28, 117–129. [Google Scholar] [CrossRef]
- Luisi, K.; Morabito, K.M.; Burgomaster, K.E.; Sharma, M.; Kong, W.P.; Foreman, B.M.; Patel, S.; Fisher, B.; Aleshnick, M.A.; Laliberte, J.; et al. Development of a potent zika virus vaccine using self-amplifying messenger rna. Sci. Adv. 2020, 6, eaba5068. [Google Scholar] [CrossRef]
- Fortner, A.; Schumacher, D. First covid-19 vaccines receiving the us fda and ema emergency use authorization. Discoveries (Craiova) 2021, 9, e122. [Google Scholar] [CrossRef]
- Chaudhary, N.; Weissman, D.; Whitehead, K.A. Mrna vaccines for infectious diseases: Principles, delivery and clinical translation. Nat. Rev. Drug. Discov. 2021, 20, 817–838. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. Mrna vaccines—A new era in vaccinology. Nat. Rev. Drug. Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef] [Green Version]
- Abbink, P.; Stephenson, K.E.; Barouch, D.H. Zika virus vaccines. Nat. Rev. Microbiol. 2018, 16, 594–600. [Google Scholar] [CrossRef]
- Suleman, S.; Schrubaji, K.; Filippou, C.; Ignatova, S.; Hewitson, P.; Huddleston, J.; Karda, R.; Waddington, S.N.; Themis, M. Rapid and inexpensive purification of adenovirus vectors using an optimised aqueous two-phase technology. J. Virol. Methods. 2022, 299, 114305. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, L.; Kremer, E.J.; Shayakhmetov, D.M. Adenovirus-based vaccines-a platform for pandemic preparedness against emerging viral pathogens. Mol. Ther. 2022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhou, D. Adenoviral vector-based strategies against infectious disease and cancer. Hum. Vaccin. Immunother. 2016, 12, 2064–2074. [Google Scholar] [CrossRef] [Green Version]
- Shaw, A.R.; Suzuki, M. Immunology of adenoviral vectors in cancer therapy. Mol. Ther. Methods. Clin. Dev. 2019, 15, 418–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullard, B.L.; Corder, B.N.; Gorman, M.J.; Diamond, M.S.; Weaver, E.A. Efficacy of a T cell-biased adenovirus vector as a zika virus vaccine. Sci. Rep. 2018, 8, 18017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Q.; Chan, J.F.; Poon, V.K.; Wu, S.; Chan, C.C.; Hou, L.; Yip, C.C.; Ren, C.; Cai, J.P.; Zhao, M.; et al. Immunization with a novel human type 5 adenovirus-vectored vaccine expressing the premembrane and envelope proteins of zika virus provides consistent and sterilizing protection in multiple immunocompetent and immunocompromised animal models. J. Infect. Dis. 2018, 218, 365–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steffen, T.; Hassert, M.; Hoft, S.G.; Stone, E.T.; Zhang, J.; Geerling, E.; Grimberg, B.T.; Roberts, M.S.; Pinto, A.K.; Brien, J.D. Immunogenicity and efficacy of a recombinant human adenovirus type 5 vaccine against zika virus. Vaccines 2020, 8, 170. [Google Scholar] [CrossRef] [Green Version]
- Cox, F.; van der Fits, L.; Abbink, P.; Larocca, R.A.; van Huizen, E.; Saeland, E.; Verhagen, J.; Peterson, R.; Tolboom, J.; Kaufmann, B.; et al. Adenoviral vector type 26 encoding zika virus (zikv) m-env antigen induces humoral and cellular immune responses and protects mice and nonhuman primates against zikv challenge. PLoS ONE 2018, 13, e0202820. [Google Scholar] [CrossRef]
- Salisch, N.C.; Stephenson, K.E.; Williams, K.; Cox, F.; van der Fits, L.; Heerwegh, D.; Truyers, C.; Habets, M.N.; Kanjilal, D.G.; Larocca, R.A.; et al. A double-blind, randomized, placebo-controlled phase 1 study of ad26.Zikv.001, an ad26-vectored anti-zika virus vaccine. Ann. Intern. Med. 2021, 174, 585–594. [Google Scholar] [CrossRef]
- Bullard, B.L.; Corder, B.N.; Gordon, D.N.; Pierson, T.C.; Weaver, E.A. Characterization of a species e adenovirus vector as a zika virus vaccine. Sci. Rep. 2020, 10, 3613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Camacho, C.; De Lorenzo, G.; Slon-Campos, J.L.; Dowall, S.; Abbink, P.; Larocca, R.A.; Kim, Y.C.; Poggianella, M.; Graham, V.; Findlay-Wilson, S.; et al. Immunogenicity and efficacy of zika virus envelope domain iii in DNA, protein, and chadox1 adenoviral-vectored vaccines. Vaccines 2020, 8, 307. [Google Scholar] [CrossRef] [PubMed]
- Hazlewood, J.E.; Dumenil, T.; Le, T.T.; Slonchak, A.; Kazakoff, S.H.; Patch, A.M.; Gray, L.A.; Howley, P.M.; Liu, L.; Hayball, J.D.; et al. Injection site vaccinology of a recombinant vaccinia-based vector reveals diverse innate immune signatures. PLoS Pathog. 2021, 17, e1009215. [Google Scholar] [CrossRef] [PubMed]
- Prow, N.A.; Jimenez Martinez, R.; Hayball, J.D.; Howley, P.M.; Suhrbier, A. Poxvirus-based vector systems and the potential for multi-valent and multi-pathogen vaccines. Expert Rev. Vaccines 2018, 17, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Kitonsa, J.; Ggayi, A.B.; Anywaine, Z.; Kisaakye, E.; Nsangi, L.; Basajja, V.; Nyantaro, M.; Watson-Jones, D.; Shukarev, G.; Ilsbroux, I.; et al. Implementation of accelerated research: Strategies for implementation as applied in a phase 1 ad26.Zebov, mva-bn-filo two-dose ebola vaccine clinical trial in uganda. Glob. Health Action 2020, 13, 1829829. [Google Scholar] [CrossRef] [PubMed]
- Nagata, L.P.; Irwin, C.R.; Hu, W.G.; Evans, D.H. Vaccinia-based vaccines to biothreat and emerging viruses. Biotechnol. Genet. Eng. Rev. 2018, 34, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Pittman, P.R.; Hahn, M.; Lee, H.S.; Koca, C.; Samy, N.; Schmidt, D.; Hornung, J.; Weidenthaler, H.; Heery, C.R.; Meyer, T.P.H.; et al. Phase 3 efficacy trial of modified vaccinia ankara as a vaccine against smallpox. N. Engl. J. Med. 2019, 381, 1897–1908. [Google Scholar] [CrossRef]
- Prow, N.A.; Liu, L.; McCarthy, M.K.; Walters, K.; Kalkeri, R.; Geiger, J.; Koide, F.; Cooper, T.H.; Eldi, P.; Nakayama, E.; et al. The vaccinia virus based sementis copenhagen vector vaccine against zika and chikungunya is immunogenic in non-human primates. NPJ Vaccines 2020, 5, 44. [Google Scholar] [CrossRef]
- Perez, P.; Q Marín, M.; Lazaro-Frias, A.; Jimenez de Oya, N.; Blazquez, A.B.; Escribano-Romero, E.; CO, S.S.; Ortego, J.; Saiz, J.C.; Esteban, M.; et al. A vaccine based on a modified vaccinia virus ankara vector expressing zika virus structural proteins controls zika virus replication in mice. Sci. Rep. 2018, 8, 17385. [Google Scholar] [CrossRef] [Green Version]
- Brault, A.C.; Domi, A.; McDonald, E.M.; Talmi-Frank, D.; McCurley, N.; Basu, R.; Robinson, H.L.; Hellerstein, M.; Duggal, N.K.; Bowen, R.A.; et al. A zika vaccine targeting ns1 protein protects immunocompetent adult mice in a lethal challenge model. Sci. Rep. 2017, 7, 14769. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Yu, J.; Lu, M.; Ma, Y.; Attia, Z.; Shan, C.; Xue, M.; Liang, X.; Craig, K.; Makadiya, N.; et al. A zika virus vaccine expressing premembrane-envelope-ns1 polyprotein. Nat. Commun. 2018, 9, 3067. [Google Scholar]
- Bailey, M.J.; Broecker, F.; Duehr, J.; Arumemi, F.; Krammer, F.; Palese, P.; Tan, G.S. Antibodies elicited by an ns1-based vaccine protect mice against zika virus. MBio 2019, 10, e02861-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boigard, H.; Alimova, A.; Martin, G.R.; Katz, A.; Gottlieb, P.; Galarza, J.M. Zika virus-like particle (vlp) based vaccine. PLoS Negl. Trop. Dis. 2017, 11, e0005608. [Google Scholar] [CrossRef] [PubMed]
- Tariq, H.; Batool, S.; Asif, S.; Ali, M.; Abbasi, B.H. Virus-like particles: Revolutionary platforms for developing vaccines against emerging infectious diseases. Front Microbiol. 2021, 12, 790121. [Google Scholar] [CrossRef] [PubMed]
- Elong Ngono, A.; Vizcarra, E.A.; Tang, W.W.; Sheets, N.; Joo, Y.; Kim, K.; Gorman, M.J.; Diamond, M.S.; Shresta, S. Mapping and role of the cd8(+) t cell response during primary zika virus infection in mice. Cell Host Microbe 2017, 21, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Yan, D.; Wei, Y.Q.; Guo, H.C.; Sun, S.Q. The application of virus-like particles as vaccines and biological vehicles. Appl. Microbiol. Biotechnol. 2015, 99, 10415–10432. [Google Scholar] [CrossRef]
- Kuadkitkan, A.; Ramphan, S.; Worawichawong, S.; Sornjai, W.; Wikan, N.; Smith, D.R. Production of zika virus virus-like particles. Methods Mol. Biol. 2021, 2183, 183–203. [Google Scholar]
- Vang, L.; Morello, C.S.; Mendy, J.; Thompson, D.; Manayani, D.; Guenther, B.; Julander, J.; Sanford, D.; Jain, A.; Patel, A.; et al. Zika virus-like particle vaccine protects ag129 mice and rhesus macaques against zika virus. PLoS Negl. Trop. Dis. 2021, 15, e0009195. [Google Scholar] [CrossRef]
- Nambala, P.; Su, W.C. Role of zika virus prm protein in viral pathogenicity and use in vaccine development. Front Microbiol. 2018, 9, 1797. [Google Scholar] [CrossRef] [Green Version]
- Dejnirattisai, W.; Supasa, P.; Wongwiwat, W.; Rouvinski, A.; Barba-Spaeth, G.; Duangchinda, T.; Sakuntabhai, A.; Cao-Lormeau, V.M.; Malasit, P.; Rey, F.A.; et al. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat. Immunol. 2016, 17, 1102–1108. [Google Scholar] [CrossRef]
- Stettler, K.; Beltramello, M.; Espinosa, D.A.; Graham, V.; Cassotta, A.; Bianchi, S.; Vanzetta, F.; Minola, A.; Jaconi, S.; Mele, F.; et al. Specificity, cross-reactivity, and function of antibodies elicited by zika virus infection. Science 2016, 353, 823–826. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.H.; Yang, S.P.; Tsai, M.J.; Lin, G.C.; Wu, H.C.; Wu, S.C. Dengue and zika virus domain iii-flagellin fusion and glycan-masking e antigen for prime-boost immunization. Theranostics 2019, 9, 4811–4826. [Google Scholar] [CrossRef] [PubMed]
- Cimica, V.; Williams, S.; Adams-Fish, D.; McMahon, C.; Narayanan, A.; Rashid, S.; Stedman, T.T. Zika virus-like particle (vlp) vaccine displaying envelope (e) protein cd loop antigen elicits protective and specific immune response in a murine model. Biochem. Biophys. Res. Commun. 2020, 529, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zeng, G.; Pan, H.; Li, C.; Hu, Y.; Chu, K.; Han, W.; Chen, Z.; Tang, R.; Yin, W.; et al. Safety, tolerability, and immunogenicity of an inactivated sars-cov-2 vaccine in healthy adults aged 18-59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 2021, 21, 181–192. [Google Scholar] [CrossRef]
- Shields, K.E.; Lyerly, A.D. Exclusion of pregnant women from industry-sponsored clinical trials. Obstet. Gynecol. 2013, 122, 1077–1081. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Trieu, M.C.; Mohn, K.G.I.; Cox, R.J. Safety, immunogenicity, efficacy and effectiveness of inactivated influenza vaccines in healthy pregnant women and children under 5 years: An evidence-based clinical review. Front Immunol. 2021, 12, 744774. [Google Scholar] [CrossRef] [PubMed]
- Faria, N.R.; Azevedo, R.; Kraemer, M.U.G.; Souza, R.; Cunha, M.S.; Hill, S.C.; Theze, J.; Bonsall, M.B.; Bowden, T.A.; Rissanen, I.; et al. Zika virus in the americas: Early epidemiological and genetic findings. Science 2016, 352, 345–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephenson, K.E.; Tan, C.S.; Walsh, S.R.; Hale, A.; Ansel, J.L.; Kanjilal, D.G.; Jaegle, K.; Peter, L.; Borducchi, E.N.; Nkolola, J.P.; et al. Safety and immunogenicity of a zika purified inactivated virus vaccine given via standard, accelerated, or shortened schedules: A single-centre, double-blind, sequential-group, randomised, placebo-controlled, phase 1 trial. Lancet Infect. Dis. 2020, 20, 1061–1070. [Google Scholar] [CrossRef]
- Dussupt, V.; Sankhala, R.S.; Gromowski, G.D.; Donofrio, G.; De La Barrera, R.A.; Larocca, R.A.; Zaky, W.; Mendez-Rivera, L.; Choe, M.; Davidson, E.; et al. Potent zika and dengue cross-neutralizing antibodies induced by zika vaccination in a dengue-experienced donor. Nat. Med. 2020, 26, 228–235. [Google Scholar] [CrossRef]
- Han, H.H.; Diaz, C.; Acosta, C.J.; Liu, M.; Borkowski, A. Safety and immunogenicity of a purified inactivated zika virus vaccine candidate in healthy adults: An observer-blind, randomised, phase 1 trial. Lancet Infect. Dis. 2021, 21, 1282–1292. [Google Scholar] [CrossRef]
- Oh, H.S.; Yoon, J.W.; Lee, S.; Kim, S.O.; Hong, S.P. A purified inactivated vaccine derived from vero cell-adapted zika virus elicits protection in mice. Virology 2021, 560, 124–130. [Google Scholar] [CrossRef]
- Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol. 2021, 21, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.; Muruato, A.E.; Nunes, B.T.D.; Luo, H.; Xie, X.; Medeiros, D.B.A.; Wakamiya, M.; Tesh, R.B.; Barrett, A.D.; Wang, T.; et al. A live-attenuated zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat. Med. 2017, 23, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.; Xie, X.; Shi, P.Y. Zika virus vaccine: Progress and challenges. Cell Host Microbe 2018, 24, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Liu, X.; Shu, T.; Deng, W.; Liao, M.; Zheng, Y.; Zheng, X.; Zhang, X.; Li, T.; Fan, W.; et al. A live-attenuated zika virus vaccine with high production capacity confers effective protection in neonatal mice. J. Virol. 2021, 95, e0038321. [Google Scholar] [CrossRef]
- Li, X.F.; Dong, H.L.; Wang, H.J.; Huang, X.Y.; Qiu, Y.F.; Ji, X.; Ye, Q.; Li, C.; Liu, Y.; Deng, Y.Q.; et al. Development of a chimeric zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone. Nat. Commun. 2018, 9, 673. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Yang, Y.; Muruato, A.E.; Zou, J.; Shan, C.; Nunes, B.T.; Medeiros, D.B.; Vasconcelos, P.F.; Weaver, S.C.; Rossi, S.L.; et al. Understanding zika virus stability and developing a chimeric vaccine through functional analysis. MBio 2017, 8, e02134-16. [Google Scholar] [CrossRef] [Green Version]
- Chin, W.X.; Lee, R.C.H.; Kaur, P.; Lew, T.S.; Yogarajah, T.; Kong, H.Y.; Teo, Z.Y.; Salim, C.K.; Zhang, R.R.; Li, X.F.; et al. A single-dose live attenuated chimeric vaccine candidate against zika virus. NPJ Vaccines 2021, 6, 20. [Google Scholar] [CrossRef]
- Karwal, P.; Vats, I.D.; Sinha, N.; Singhal, A.; Sehgal, T.; Kumari, P. Therapeutic applications of peptides against zika virus: A review. Curr. Med. Chem. 2020, 27, 3906–3923. [Google Scholar] [CrossRef]
- Yang, H.; Kim, D.S. Peptide immunotherapy in vaccine development: From epitope to adjuvant. Adv. Protein. Chem. Struct Biol. 2015, 99, 1–14. [Google Scholar]
- Di Natale, C.; La Manna, S.; De Benedictis, I.; Brandi, P.; Marasco, D. Perspectives in peptide-based vaccination strategies for syndrome coronavirus 2 pandemic. Front Pharmacol. 2020, 11, 578382. [Google Scholar] [CrossRef]
- Nandy, A.; Manna, S.; Basak, S.C. Computational methodology for peptide vaccine design for zika virus: A bioinformatics approach. Methods Mol. Biol. 2020, 2131, 17–30. [Google Scholar] [PubMed]
- Dey, S.; Nandy, A.; Basak, S.C.; Nandy, P.; Das, S. A bioinformatics approach to designing a zika virus vaccine. Comput. Biol. Chem. 2017, 68, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, B.; Ashfaq, U.A.; Rahman, M.U.; Masoud, M.S.; Yousaf, M.Z. Conserved b and t cell epitopes prediction of ebola virus glycoprotein for vaccine development: An immuno-informatics approach. Microb. Pathog. 2019, 132, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Reche, P.; Flower, D.R.; Fridkis-Hareli, M.; Hoshino, Y. Peptide-based immunotherapeutics and vaccines 2017. J. Immunol. Res. 2018, 2018, 4568239. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.; Sharma, R.; Grover, A. Immuno-informatics guided designing of a multi-epitope vaccine against dengue and zika. J. Biomol. Struct Dyn. 2021, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ashfaq, U.A.; Ahmed, B. De novo structural modeling and conserved epitopes prediction of zika virus envelop protein for vaccine development. Viral. Immunol. 2016, 29, 436–443. [Google Scholar] [CrossRef]
- Alam, A.; Ali, S.; Ahamad, S.; Malik, M.Z.; Ishrat, R. From zikv genome to vaccine: In silico approach for the epitope-based peptide vaccine against zika virus envelope glycoprotein. Immunology 2016, 149, 386–399. [Google Scholar] [CrossRef] [Green Version]
- Shahid, F.; Ashfaq, U.A.; Javaid, A.; Khalid, H. Immunoinformatics guided rational design of a next generation multi epitope based peptide (mebp) vaccine by exploring zika virus proteome. Infect. Genet. Evol. 2020, 80, 104199. [Google Scholar] [CrossRef]
- Yang, C.; Gong, R.; de Val, N. Development of neutralizing antibodies against zika virus based on its envelope protein structure. Virol. Sin. 2019, 34, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Yang, R.; Liu, Z.; Li, M.; Liu, H.; Jin, X. Recombinant zika virus envelope protein elicited protective immunity against zika virus in immunocompetent mice. PLoS ONE 2018, 13, e0194860. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Ye, J.; Lu, P.; Jiang, R.; Yang, X.; Fu, Z.F.; Chen, H.; Cao, S. Induction of antigen-specific immune responses in mice by recombinant baculovirus expressing premembrane and envelope proteins of west nile virus. Virol. J. 2012, 9, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, P.; Zhang, W.; Li, D.; Zhang, C.; Liu, Q.; Zhang, X.; Wang, X.; Dai, W.; Xu, Y.; Leng, Q.; et al. Insect cell-produced recombinant protein subunit vaccines protect against zika virus infection. Antiviral. Res. 2018, 154, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Duong, V.T.; Shalash, A.O.; Skwarczynski, M.; Toth, I. Chemical conjugation strategies for the development of protein-based subunit nanovaccines. Vaccines 2021, 9, 563. [Google Scholar] [CrossRef] [PubMed]
- Cibulski, S.; Varela, A.P.M.; Teixeira, T.F.; Cancela, M.P.; Sesterheim, P.; Souza, D.O.; Roehe, P.M.; Silveira, F. Zika virus envelope domain iii recombinant protein delivered with saponin-based nanoadjuvant from quillaja brasiliensis enhances anti-zika immune responses, including neutralizing antibodies and splenocyte proliferation. Front Immunol. 2021, 12, 632714. [Google Scholar] [CrossRef] [PubMed]
- Halstead, S.B. Neutralization and antibody-dependent enhancement of dengue viruses. Adv. Virus. Res. 2003, 60, 421–467. [Google Scholar] [PubMed]
- Schlesinger, J.J.; Brandriss, M.W.; Walsh, E.E. Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein ns1. J. Gen. Virol. 1987, 68, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Cane, P.A.; Gould, E.A. Reduction of yellow fever virus mouse neurovirulence by immunization with a bacterially synthesized non-structural protein (ns1) fragment. J. Gen. Virol. 1988, 69, 1241–1246. [Google Scholar] [CrossRef]
- Wan, J.; Wang, T.; Xu, J.; Ouyang, T.; Wang, Q.; Zhang, Y.; Weng, S.; Li, Y.; Wang, Y.; Xin, X.; et al. Novel japanese encephalitis virus ns1-based vaccine: Truncated ns1 fused with e. Coli heat labile enterotoxin b subunit. EBioMedicine 2021, 67, 103353. [Google Scholar] [CrossRef]
- Itoh, Y.; Yoshida, R.; Shichinohe, S.; Higuchi, M.; Ishigaki, H.; Nakayama, M.; Pham, V.L.; Ishida, H.; Kitano, M.; Arikata, M.; et al. Protective efficacy of passive immunization with monoclonal antibodies in animal models of h5n1 highly pathogenic avian influenza virus infection. PLoS Pathog. 2014, 10, e1004192. [Google Scholar] [CrossRef]
- Sparrow, E.; Adetifa, I.; Chaiyakunapruk, N.; Cherian, T.; Fell, D.B.; Graham, B.S.; Innis, B.; Kaslow, D.C.; Karron, R.A.; Nair, H.; et al. Who preferred product characteristics for monoclonal antibodies for passive immunization against respiratory syncytial virus (rsv) disease in infants—key considerations for global use. Vaccine 2022, 40, 3506–3510. [Google Scholar] [CrossRef]
- Zhang, W.; Qu, P.; Li, D.; Zhang, C.; Liu, Q.; Zou, G.; Dupont-Rouzeyrol, M.; Lavillette, D.; Jin, X.; Yin, F.; et al. Yeast-produced subunit protein vaccine elicits broadly neutralizing antibodies that protect mice against zika virus lethal infection. Antiviral. Res. 2019, 170, 104578. [Google Scholar] [CrossRef] [PubMed]
- Utset, H.A.; Guthmiller, J.J.; Wilson, P.C. Bridging the b cell gap: Novel technologies to study antigen-specific human b cell responses. Vaccines 2021, 9, 711. [Google Scholar] [CrossRef]
- Dussupt, V.; Modjarrad, K.; Krebs, S.J. Landscape of monoclonal antibodies targeting zika and dengue: Therapeutic solutions and critical insights for vaccine development. Front Immunol. 2020, 11, 621043. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Kang, T.H.; Godon, O.; Watanabe, M.; Delidakis, G.; Gillis, C.M.; Sterlin, D.; Hardy, D.; Cogne, M.; Macdonald, L.E.; et al. An engineered human fc domain that behaves like a ph-toggle switch for ultra-long circulation persistence. Nat. Commun. 2019, 10, 5031. [Google Scholar] [CrossRef] [PubMed]
- Sievers, S.A.; Scharf, L.; West, A.P., Jr.; Bjorkman, P.J. Antibody engineering for increased potency, breadth and half-life. Curr. Opin. HIV AIDS 2015, 10, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, B.S.; Kwon, Y.C.; Ricciardi, M.J.; Stone, M.; Otsuka, Y.; Berri, F.; Kwal, J.M.; Magnani, D.M.; Jackson, C.B.; Richard, A.S.; et al. Zika virus-immune plasmas from symptomatic and asymptomatic individuals enhance zika pathogenesis in adult and pregnant mice. MBio 2019, 10, e00758-19. [Google Scholar] [CrossRef] [Green Version]
- Camargos, V.N.; Foureaux, G.; Medeiros, D.C.; da Silveira, V.T.; Queiroz-Junior, C.M.; Matosinhos, A.L.B.; Figueiredo, A.F.A.; Sousa, C.D.F.; Moreira, T.P.; Queiroz, V.F.; et al. In-depth characterization of congenital zika syndrome in immunocompetent mice: Antibody-dependent enhancement and an antiviral peptide therapy. EBioMedicine 2019, 44, 516–529. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Liu, X.; Ye, X.; Su, W.; Zhang, X.; Deng, W.; Luo, J.; Xiang, M.; Guo, W.; Zhang, S.; et al. Monoclonal antibodies against zika virus ns1 protein confer protection via fcgamma receptor-dependent and -independent pathways. MBio 2021, 12, e03179-20. [Google Scholar] [CrossRef]
- Carpio, K.L.; Barrett, A.D.T. Flavivirus ns1 and its potential in vaccine development. Vaccines 2021, 9, 622. [Google Scholar] [CrossRef]
- Manning, J.E.; Morens, D.M.; Kamhawi, S.; Valenzuela, J.G.; Memoli, M. Mosquito saliva: The hope for a universal arbovirus vaccine? J. Infect. Dis. 2018, 218, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Olajiga, O.; Holguin-Rocha, A.F.; Rippee-Brooks, M.; Eppler, M.; Harris, S.L.; Londono-Renteria, B. Vertebrate responses against arthropod salivary proteins and their therapeutic potential. Vaccines 2021, 9, 347. [Google Scholar] [CrossRef]
- Fontaine, A.; Diouf, I.; Bakkali, N.; Misse, D.; Pages, F.; Fusai, T.; Rogier, C.; Almeras, L. Implication of haematophagous arthropod salivary proteins in host-vector interactions. Parasit. Vectors. 2011, 4, 187. [Google Scholar] [CrossRef] [Green Version]
- Marin-Lopez, A.; Jiang, J.; Wang, Y.; Cao, Y.; MacNeil, T.; Hastings, A.K.; Fikrig, E. Aedes aegypti snap and a calcium transporter atpase influence dengue virus dissemination. PLoS Negl. Trop. Dis. 2021, 15, e0009442. [Google Scholar] [CrossRef]
- Neelakanta, G.; Sultana, H. Tick saliva and salivary glands: What do we know so far on their role in arthropod blood feeding and pathogen transmission. Front Cell Infect. Microbiol. 2021, 11, 816547. [Google Scholar] [CrossRef]
- Tirloni, L.; Calvo, E.; Konnai, S.; da Silva Vaz, I., Jr. Editorial: The role of saliva in arthropod-host-pathogen relationships. Front Cell Infect. Microbiol. 2020, 10, 630626. [Google Scholar] [CrossRef]
- Pierson, T.C.; Diamond, M.S. The continued threat of emerging flaviviruses. Nat. Microbiol. 2020, 5, 796–812. [Google Scholar] [CrossRef]
- Guerrero, D.; Cantaert, T.; Misse, D. Aedes mosquito salivary components and their effect on the immune response to arboviruses. Front Cell Infect. Microbiol. 2020, 10, 407. [Google Scholar] [CrossRef]
- Demarta-Gatsi, C.; Mecheri, S. Vector saliva controlled inflammatory response of the host may represent the achilles heel during pathogen transmission. J. Venom. Anim. Toxins Incl. Trop. Dis. 2021, 27, e20200155. [Google Scholar] [CrossRef]
- Hastings, A.K.; Uraki, R.; Gaitsch, H.; Dhaliwal, K.; Stanley, S.; Sproch, H.; Williamson, E.; MacNeil, T.; Marin-Lopez, A.; Hwang, J.; et al. Aedes aegypti nest1 protein enhances zika virus pathogenesis by activating neutrophils. J. Virol. 2019, 93, e00395-19. [Google Scholar] [CrossRef] [Green Version]
- Uraki, R.; Hastings, A.K.; Marin-Lopez, A.; Sumida, T.; Takahashi, T.; Grover, J.R.; Iwasaki, A.; Hafler, D.A.; Montgomery, R.R.; Fikrig, E. Aedes aegypti agbr1 antibodies modulate early zika virus infection of mice. Nat. Microbiol. 2019, 4, 948–955. [Google Scholar] [CrossRef]
- Wang, Y.; Marin-Lopez, A.; Jiang, J.; Ledizet, M.; Fikrig, E. Vaccination with aedes aegypti agbr1 delays lethal mosquito-borne zika virus infection in mice. Vaccines 2020, 8, 145. [Google Scholar] [CrossRef] [Green Version]
- Marin-Lopez, A.; Wang, Y.; Jiang, J.; Ledizet, M.; Fikrig, E. Agbr1 and nest1 antisera protect mice from aedes aegypti-borne zika infection. Vaccine 2021, 39, 1675–1679. [Google Scholar] [CrossRef]
- Jin, L.; Guo, X.; Shen, C.; Hao, X.; Sun, P.; Li, P.; Xu, T.; Hu, C.; Rose, O.; Zhou, H.; et al. Salivary factor ltrin from aedes aegypti facilitates the transmission of zika virus by interfering with the lymphotoxin-beta receptor. Nat. Immunol. 2018, 19, 342–353. [Google Scholar] [CrossRef]
- Sun, P.; Nie, K.; Zhu, Y.; Liu, Y.; Wu, P.; Liu, Z.; Du, S.; Fan, H.; Chen, C.H.; Zhang, R.; et al. A mosquito salivary protein promotes flavivirus transmission by activation of autophagy. Nat. Commun. 2020, 11, 260. [Google Scholar] [CrossRef]
Vaccine Platforms | Condition or Disease | ClinicalTrials.Gov Identifier | Intervention/Treatment | Phase | Recruitment Status | Sponsors and Collaborators |
---|---|---|---|---|---|---|
DNA Vaccine | Zika Infection | NCT02840487 [41] | Biological: VRC-ZKADNA085-00-VP | Phase 1 | Completed | National Institute of Allergy and Infectious Diseases (NIAID) |
Zika Infection | NCT02996461 [41] | Biological: VRC-ZKADNA090-00-VP | Phase 1 | Completed | NIAID | |
Zika virus | NCT02809443 [37] | Biological: GLS-5700 | Phase 1 | Completed | GeneOne Life Science, Inc. (Seoul, Korea), Inovio Pharmaceuticals | |
Zika Virus | NCT03110770 [41] | Biological: VRC-ZKADNA090-00-VP VRC-PBSPLA043-00-VP | Phase 2 | Completed | NIAID | |
mRNA Vaccine | Zika Virus | NCT04064905 [58] | Biological: mRNA-1893 Placebo | Phase 1 | Completed | ModernaTX, Inc. (Cambridge, UK) |
Zika Virus | NCT03014089 | Biological: mRNA-1325 Placebo | Phase 1 | Completed | ModernaTX, Inc. | |
Zika Virus | NCT04917861 [59] | Biological: mRNA-1893 Placebo | Phase 2 | Active, Not recruiting | ModernaTX, Inc. | |
Viral Vector Vaccine | Zika Virus | NCT04015648 | Biological: ChAdOx1 Zika | Phase 1 | Completed | University of Oxford |
Purified Inactivated Vaccine | Zika Virus | NCT02937233 | Biological: Zika Virus Purified Inactivated Vaccine Placebo | Phase 1 | Completed | Kathryn Stephenson, Walter Reed Army Institute of Research (WRAIR), NIAID |
Zika Virus | NCT02963909 | Biological: IXIARO Placebo YF Vax 17D Strain Zika Virus Purified Inactivated Vaccine (ZPIV) | Phase 1 | Completed | NIAID | |
Zika Virus | NCT03008122 | Biological: Zika Virus Purified Inactivated Vaccine (ZPIV) Placebo | Phase 1 | Completed | NIAID | |
Live Attenuated Vaccine | Zika Virus | NCT03611946 [107] | Biological: rZIKV/D4Δ30-713 Placebo | Phase 1 | Completed | NIAID |
Vaccine Platforms | Principle to Generate | Vaccine Candidates | Characteristics of Vaccine Platform |
---|---|---|---|
DNA Vaccine | Cloning an antigen(s) from a pathogen into a DNA plasmid | VRC5288 [41], VRC5283 [41], GLS-5700 [43] | Quickly designed and manufactured |
mRNA Vaccine | mRNA can be synthesized with virtually any desired sequence | ZIKV prM-E mRNA-LNP [53], mRNA (SAM) [54], mRNA-1893 [58] | Simplified, flexible, and fast vaccine production platform |
Viral Vector Vaccine | Ad vectors: insert a ZIKV prM-E gene expression cassette into human Ad vectors | Ad5-prM-E [65], Ad26.ZIKV.001 [69], ChAdOx1-EDIII [71] | Ad vectors are amenable to rapid, inexpensive scale-up since they are easy to engineer |
Poxvirus-based vectors: MVA is an attenuated poxvirus that is frequently used as viral vector | MVA-BN-Filo [74], MVA-ZIKV-NS1 [79] | Poxvirus-based vectors have a large payload capacity, potential for cold chain-independent distribution. | |
rVSV: expressing ZIKV prM-E-NS1 for protection against ZIKV infection and highlights an important role for NS1 in ZIKV-specific cellular immune responses | ZIKV prM-E-NS1 [80] | Antibody response against the Zika virus NS1 protein is long-lasting and functionally active | |
SCV: is derived from the Copenhagen strain of VACV | SCV-ZIKA/CHIK [72] | As a multi-disease vaccine platform capable of delivering multiple large immunogens | |
VLPs vaccines | Based on the use of structural proteins, can be achieved by different approaches including DNA (e.g., NIAID/VRC), mRNA (e.g., Moderna) | VLPs produced in HEK293 using the prM and E structural proteins [87], VLPs co-expression of the prM-E, prM-E-NS1, C-prM-E, and NS2B/NS3 in human cells [88], Zika-VLP [92] | A cost-effective, highly protective and safe ZIKV vaccination strategy, some of them representing a safer vaccine for preventing ADE |
Purified Inactivated Vaccine | Consisting of virus particles, bacteria, or other pathogens that have been grown in culture | ZPIV [96], Takeda’s TAK-426 [99], GMZ-002-PIV [100] | Have a long track record of safety in both pregnant women and fetuses |
Live Attenuated Vaccine | Reducing the virulence of a pathogen, but still keeping it viable | 3′UTR 10-del ZIKV [102], ZIKV rGZ02a [104], ChinZIKV [105], rZIKV/D4Δ30-713 [107] | Offer fast and durable immunity, but sometimes with the trade-off of reduced safety |
Peptide-based Vaccines | Composed of 20–30 aa made of synthetic B- or T-cells epitopes that can also be combined | Predicted specific epitopes including: human TLR2 [115], MHC-I, MHC-II [116] and MEBP [112] | High safety and low development cost |
Recombinant Protein Vaccines | Using both prokaryotic and eukaryotic expression systems to generate recombinant ZIKV EDIII, and the E80, which comprises EDI, EDII and EDIII | zEDIII with saponin-based nanoadjuvant IQB-80 from Q. brasiliensis [124], Zika-NS1 | Immunogenic and show protective efficacy |
Monoclonal Antibodies Vaccine | A form of immunotherapy that uses monoclonal antibodies (mAbs) | Anti-E80 and anti-EDIII sera [122], NS1-targeted MAbs [139] | One of the most thoroughly studied strategies to treat the infection and NS1-targeted MAbs have multifaceted protective effects |
Anti-ZIKV Mosquito Salivary Protein Vaccines | Creating vaccines against mosquito salivary proteins | NeSt1 [149], AgBR1 [150], LTRIN [153] | Arthropod saliva facilitates transmission of arthropod-borne pathogens, targeting a combination of mosquito saliva proteins could be an interesting approach for vaccine development |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ling, L.; Zhang, Z.; Marin-Lopez, A. Current Advances in Zika Vaccine Development. Vaccines 2022, 10, 1816. https://doi.org/10.3390/vaccines10111816
Wang Y, Ling L, Zhang Z, Marin-Lopez A. Current Advances in Zika Vaccine Development. Vaccines. 2022; 10(11):1816. https://doi.org/10.3390/vaccines10111816
Chicago/Turabian StyleWang, Yuchen, Lin Ling, Zilei Zhang, and Alejandro Marin-Lopez. 2022. "Current Advances in Zika Vaccine Development" Vaccines 10, no. 11: 1816. https://doi.org/10.3390/vaccines10111816
APA StyleWang, Y., Ling, L., Zhang, Z., & Marin-Lopez, A. (2022). Current Advances in Zika Vaccine Development. Vaccines, 10(11), 1816. https://doi.org/10.3390/vaccines10111816