Development of an ELISA-Based Potency Assay for Inactivated Influenza Vaccines Using Cross-Reactive Nanobodies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanobodies, Reference Reagents and Vaccines
2.2. SRD Assay
2.3. Competitive ELISA
2.4. Sandwich ELISA
2.5. Calculation of Estimated Potency
2.6. Forced Degradation
3. Results
3.1. Cross-Reactivity of Nanobodies in a Competitive ELISA Format
3.2. Sandwich ELISA
3.3. The ELISA Potency Assays Are Stability-Indicating
3.4. Selectivity
3.5. Linearity and Limit of Detection
3.6. Testing of Vaccine Samples
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Minor, P.D. Assaying the Potency of Influenza Vaccines. Vaccines 2015, 3, 90–104. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.M.; Schild, G.C.; Newman, R.W.; Seagroatt, V. Application of an improved single-Radial-Immunodiffusion technique for the assay of haemagglutinin antigen content of whole virus and subunit influenza vaccines. Dev. Biol. Stand. 1977, 39, 193–200. [Google Scholar] [PubMed]
- Wood, J.; Schild, G.; Newman, R.; Seagroatt, V. An improved single-Radial-Immunodiffusion technique for the assay of influenza haemagglutinin antigen: Application for potency determinations of inactivated whole virus and subunit vaccines. J. Biol. Stand. 1977, 5, 237–247. [Google Scholar] [CrossRef]
- Wood, J.M.; Weir, J.P. Standardisation of inactivated influenza vaccines-Learning from history. Influenza Other Respir. Viruses 2018, 12, 195–201. [Google Scholar] [CrossRef]
- Hardy, S.; Eichelberger, M.; Griffiths, E.; Weir, J.P.; Wood, D.; Alfonso, C. Confronting the next pandemic-Workshop on lessons learned from potency testing of pandemic (H1N1) 2009 influenza vaccines and considerations for future potency tests, Ottawa, Canada, July 27–29, 2010. Influenza Other Respir. Viruses 2011, 5, 438–442. [Google Scholar] [CrossRef]
- Bodle, J.; Verity, E.E.; Ong, C.; Vandenberg, K.; Shaw, R.; Barr, I.; Rockman, S. Development of an enzyme-Linked immunoassay for the quantitation of influenza haemagglutinin: An alternative method to single radial immunodiffusion. Influenza Other Respir. Viruses 2012, 7, 191–200. [Google Scholar] [CrossRef]
- Gravel, C.; Li, C.; Wang, J.; Hashem, A.M.; Jaentschke, B.; Van Domselaar, G.; He, R.; Li, X. Quantitative analyses of all influenza type A viral hemagglutinins and neuraminidases using universal antibodies in simple slot blot assays. J. Vis. Exp. 2011, 50, e2784. [Google Scholar] [CrossRef]
- Kapteyn, J.; Saidi, M.; Dijkstra, R.; Kars, C.; Tjon, J.; Weverling, G.; DeVocht, M.; Kompier, R.; Vanmontfort, B.; Guichoux, J. Haemagglutinin quantification and identification of influenza A&B strains propagated in PER.C6® cells: A novel RP-HPLC method. Vaccine 2006, 24, 3137–3144. [Google Scholar]
- Khurana, S.; King, L.R.; Manischewitz, J.; Coyle, E.M.; Golding, H. Novel antibody-Independent receptor-Binding SPR-Based assay for rapid measurement of influenza vaccine potency. Vaccine 2014, 32, 2188–2197. [Google Scholar] [CrossRef]
- Kuck, L.R.; Saye, S.; Loob, S.; Roth-Eichhorn, S.; Nash, R.; Rowlen, K.L. VaxArray assessment of influenza split vaccine potency and stability. Vaccine 2017, 35, 1918–1925. [Google Scholar] [CrossRef]
- Kuck, L.R.; Sorensen, M.; Matthews, E.; Srivastava, I.; Cox, M.M.J.; Rowlen, K.L. Titer on chip: New analytical tool for influenza vaccine potency determination. PLoS ONE 2014, 9, e109616. [Google Scholar] [CrossRef]
- Nilsson, C.E.; Abbas, S.; Bennemo, M.; Larsson, A.; Hämäläinen, M.D.; Frostell-Karlsson, Å. A novel assay for influenza virus quantification using surface plasmon resonance. Vaccine 2010, 28, 759–766. [Google Scholar] [CrossRef]
- Schmeisser, F.; Vasudevan, A.; Soto, J.; Kumar, A.; Williams, O.; Weir, J.P. A monoclonal antibody-Based immunoassay for measuring the potency of 2009 pandemic influenza H1N1 vaccines. Influenza Other Respir. Viruses 2014, 8, 587–595. [Google Scholar] [CrossRef]
- Williams, T.L.; Pirkle, J.L.; Barr, J.R. Simultaneous quantification of hemagglutinin and neuraminidase of influenza virus using isotope dilution mass spectrometry. Vaccine 2012, 30, 2475–2482. [Google Scholar] [CrossRef]
- Corti, D.; Suguitan, A.L.; Pinna, D.; Silacci, C.; Fernandez-Rodriguez, B.M.; Vanzetta, F.; Santos, C.; Luke, C.J.; Torres-Velez, F.J.; Temperton, N.; et al. Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J. Clin. Investig. 2010, 120, 1663–1673. [Google Scholar] [CrossRef]
- Ekiert, D.C.; Bhabha, G.; Elsliger, M.-A.; Friesen, R.H.E.; Jongeneelen, M.; Throsby, M.; Goudsmit, J.; Wilson, I.A. Antibody recognition of a highly conserved influenza virus epitope. Science 2009, 324, 246–251. [Google Scholar] [CrossRef]
- Ekiert, D.C.; Friesen, R.H.; Bhabha, G.; Kwaks, T.; Jongeneelen, M.; Yu, W.; Goudsmit, J. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 2011, 333, 843–850. [Google Scholar] [CrossRef]
- Friesen, R.H.E.; Koudstaal, W.; Koldijk, M.H.; Weverling, G.J.; Brakenhoff, J.P.J.; Lenting, P.J.; Stittelaar, K.J.; Osterhaus, A.D.M.E.; Kompier, R.; Goudsmit, J. New class of monoclonal antibodies against severe influenza: Prophylactic and therapeutic efficacy in ferrets. PLoS ONE 2010, 5, e9106. [Google Scholar] [CrossRef]
- Yep, A.T.; Takeuchi, Y.; Engelhardt, O.; Hufton, S. Broad Reactivity Single Domain Antibodies against Influenza Virus and Their Applications to Vaccine Potency Testing and Immunotherapy. Biomolecules 2021, 11, 407. [Google Scholar]
- Hufton, S.E.; Risley, P.; Ball, C.R.; Major, D.; Engelhardt, O.G.; Poole, S. The breadth of cross sub-Type neutralisation activity of a single domain antibody to influenza hemagglutinin can be increased by antibody valency. PLoS ONE 2014, 9, e103294. [Google Scholar] [CrossRef]
- Stöhr, K.; Bucher, D.; Colgate, T.; Wood, J. Influenza virus surveillance, vaccine strain selection, and manufacture. Methods Mol. Biol. 2012, 865, 147–162. [Google Scholar] [PubMed]
- Engelhardt, O.G.; Edge, C.; Dunleavy, U.; Guilfoyle, K.; Harvey, R.; Major, D.; Newman, R.; Penn, R.; Skeldon, S.; Storey, C.; et al. Comparison of single radial immunodiffusion, SDS-PAGE and HPLC potency assays for inactivated influenza vaccines shows differences in ability to predict immunogenicity of haemagglutinin antigen. Vaccine 2018, 36, 4339–4345. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Palladino, G.; Xie, Y.; Ferrari, A.; Settembre, E.C. Inactivated influenza vaccine stress can affect in vitro potency assay relationship to immunogenicity. Vaccine 2018, 36, 3010–3017. [Google Scholar] [CrossRef]
- World Health Organization. WHO Expert Committee on Biological Standardization, Twenty-Ninth Report; World Health Organization Technical Report Series 626; World Health Organization: Geneva, Switzerland, 1978; p. 626. [Google Scholar]
- Cooper, H.C.; Xie, Y.; Palladino, G.; Barr, J.R.; Settembre, E.C.; Wen, Y.; Williams, T.L. Limited Tryptic Digestion-Isotope Dilution Mass Spectrometry (LTD-IDMS): A Reagent-Free Analytical Assay To Quantify Hemagglutinin of A(H5N1) Vaccine Material. Anal. Chem. 2020, 92, 11879–11887. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, K.; Xie, Y.; Palladino, G.; Barr, J.R.; Settembre, E.C.; Williams, T.L.; Wen, Y. Reference antigen-Free and antibody-Free LTD-IDMS assay for influenza H7N9 vaccine in vitro potency determination. Vaccine 2018, 36, 6144–6151. [Google Scholar] [CrossRef]
- Gaiotto, T.; Hufton, S.E. Cross-Neutralising Nanobodies Bind to a Conserved Pocket in the Hemagglutinin Stem Region Identified Using Yeast Display and Deep Mutational Scanning. PLoS ONE 2016, 11, e0164296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reagent | NIBSC Reference | Virus | Assigned Potency (μg/mL) |
---|---|---|---|
A(H1N1)pdm09 antigens | 13/164 | A/California/7/2009 (NYMC X-179A) egg derived antigen | 35 |
09/174 | A/California/7/2009 (NYMC X-179A) cell derived antigen | 50 | |
12/168 | A/California/7/2009 (NYMC X-181) | 46 | |
10/258 | A/Christchurch/16/2010 (NIB-74) | 29 | |
11/134 | A/Brisbane/10/2010 cell derived antigen | 83 | |
A(H1N1) antigens (1976–2007) | 08/100 | A/Brisbane/59/2007 (IVR-148) (H1N1) | 83 |
07/102 | A/Solomon Islands/3/2006 (IVR-145) (H1N1) | 57 | |
06/170 | A/New Caledonia/20/99 | 26 | |
02/336 | A/New Caledonia/20/99 | 56 | |
97/760 | A/Beijing/262/95 | 40 | |
84/538 | A/Chile/1/83 | 27 | |
79/560 | A/Brazil/11/78 | 40 | |
79/558 | A/USSR/92/77 | 43 | |
77/530 | A/New Jersey/8/76 | 51 | |
A(H5) subtype antigens | 00/552 | A/duck/Singapore-Q/F119-3/97 (H5N3) | 38 |
09/184 | A/Vietnam/1194/2004 (H5N1) | 67 | |
07/112 | A/turkey/Turkey/1/2005 (H5N1) | 80 | |
07/290 | A/Anhui/1/2005 (H5N1) | 99 | |
08/216 | A/Cambodia/R0405050/2007 (H5N1) | 93 | |
A(H3N2) subtype antigen | 14/254 | A/Switzerland/9715293/2013 (NIB-88) (H3N2) | 55 |
B type antigen | 14/252 | B/Phuket/3073/2013 | 32 |
Nanobody | Pearson’s r | ||
---|---|---|---|
A(H1N1)pdm09 | H1N1 (1976–2007) | H5 | |
R1a-B6 | 0.970 | 0.848 | 0.516 |
R2b-D9 | 0.945 | 0.716 | 0.615 |
R2b-E8 | 0.925 | not applicable | 0.581 |
R1a-A5 | 0.959 | 0.712 | 0.434 |
R2a-G8 | 0.927 | 0.879 | 0.707 |
Vaccine (Manufacturer) | SRD µg HA/mL | Reference Antigens for Potency Estimation | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Homologous Antigen Reagent (NIBSC 12/168 @ 46 µg/mL) | V1 (Reference @ 23 µg/mL) | V2 (Reference @ 731 µg/mL) | V3 (Reference @ 30 µg/mL) | V4 (Reference @ 33 µg/mL) | V5 (Reference @ 34 µg/mL) | ||||||||
Mean Estimated Potency µgHA/mL (CV (%)) | Deviation from SRD | Mean Estimated Potency µgHA/mL (CV (%)) | Deviation from SRD | Mean Estimated Potency µgHA/mL (CV (%)) | Deviation from SRD | Mean Estimated Potency µgHA/mL (CV (%)) | Deviation from SRD | Mean Estimated Potency µgHA/mL (CV (%)) | Deviation from SRD | Mean Estimated Potency µgHA/mL (CV (%)) | Deviation from SRD | ||
V1 Split Trivalent (A) | 23 | 46 (0.37) | 100% | - | - | 22 (12) | −4% | 29 (18) | 26% | 27 (15) | 17% | 29 (11) | 26% |
V2 Split Monovalent (H1N1) (B) | 731 | 1776 (1.6) | 142% | 831 (11) | 14% | - | - | 1040 (5.8) | 42% | 950 (1.1) | 30% | 1030 (23) | 41% |
V3 Split Quadrivalent (B) | 30 | 53 (26) | 77% | 24 (17) | −20% | 23 (17) | −23% | - | - | 28 (4.1) | −7% | 30 (27) | 0% |
V4 Split trivalent batch 1 (B) | 33 | 54 (14) | 64% | 28 (14) | −15% | 27 (12) | −18% | 35 (4.8) | 6% | - | - | 35 (24) | 6% |
V5 Split trivalent batch 2 (B) | 34 | 61 (14) | 79% | 28 (12) | −18% | 27 (22) | −21% | 36 (32) | 6% | 33 (29) | −3% | - | - |
Vaccine (Manufacturer) | SRD µg HA/mL | Reference Antigens for Potency Estimation | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Homologous Antigen Reagent (NIBSC 12/168 @ 46 µg/mL) | V1 (Reference @ 23 µg/mL) | V2 (Reference @ 731 µg/mL) | V3 (Reference @ 30 µg/mL) | V4 (Reference @ 33 µg/mL) | V5 (Reference @ 34 µg/mL) | ||||||||
Mean Estimated Potency µgHA/mL (CV (%)) | Deviation from SRD | Mean Estimated Potency µgHA/mL (CV (%)) | Deviation from SRD | Mean Estimated Potency µgHA/mL (CV (%)) | Deviation from SRD | Mean Estimated Potency µgHA/mL (CV (%)) | Deviation from SRD | Mean Estimated Potency µgHA/mL (CV (%)) | Deviation from SRD | Mean Estimated Potency µgHA/mL (CV (%)) | Deviation from SRD | ||
V1 Split Trivalent (A) | 23 | 42 (14) | 83% | - | - | 26 (9.8) | 13% | 25 (14) | 9% | 25 (14) | 9% | 27 (12) | 17% |
V2 Split Monovalent (H1N1) (B) | 731 | 1196 (2.7) | 64% | 660 (10) | −10% | - | - | 710 (25) | −3% | 710 (25) | −3% | 740 (24) | 19% |
V3 Split Quadrivalent (B) | 30 | 50 (8.9) | 67% | 28 (14) | −7% | 32 (22) | 7% | - | - | 38 (94.9) | 27% | 32 (98.0) | 7% |
V4 Split trivalent batch 1 (B) | 33 | 63 (14) | 91% | 36 (17) | 9% | 41 (21) | 24% | 38 (5.0) | 15% | - | - | 40 (13) | 21% |
V5 Split trivalent batch 2 (B) | 34 | 54 (1.6) | 59% | 30 (12) | −12% | 35 (22) | 2.9% | 32 (7.9) | −6% | 32 (7.9) | −6% | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheung, C.Y.; Dubey, S.; Hadrovic, M.; Ball, C.R.; Ramage, W.; McDonald, J.U.; Harvey, R.; Hufton, S.E.; Engelhardt, O.G. Development of an ELISA-Based Potency Assay for Inactivated Influenza Vaccines Using Cross-Reactive Nanobodies. Vaccines 2022, 10, 1473. https://doi.org/10.3390/vaccines10091473
Cheung CY, Dubey S, Hadrovic M, Ball CR, Ramage W, McDonald JU, Harvey R, Hufton SE, Engelhardt OG. Development of an ELISA-Based Potency Assay for Inactivated Influenza Vaccines Using Cross-Reactive Nanobodies. Vaccines. 2022; 10(9):1473. https://doi.org/10.3390/vaccines10091473
Chicago/Turabian StyleCheung, Chung Y., Sitara Dubey, Martina Hadrovic, Christina R. Ball, Walter Ramage, Jacqueline U. McDonald, Ruth Harvey, Simon E. Hufton, and Othmar G. Engelhardt. 2022. "Development of an ELISA-Based Potency Assay for Inactivated Influenza Vaccines Using Cross-Reactive Nanobodies" Vaccines 10, no. 9: 1473. https://doi.org/10.3390/vaccines10091473
APA StyleCheung, C. Y., Dubey, S., Hadrovic, M., Ball, C. R., Ramage, W., McDonald, J. U., Harvey, R., Hufton, S. E., & Engelhardt, O. G. (2022). Development of an ELISA-Based Potency Assay for Inactivated Influenza Vaccines Using Cross-Reactive Nanobodies. Vaccines, 10(9), 1473. https://doi.org/10.3390/vaccines10091473