Immunogenicity and Reactogenicity of the Booster Dose of COVID-19 Vaccines and Related Factors: A Panel Study from the General Population in Serbia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample and Procedure
2.3. Measurements
2.4. Sample Collection and Measurement of Immunogenicity
2.5. Reactogenity of Booster Dose
2.6. Statistical Analysis
2.7. Ethical Statement
3. Results
3.1. Characteristics of the Study Participants
3.2. Analysis of Immunogenicity
3.3. Analysis of Adverse Events after Booster Dose
3.4. Systemic Adverse Events 7 Days after the Booster Dose
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fiolet, T.; Kherabi, Y.; MacDonald, C.J.; Ghosn, J.; Peiffer-Smadja, N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review. Clin. Microbiol. Infect. 2022, 28, 202–221. [Google Scholar] [CrossRef] [PubMed]
- Christie, A.; Henley, S.J.; Mattocks, L.; Fernando, R.; Lansky, A.; Ahmad, F.B.; Adjemianet, J.; Anderson, R.N.; Binder, A.M.; Carey, K. Decreases in COVID-19 Cases, Emergency Department Visits, Hospital Admissions, and Deaths Among Older Adults Following the Introduction of COVID-19 Vaccine—United States, September 6, 2020–May 1, 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Mallapaty, S. Vaccines are curbing COVID: Data from Israel show drop in infections. Nature 2021, 590, 197. [Google Scholar] [CrossRef] [PubMed]
- Haas, E.J.; Angulo, F.J.; McLaughlin, J.M.; Anis, E.; Singer, S.R.; Khan, F.; Brooks, M.; Smaja, M.; Mircus, G.; Pan, K.; et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: An observational study using national surveillance data. Lancet 2021, 397, 1819–1829. [Google Scholar] [CrossRef]
- Shitrit, P.; Zuckerman, N.S.; Mor, O.; Gottesman, B.S.; Chowers, M. Nosocomial outbreak caused by the SARS-CoV-2 Delta variant in a highly vaccinated population, Israel, July 2021. Euro Surveill. 2021, 26, 2100822. [Google Scholar] [CrossRef]
- Favresse, J.; Bayart, J.L.; Mullier, F.; Elsen, M.; Eucher, C.; Van Eeckhoudt, S.; Roy, T.; Wieers, G.; Laurent, C.; Dogné, J.M.; et al. Antibody titres decline 3-month post-vaccination with BNT162b2. Emerg. Microbes Infect. 2021, 10, 1495–1498. [Google Scholar] [CrossRef]
- Grant, R.; Charmet, T.; Schaeffer, L.; Galmiche, S.; Madec, Y.; Von Platen, C.; Chény, O.; Omar, F.; David, C.; Rogoff, A.; et al. Impact of SARS-CoV-2 Delta variant on incubation, transmission settings and vaccine effectiveness: Results from a nationwide case-control study in France. Lancet Reg. Health Eur. 2021, 13, 100278. [Google Scholar] [CrossRef]
- Steensels, D.; Pierlet, N.; Penders, J.; Mesotten, D.; Heylen, L. Comparison of SARS-CoV-2 Antibody Response Following Vaccination with BNT162b2 and mRNA-1273. JAMA 2021, 326, 1533–1535. [Google Scholar] [CrossRef]
- Mahase, E. COVID-19: Third vaccine dose boosts immune response but may not be needed, say researchers. BMJ 2021, 373, n1659. [Google Scholar] [CrossRef]
- Sesa, G.; Siepmann, I.; Czabanowska, K.; Martin-Moreno, J.M.; Green, M.; Reid, J.; Middletonet, J. The Importance of Health Communication during Emergencies. The Mix-and-Match Question. 2021. Available online: https://www.aspher.org/download/796/aspher_dosemixing-23072021.pdf (accessed on 5 March 2022).
- Rashedi, R.; Samieefar, N.; Masoumi, N.; Mohseni, S.; Rezaei, N. COVID-19 vaccines mix-and-match: The concept, the efficacy and the doubts. J. Med. Virol. 2022, 94, 1294–1299. [Google Scholar] [CrossRef]
- Lijeskić, O.; Klun, I.; Djaković, M.S.; Gligorić, N.; Štajner, T.; Srbljanović, J.; Djurković-Djaković, O. Prospective Cohort Study of the Kinetics of Specific Antibodies to SARS-CoV-2 Infection and to Four SARS-CoV-2 Vaccines Available in Serbia, and Vaccine Effectiveness: A 3-Month Interim Report. Vaccines 2021, 9, 1031. [Google Scholar] [CrossRef] [PubMed]
- AlQahtani, M.; Bhattacharyya, S.; Alawadi, A.; Al Mahmeed, H.; Al Sayed, J.; Justman, J.; El-Sadr, W.M.; Hidary, J.; Mukherjee, S. Morbidity and mortality from COVID-19 post-vaccination breakthrough infections in association with various COVID-19 vaccines and the emergence of variants in the Kingdom of Bahrain. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Reuters. Serbia Authorises Third Shot of COVID-19 Vaccine, Minister Says. 15 August 2021. Available online: https://www.reuters.com/world/europe/serbia-authorises-third-shot-covid-19-vaccine-minister-says-2021-08-15 (accessed on 6 March 2022).
- Moghnieh, R.; Mekdashi, R.; El-Hassan, S.; Abdallah, D.; Jisr, T.; Bader, M.; Jizi, I.; Sayegh, M.H.; Bizri, A.R. Immunogenicity and reactogenicity of BNT162b2 booster in BBIBP-CorV-vaccinated individuals compared with homologous BNT162b2 vaccination: Results of a pilot prospective cohort study from Lebanon. Vaccine 2021, 39, 6713–6719. [Google Scholar] [CrossRef]
- Saiag, E.; Goldshmidt, H.; Sprecher, E.; Ben-Ami, R.; Bomze, D. Immunogenicity of a BNT162b2 vaccine booster in health-care workers. Lancet Microbe 2021, 2, e650. [Google Scholar] [CrossRef]
- Munro, A.P.S.; Janani, L.; Cornelius, V.; Aley, P.K.; Babbage, G.; Baxter, D.; Bula, M.; Cathie, K.; Chatterjee, K.; Dodd, K.; et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): A blinded, multicentre, randomised, controlled, phase 2 trial. Lancet 2021, 398, 2258–2276. [Google Scholar] [CrossRef]
- Angkasekwinai, N.; Niyomnaitham, S.; Sewatanon, J.; Phumiamorn, S.; Sukapirom, K.; Senawong, S.; Mahasirimongkol, S.; Quan Toh, Z.; Umrod, P.; Somporn, T.; et al. The immunogenicity and safety of different COVID19 booster vaccination following CoronaVac or ChAdOx1 nCoV-19 primary series. medRxiv 2021, preprint. [Google Scholar]
- Kerekes, S.; Ji, M.; Shih, S.F.; Chang, H.Y.; Harapan, H.; Rajamoorthy, Y.; Singh, A.; Kanwar, S.; Wagner, A.L. Differential Effect of Vaccine Effectiveness and Safety on COVID-19 Vaccine Acceptance across Socioeconomic Groups in an International Sample. Vaccines 2021, 9, 1010. [Google Scholar] [CrossRef]
- Wagner, A.L.; Sheinfeld Gorin, S.; Boulton, M.L.; Glover, B.A.; Morenoff, J.D. Effect of vaccine effectiveness and safety on COVID-19 vaccine acceptance in Detroit, Michigan, July 2020. Hum. Vaccine Immunother. 2021, 17, 2940–2945. [Google Scholar] [CrossRef]
- Kaplan, R.M.; Milstein, A. Influence of a COVID-19 vaccine’s effectiveness and safety profile on vaccination acceptance. Proc. Natl. Acad. Sci. USA 2021, 118, e2021726118. [Google Scholar] [CrossRef]
- Barda, N.; Dagan, N.; Cohen, C.; Hernán, M.A.; Lipsitch, M.; Kohane, I.S.; Reis, B.Y.; Balicer, R.D. Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: An observational study. Lancet 2021, 398, 2093–2100. [Google Scholar] [CrossRef]
- G-Power. Available online: https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower (accessed on 5 March 2022).
- Institute of Public Health of Serbia “Dr Milan Jovanović Batut”. National Methodological Guidelines for COVID-19 Vaccination. Available online: https://www.batut.org.rs/download/smuZaVanrednuPreporucenuImunizacijuProtivCOVID19.pdf (accessed on 5 March 2022).
- Center for Disease Control and Prevention. Understanding Adverse Events and Side Effects. Available online: https://www.cdc.gov/vaccinesafety/ensuringsafety/sideeffects/index.html (accessed on 5 March 2022).
- Dashdorj, N.J.; Wirz, O.F.; Röltgen, K.; Haraguchi, E.; Buzzanco AS 3rd Sibai, M.; Wang, H.; Miller, J.A.; Solis, D.; Sahoo, M.K.; Arunachalam, P.S.; et al. Direct comparison of antibody responses to four SARS-CoV-2 vaccines in Mongolia. Cell Host Microbe 2021, 29, 1738–1743.e4. [Google Scholar] [CrossRef] [PubMed]
- Hillus, D.; Schwarz, T.; Tober-Lau, P.; Vanshylla, K.; Hastor, H.; Thibeault, C.; Jentzsch, S.; Helbig, E.T.; Lippert, L.J.; Tscheak, P.; et al. Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunisation with ChAdOx1 nCoV-19 and BNT162b2: A prospective cohort study. Lancet Respir. Med. 2021, 9, 1255–1265. [Google Scholar] [CrossRef]
- Vályi-Nagy, I.; Matula, Z.; Gönczi, M.; Tasnády, S.; Bekő, G.; Réti, M.; Ajzner, É.; Uher, F. Comparison of antibody and T cell responses elicited by BBIBP-CorV (Sinopharm) and BNT162b2 (Pfizer-BioNTech) vaccines against SARS-CoV-2 in healthy adult humans. Geroscience 2021, 43, 2321–2331. [Google Scholar] [CrossRef] [PubMed]
- Barros-Martins, J.; Hammerschmidt, S.I.; Cossmann, A.; Odak, I.; Stankov, M.V.; Morillas Ramos, G.; Dopfer-Jablonka, A.; Heidemann, A.; Ritter, C.; Friedrichsen, M.; et al. Immune responses against SARS-CoV-2 variants after heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination. Nat. Med. 2021, 27, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.; Wu, Q.; Pan, H.; Li, M.; Yang, J.; Wang, L.; Wu, Z.; Jiang, D.; Deng, X.; Chu, K.; et al. Immunogenicity, and safety of a third dose of CoronaVac, and immune persistence of a two-dose schedule, in healthy adults: Interim results from two single-centre, double-blind, randomised, placebo-controlled phase 2 clinical trials. Lancet Infect. Dis. 2021. [Google Scholar] [CrossRef]
- Atmar, R.L.; Lyke, K.E.; Deming, M.E.; Jackson, L.A.; Branche, A.R.; El Sahly, H.M.; Rostad, C.A.; Martin, J.M.; Johnston, C.; Rupp, R.E.; et al. Homologous and Heterologous COVID-19 Booster Vaccinations. N. Engl. J. Med. 2022, NEJMoa2116414. [Google Scholar] [CrossRef]
- Petrović, V.; Vuković, V.; Patić, A.; Marković, M.; Ristić, M. Immunogenicity of BNT162b2, BBIBP-CorV and Gam-COVID-Vac vaccines and immunity after natural SARS-CoV-2 infection-A comparative study from Novi Sad, Serbia. PLoS ONE 2022, 17, e0263468. [Google Scholar] [CrossRef]
- Keskin, A.U.; Bolukcu, S.; Ciragil, P.; Topkaya, A.E. SARS-CoV-2 specific antibody responses after third CoronaVac or BNT162b2 vaccine following two-dose CoronaVac vaccine regimen. J. Med. Virol. 2022, 94, 39–41. [Google Scholar] [CrossRef]
- Pormohammad, A.; Zarei, M.; Ghorbani, S.; Mohammadi, M.; Razizadeh, M.H.; Turner, D.L.; Turner, R.J. Efficacy and Safety of COVID-19 Vaccines: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Vaccines 2021, 9, 467. [Google Scholar] [CrossRef]
- Cheng, H.; Peng, Z.; Luo, W.; Si, S.; Mo, M.; Zhou, H.; Xin, X.; Liu, H.; Yu, Y. Efficacy and Safety of COVID-19 Vaccines in Phase III Trials: A Meta-Analysis. Vaccines 2021, 9, 582. [Google Scholar] [CrossRef]
Characteristics | N | % |
---|---|---|
Sex | ||
Male | 115 | 38.3 |
Female | 185 | 61.7 |
Age category | ||
18–44 | 85 | 28.3 |
45–64 | 143 | 47.7 |
65+ | 72 | 24.0 |
Education | ||
High school or lower | 65 | 21.6 |
University or higher | 235 | 78.3 |
Employment | ||
Employed | 221 | 73.7 |
Retired | 63 | 21.0 |
Student/Unemployed | 16 | 5.3 |
Marital status | ||
Married/cohabitation | 194 | 64.7 |
Single | 106 | 35.3 |
Residence | ||
Urban/Suburb | 280 | 93.3 |
Rural | 20 | 6.7 |
Currently smoking | 103 | 34.3 |
Alcohol use | 70 | 23.4 |
Concomitant diseases | ||
Cardiac * | 109 | 36.3 |
COPD ** and asthma | 22 | 7.3 |
Diabetes *** | 40 | 13.3 |
Thyroid | 35 | 11.7 |
Malignant **** | 15 | 5.0 |
Previous COVID-19 infection | 19 | 6.3 |
Immunosuppressive treatment | 4 | 1.3 |
Allergy to food and drugs | 53 | 17.7 |
Type of booster dose of COVID-19 vaccine | ||
Sinopharm BBIBP-CorV | 60 | 20.0 |
Pfizer-BioNTech | 226 | 75.3 |
Sputnjik V | 14 | 4.7 |
Homologous booster vaccination | 127 | 42.3 |
IgG baseline titer | 300 | 100.0 |
Adverse events after first dose of COVID-19 vaccine | 50 | 16.7 |
Adverse events after second dose of COVID-19 vaccine | 51 | 17.0 |
Local adverse events 7 days after booster dose | 214 | 74.3 |
Systemic adverse events 7 days after booster dose | 100 | 34.7 |
Primary Vaccination Series and Booster Doses | N | % |
---|---|---|
Sinopharm BBIBP-CorV + Sinopharm BBIBP-CorV | 59 | 19.7 |
Sinopharm BBIBP-CorV + Pfizer-BioNTech | 163 | 54.3 |
Sinopharm BBIBP-CorV + Sputnik V | 8 | 2.7 |
Pfizer-BioNTech + Pfizer-BioNTech | 62 | 20.7 |
Pfizer-BioNTech + Sinopharm BBIBP-CorV | 1 | 0.3 |
Sputnik V + Sputnik V | 6 | 2.0 |
Sputnik V + Pfizer-BioNTech | 1 | 0.3 |
Characteristics | Univariate | Multivariate | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Sex (f vs. m) | 1.46 (0.72–2.96) | 0.292 | ||
Age category | 0.96 (0.94–0.98) | 0.001 | ||
18–44 | ref | ref | ||
45–64 | 0.75 (0.37–1.52) | 0.423 | 0.91 (0.40–2.04) | 0.810 |
65+ | 0.10 (0.02–0.43) | 0.002 | 0.20 (0.04–1.01) | 0.051 |
Education (university vs. high) | 1.93 (0.77–4.83) | 0.161 | ||
Employment | ||||
Employed | ref | |||
Retired | 0.12 (0.03–0.53) | 0.005 | ||
Student/Unemployed | - | - | ||
Marital status (single vs. married) | 0.89 (0.45–1.8) | 0.754 | ||
Residence (urban vs. rural) | 0.93 (0.26–3.4) | 0.917 | ||
Currently smoking | 1.26 (0.64–2.48) | 0.497 | ||
Alcohol use | 0.97 (0.48–1.96) | 0.935 | ||
Concomitant diseases | ||||
Cardiac * | 0.27 (0.12–0.64) | 0.003 | 0.38 (0.14–1.01) | 0.053 |
COPD ** and asthma | 0.23 (0.03–1.77) | 0.158 | ||
Diabetes *** | 0.57 (0.13–2.54) | 0.457 | ||
Thyroid | 0.95 (0.34–2.63) | 0.924 | ||
Malignant **** | 0.44 (0.06–3.5) | 0.437 | ||
Previous COVID-19 infection | 5.75 (1.9–17.37) | 0.002 | 5.64 (1.16–19.67) | 0.007 |
Immunosuppressive treatment | 1.67 (0.17–16.49) | 0.659 | ||
Allergy to food and drugs | 1.85 (0.87–3.94) | 0.110 | ||
Type of booster dose of COVID-19 vaccine | ||||
Pfizer-BioNTech | ref | |||
Sinopharm BBIBP-CorV | 0.59 (0.23–1.48) | 0.256 | ||
Sputnik V | 2.00 (0.49–8.15) | |||
Homologous booster COVID-19 vaccinations | 0.21 (0.1–0.43) | <0.001 | 4.89 (2.21–10.82) | <0.001 |
Adverse events after first dose of COVID-19 vaccine | 3.21 (1.51–6.8) | 0.002 | ||
Adverse events after second dose of COVID-19 vaccine | 3.34 (1.57–7.11) | 0.002 | 2.53 (1.03–5.84) | 0.043 |
Characteristics | Univariate | Multivariate | ||
---|---|---|---|---|
B | p-Value | B | p-Value | |
Sex (f vs. m) | 570.7 | 0.538 | ||
Age category | −152.8 | <0.001 | ||
18–44 | ref | ref | ||
45–64 | −1646.2 | 0.118 | −1583.0 | 0.057 |
65+ | −4381.7 | <0.001 | −3449.1 | 0.001 |
Education (university vs. high) | 1806.1 | 0.097 | −878.9 | 0.297 |
Employment | ||||
Employed | ref | |||
Retired | −3717.6 | 0.001 | ||
Student/Unemployed | 1686.6 | 0.394 | ||
Marital status (single vs. married) | 1435.9 | 0.126 | ||
Residence (urban vs. rural) | 1424.9 | 0.431 | ||
Currently smoking | −1800.7 | 0.057 | −2577.8 | <0.001 |
Alcohol use | 1953.8 | 0.034 | 1221.0 | 0.084 |
Concomitant diseases | ||||
Cardiac * | −2265.6 | 0.015 | 377.0 | 0.642 |
COPD ** and asthma | −2506.5 | 0.141 | ||
Diabetes *** | −4100.0 | 0.015 | −1787.9 | 0.177 |
Thyroid | −308.2 | 0.831 | ||
Malignant **** | −3872.8 | 0.070 | −3378.0 | 0.039 |
Previous COVID-19 infection | 1841.0 | 0.333 | ||
Immunosuppressive treatment | −8626.3 | 0.025 | −1895.2 | 0.512 |
Allergy to food and drugs | −126.1 | 0.915 | ||
Type of booster dose of COVID-19 vaccine | ||||
Pfizer-BioNTech | ref | ref | ||
Sinopharm BBIBP-CorV | −11,696.8 | <0.001 | −10,891.2 | <0.001 |
Sputnik V | −8156.4 | <0.001 | −9001.6 | <0.001 |
Homologous booster COVID-19 vaccinations | 4338.8 | <0.001 | −1026.7 | 0.244 |
Adverse events after first dose of COVID-19 vaccine | 628.9 | 0.603 | ||
Adverse events after second dose of COVID-19 vaccine | 4472.8 | <0.001 | 3093.3 | 0.001 |
Characteristics | Univariate | Multivariate | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Sex (f vs. m) | 1.89 (1.11–3.23) | 0.020 | 2.79 (1.37–5.72) | 0.005 |
Age category | ||||
18–44 | ref | ref | ||
45–64 | 0.72 (0.36–1.46) | 0.362 | 0.80 (0.33–1.94) | 0.618 |
65+ | 0.28 (0.13–0.60 | 0.001 | 0.31 (0.11–0.87) | 0.026 |
Education (university vs. high) | 1.67 (0.91–3.08) | 0.098 | 1.21 (0.56–2.60) | 0.625 |
Employment | ||||
Employed | ref | |||
Retired | 0.82 (0.25–2.66) | 0.739 | ||
Student/Unemployed | 0.40 (0.22–0.74) | 0.003 | ||
Marital status (single vs. married) | 1.71 (0.96–3.06) | 0.071 | 1.14 (0.55–2.35) | 0.724 |
Residence (urban vs. rural) | 1.04 (0.36–2.98) | 0.949 | ||
Currently smoking | 1.06 (0.61–1.85) | 0.844 | ||
Alcohol use | 1.00 (0.57–1.78) | 0.988 | ||
Concomitant diseases | ||||
Cardiac * | 0.37 (0.22–0.64) | <0.001 | 0.49 (0.24–1.02) | 0.056 |
COPD ** and asthma | 0.72 (0.28–1.85) | 0.496 | ||
Diabetes *** | 0.62 (0.26–1.53) | 0.302 | ||
Thyroid | 1.29 (0.50–2.94) | 0.675 | ||
Malignant **** | 0.38 (0.13–1.18) | 0.095 | 0.37(0.10–1.40) | 0.144 |
Previous COVID-19 infection | 2.52 (0.56–11.36) | 0.229 | ||
Immunosuppressive treatment | 0.34 (0.05–2.46) | 0.285 | ||
Allergy to food and drugs | 1.01 (0.51–2.03) | 0.971 | ||
Type of booster dose of COVID-19 vaccine | ||||
Pfizer-BioNTech | ref | ref | ||
Sinopharm BBIBP-CorV | 0.11 (0.06–0.22) | <0.001 | 0.23 (0.08–0.67) | 0.008 |
Sputnik V | 0.37 (0.11–1.30 | 0.120 | 0.56 (0.12–2.61) | 0.461 |
Homologous booster COVID-19 vaccinations | 6.68 (3.65–12.22) | <0.001 | 4.84 (1.98–11.78) | 0.001 |
Adverse events after first dose of COVID-19 vaccine | 1.20 (0.58–2.49) | 0.630 | ||
Adverse events after second dose of COVID-19 vaccine | 1.66 (0.76–3.61) | 0.201 | ||
IgG baseline titer | 1.0001 (0.9999–1.0003) | 0.370 | ||
IgG titer 7 days after booster dose | 1.00004 (1.00001–1.00008) | 0.012 | 0.99999 (0.99995–1.00002) | 0.495 |
Characteristics | Univariate | Multivariate | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Sex (f vs. m) | 1.76 (1.05–2.96) | 0.031 | 1.77 (1.01–3.12) | 0.046 |
Age category | ||||
18–44 | ref | |||
45–64 | 0.66 (0.37–1.16) | 0.152 | ||
65+ | 0.67 (0.35–1.31) | 0.248 | ||
Education (university vs. high) | 1.15 (0.63–2.09) | 0.646 | ||
Employment | ||||
Employed | ref | |||
Retired | 0.83 (0.45–1.53) | 0.547 | ||
Student/Unemployed | 1.88 (0.68–5.21) | 0.227 | ||
Marital status (single vs. married) | 1.16 (0.70–1.92) | 0.564 | ||
Residence (urban vs. rural) | 3.01 (0.85–10.58) | 0.086 | 3.10 (0.83–11.56) | 0.092 |
Currently smoking | 0.72 (0.43–1.21) | 0.220 | ||
Alcohol use | 1.00 (0.59–1.69) | 0.998 | ||
Concomitant diseases | ||||
Cardiac * | 0.85 (0.51–1.41 | 0.527 | ||
COPD ** and asthma | 1.33 (0.55–3.23) | 0.527 | ||
Diabetes *** | 1.50 (0.63–3.54) | 0.360 | ||
Thyroid | 1.41 (0.66–3.01) | 0.374 | ||
Malignant **** | 0.56 (0.15–2.05) | 0.373 | ||
Previous COVID-19 infection | 3.37 (1.19–9.57) | 0.022 | 3.62 (1.13–11.63) | 0.031 |
Immunosuppressive treatment | 0.34 (0.05–2.46) | 0.285 | ||
Allergy to food and drugs | 1.40 (0.75–2.60) | 0.287 | ||
Type of booster dose of COVID-19 vaccine | ||||
Pfizer-BioNTech | ref | ref | ||
Sinopharm BBIBP-CorV | 0.38 (0.18–0.78) | 0.008 | 0.59 (0.26–1.31) | 0.194 |
Sputnik V | 1.63 (0.51–5.21) | 0.413 | 2.34 (0.66–8.25) | 0.187 |
Homologous booster COVID-19 vaccinations | 1.29 (0.79–2.12) | 0.311 | ||
Adverse events after first dose of COVID-19 vaccine | 1.59 (0.84–2.98) | 0.152 | ||
Adverse events after second dose of COVID-19 vaccine | 3.43 (1.82–6.47) | <0.001 | 2.66 (1.33–5.32) | 0.006 |
IgG baseline titer | 1.00006 (0.99990–1.00023) | 0.460 | ||
IgG titer 7 days after booster dose | 1.00004 (1.00002–1.00006) | <0.001 | 1.00002 (0.99999–1.00005) | 0.064 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stosic, M.; Milic, M.; Markovic, M.; Kelic, I.; Bukumiric, Z.; Veljkovic, M.; Kisic Tepavcevic, D.; Saponjic, V.; Plavsa, D.; Jovanovic, S.; et al. Immunogenicity and Reactogenicity of the Booster Dose of COVID-19 Vaccines and Related Factors: A Panel Study from the General Population in Serbia. Vaccines 2022, 10, 838. https://doi.org/10.3390/vaccines10060838
Stosic M, Milic M, Markovic M, Kelic I, Bukumiric Z, Veljkovic M, Kisic Tepavcevic D, Saponjic V, Plavsa D, Jovanovic S, et al. Immunogenicity and Reactogenicity of the Booster Dose of COVID-19 Vaccines and Related Factors: A Panel Study from the General Population in Serbia. Vaccines. 2022; 10(6):838. https://doi.org/10.3390/vaccines10060838
Chicago/Turabian StyleStosic, Maja, Marija Milic, Milos Markovic, Ivana Kelic, Zoran Bukumiric, Marko Veljkovic, Darija Kisic Tepavcevic, Vladan Saponjic, Dragana Plavsa, Sofija Jovanovic, and et al. 2022. "Immunogenicity and Reactogenicity of the Booster Dose of COVID-19 Vaccines and Related Factors: A Panel Study from the General Population in Serbia" Vaccines 10, no. 6: 838. https://doi.org/10.3390/vaccines10060838
APA StyleStosic, M., Milic, M., Markovic, M., Kelic, I., Bukumiric, Z., Veljkovic, M., Kisic Tepavcevic, D., Saponjic, V., Plavsa, D., Jovanovic, S., & Jovanovic, V. (2022). Immunogenicity and Reactogenicity of the Booster Dose of COVID-19 Vaccines and Related Factors: A Panel Study from the General Population in Serbia. Vaccines, 10(6), 838. https://doi.org/10.3390/vaccines10060838