Vaccines against Group B Coxsackieviruses and Their Importance
Abstract
:1. Introduction
2. Virus Infection and Disease Pathogenesis
3. Current Status of CVB Vaccines
3.1. Modified Live-Attenuated Vaccines (MLVs)
3.2. Inactivated Vaccines
3.3. Recombinant Subunit Vaccines
3.4. Vector Vaccines
3.5. DNA Vaccines
3.6. RNA Vaccines
3.7. Virus-like Particles (VLPs)
4. Challenges and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Pons-Salort, M.; Grassly, N.C. Serotype-specific immunity explains the incidence of diseases caused by human enteroviruses. Science 2018, 361, 800–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozzetto, B.; Gaudin, O.G. Coxsackieviruses (Picornaviridae). In Encyclopedia of Virology; Elsevier: Amsterdam, The Netherlands, 1999; pp. 305–311. [Google Scholar] [CrossRef]
- Melnick, J.L.; Tagaya, I.; von Magnus, H. Enteroviruses 69, 70, and 71. Intervirology 1974, 4, 369–370. [Google Scholar] [CrossRef]
- Simmonds, P.; Gorbalenya, A.E.; Harvala, H.; Hovi, T.; Knowles, N.J.; Lindberg, A.M.; Oberste, M.S.; Palmenberg, A.C.; Reuter, G.; Skern, T.; et al. Recommendations for the nomenclature of enteroviruses and rhinoviruses. Arch. Virol. 2020, 165, 793–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankovic, B.; Pasic, S.; Kanjuh, B.; Bukumirovic, K.; Cvetanovic, G.; Todorovic, N.; Djuricic, S. Severe neonatal echovirus 17 infection during a nursery outbreak. Pediatr. Infect. Dis. J. 1999, 18, 393–394. [Google Scholar] [CrossRef] [PubMed]
- Sainani, G.S.; Dekate, M.P.; Rao, C.P. Heart disease caused by Coxsackie virus B infection. Br. Heart J. 1975, 37, 819–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokarz, R.; Haq, S.; Sameroff, S.; Howie, S.R.C.; Lipkin, W.I. Genomic analysis of coxsackieviruses A1, A19, A22, enteroviruses 113 and 104: Viruses representing two clades with distinct tropism within enterovirus C. J. Gen. Virol. 2013, 94, 1995–2004. [Google Scholar] [CrossRef] [PubMed]
- Hober, D.; Sauter, P. Pathogenesis of type 1 diabetes mellitus: Interplay between enterovirus and host. Nat. Rev. Endocrinol. 2010, 6, 279–289. [Google Scholar] [CrossRef]
- Schmidt, N.J.; Lennette, E.H.; Ho, H.H. An apparently new enterovirus isolated from patients with disease of the central nervous system. J. Infect. Dis. 1974, 129, 304–309. [Google Scholar] [CrossRef]
- Ben-Chetrit, E.; Wiener-Well, Y.; Shulman, L.M.; Cohen, M.J.; Elinav, H.; Sofer, D.; Feldman, I.; Marva, E.; Wolf, D.G. Coxsackievirus A6-related hand foot and mouth disease: Skin manifestations in a cluster of adult patients. J. Clin. Virol. 2014, 59, 201–203. [Google Scholar] [CrossRef]
- Riabi, S.; Harrath, R.; Gaaloul, I.; Bouslama, L.; Nasri, D.; Aouni, M.; Pillet, S.; Pozzetto, B. Study of Coxsackie B viruses interactions with Coxsackie Adenovirus receptor and Decay-Accelerating Factor using Human CaCo-2 cell line. J. Biomed. Sci. 2014, 21, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahy, B.W. Coxsackie B viruses: An introduction. Curr. Top. Microbiol. Immunol. 2008, 323, vii–xiii. [Google Scholar]
- Kimmis, B.D.; Downing, C.; Tyring, S. Hand-foot-and-mouth disease caused by coxsackievirus A6 on the rise. Cutis 2018, 102, 353–356. [Google Scholar]
- Dalldorf, G.; Sickles, G.M. An Unidentified, Filtrable Agent Isolated From the Feces of Children With Paralysis. Science 1948, 108, 61–62. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Increased detections and severe neonatal disease associated with coxsackievirus B1 infection—United States, 2007. MMWR Morb. Mortal. Wkly. Rep. 2008, 57, 553–556. [Google Scholar]
- Clements, G.B.; Galbraith, D.N.; Taylor, K.W. Coxsackie B virus infection and onset of childhood diabetes. Lancet 1995, 346, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, K.A.; Abdou, M.H.; Hadi, M.A. Coxsackie B2 Virus Infection Causing Multiorgan Failure and Cardiogenic Shock in a 42-Year-Old Man. Tex. Heart Inst. J. 2019, 46, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Yolken, R.H.; Bishop, C.A.; Townsend, T.R.; Bolyard, E.A.; Bartlett, J.; Santos, G.W.; Saral, R. Infectious gastroenteritis in bone-marrow-transplant recipients. N. Engl. J. Med. 1982, 306, 1010–1012. [Google Scholar] [CrossRef]
- (CDC), C.f.D.C.a.P. Nonpolio enterovirus and human parechovirus surveillance—United States, 2006–2008. MMWR Morb. Mortal. Wkly. Rep. 2010, 59, 1577–1580. [Google Scholar]
- Hong, J.; Kang, B.; Yeo, S.; Jee, Y.; Park, J.H. Pathogenesis of coxsackievirus B2 in mice: Characterization of clinical isolates of the coxsackievirus B2 from patients with myocarditis and aseptic meningitis in Korea. J. Vet. Sci. 2017, 18, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Tao, Z.; Wang, H.; Liu, Y.; Li, Y.; Jiang, P.; Liu, G.; Lin, X.; Li, M.; Wang, S.; Ji, F.; et al. Non-polio enteroviruses from acute flaccid paralysis surveillance in Shandong Province, China, 1988–2013. Sci. Rep. 2014, 4, 6167. [Google Scholar] [CrossRef] [Green Version]
- Sousa, I.P., Jr.; Machado, R.S.; Burlandy, F.M.; Silva, E.E.D. Detection and characterization of a coxsackievirus B2 strain associated with acute meningoencephalitis, Brazil, 2018. Rev. Soc. Bras. Med. Trop. 2020, 54, e20190499. [Google Scholar] [CrossRef]
- Bouin, A.; Nguyen, Y.; Wehbe, M.; Renois, F.; Fornes, P.; Bani-Sadr, F.; Metz, D.; Andreoletti, L. Major Persistent 5′ Terminally Deleted Coxsackievirus B3 Populations in Human Endomyocardial Tissues. Emerg. Infect. Dis. 2016, 22, 1488–1490. [Google Scholar] [CrossRef]
- Liu, P.; Aitken, K.; Kong, Y.Y.; Opavsky, M.A.; Martino, T.; Dawood, F.; Wen, W.H.; Kozieradzki, I.; Bachmaier, K.; Straus, D.; et al. The tyrosine kinase p56lck is essential in coxsackievirus B3-mediated heart disease. Nat. Med. 2000, 6, 429–434. [Google Scholar] [CrossRef]
- Chen, P.; Tao, Z.; Song, Y.; Liu, G.; Wang, H.; Liu, Y.; Song, L.; Li, Y.; Lin, X.; Cui, N.; et al. A coxsackievirus B5-associated aseptic meningitis outbreak in Shandong Province, China in 2009. J. Med. Virol. 2013, 85, 483–489. [Google Scholar] [CrossRef]
- Gao, F.; Bian, L.; Hao, X.; Hu, Y.; Yao, X.; Sun, S.; Chen, P.; Yang, C.; Du, R.; Li, J.; et al. Seroepidemiology of coxsackievirus B5 in infants and children in Jiangsu province, China. Hum. Vaccine Immunother. 2018, 14, 74–80. [Google Scholar] [CrossRef]
- Liu, N.; Jia, L.; Yin, J.; Wu, Z.; Wang, Z.; Li, P.; Hao, R.; Wang, L.; Wang, Y.; Qiu, S.; et al. An outbreak of aseptic meningitis caused by a distinct lineage of coxsackievirus B5 in China. Int. J. Infect. Dis. 2014, 23, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Gangaplara, A.; Massilamany, C.; Brown, D.M.; Delhon, G.; Pattnaik, A.K.; Chapman, N.; Rose, N.; Steffen, D.; Reddy, J. Coxsackievirus B3 infection leads to the generation of cardiac myosin heavy chain-alpha-reactive CD4 T cells in A/J mice. Clin. Immunol. 2012, 144, 237–249. [Google Scholar] [CrossRef] [Green Version]
- Lasrado, N.; Gangaplara, A.; Arumugam, R.; Massilamany, C.; Pokal, S.; Zhou, Y.; Xiang, S.H.; Steffen, D.; Reddy, J. Identification of Immunogenic Epitopes That Permit the Detection of Antigen-Specific T Cell Responses in Multiple Serotypes of Group B Coxsackievirus Infections. Viruses 2020, 12, 347. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.S.; Tracy, S.; Tapprich, W.; Bailey, J.; Lee, C.K.; Kim, K.; Barry, W.H.; Chapman, N.M. 5′-Terminal deletions occur in coxsackievirus B3 during replication in murine hearts and cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA. J. Virol. 2005, 79, 7024–7041. [Google Scholar] [CrossRef] [Green Version]
- Massilamany, C.; Gangaplara, A.; Reddy, J. Intricacies of cardiac damage in coxsackievirus B3 infection: Implications for therapy. Int. J. Cardiol. 2014, 177, 330–339. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.K. 5′-terminal cap structure in eucaryotic messenger ribonucleic acids. Microbiol. Rev. 1980, 44, 175–205. [Google Scholar] [CrossRef]
- Knipe, D.M.; Howley, P.M.; Griffin, D.E.; Lamb, R.A.; Martin, M.A.; Roizman, B.; Straus, S.E. Field’s Virology, 5th ed.; Lippincott Williams & Wilkins (LWW): Philadelphia, PA, USA, 2007; p. 2950. [Google Scholar]
- Jang, S.K.; Krausslich, H.G.; Nicklin, M.J.; Duke, G.M.; Palmenberg, A.C.; Wimmer, E. A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 1988, 62, 2636–2643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garmaroudi, F.S.; Marchant, D.; Hendry, R.; Luo, H.; Yang, D.; Ye, X.; Shi, J.; McManus, B.M. Coxsackievirus B3 replication and pathogenesis. Future Microbiol. 2015, 10, 629–653. [Google Scholar] [CrossRef]
- Tracy, S.; Liu, H.L.; Chapman, N.M. Coxsackievirus B3: Primary structure of the 5′ non-coding and capsid protein-coding regions of the genome. Virus Res. 1985, 3, 263–270. [Google Scholar] [CrossRef]
- He, Y.; Chipman, P.R.; Howitt, J.; Bator, C.M.; Whitt, M.A.; Baker, T.S.; Kuhn, R.J.; Anderson, C.W.; Freimuth, P.; Rossmann, M.G. Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor. Nat. Struct. Biol. 2001, 8, 874–878. [Google Scholar] [CrossRef] [Green Version]
- Shenoy-Scaria, A.M.; Kwong, J.; Fujita, T.; Olszowy, M.W.; Shaw, A.S.; Lublin, D.M. Signal transduction through decay-accelerating factor. Interaction of glycosyl-phosphatidylinositol anchor and protein tyrosine kinases p56lck and p59fyn 1. J. Immunol. 1992, 149, 3535–3541. [Google Scholar] [CrossRef] [PubMed]
- Orthopoulos, G.; Triantafilou, K.; Triantafilou, M. Coxsackie B viruses use multiple receptors to infect human cardiac cells. J. Med. Virol. 2004, 74, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Coyne, C.B.; Bergelson, J.M. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 2006, 124, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Bergelson, J.M.; Modlin, J.F.; Wieland-Alter, W.; Cunningham, J.A.; Crowell, R.L.; Finberg, R.W. Clinical coxsackievirus B isolates differ from laboratory strains in their interaction with two cell surface receptors. J. Infect. Dis. 1997, 175, 697–700. [Google Scholar] [CrossRef] [Green Version]
- Bergelson, J.M.; Cunningham, J.A.; Droguett, G.; Kurt-Jones, E.A.; Krithivas, A.; Hong, J.S.; Horwitz, M.S.; Crowell, R.L.; Finberg, R.W. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997, 275, 1320–1323. [Google Scholar] [CrossRef]
- Martino, T.A.; Petric, M.; Weingartl, H.; Bergelson, J.M.; Opavsky, M.A.; Richardson, C.D.; Modlin, J.F.; Finberg, R.W.; Kain, K.C.; Willis, N.; et al. The coxsackie-adenovirus receptor (CAR) is used by reference strains and clinical isolates representing all six serotypes of coxsackievirus group B and by swine vesicular disease virus. Virology 2000, 271, 99–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafren, D.R.; Williams, D.T.; Barry, R.D. A decay-accelerating factor-binding strain of coxsackievirus B3 requires the coxsackievirus-adenovirus receptor protein to mediate lytic infection of rhabdomyosarcoma cells. J. Virol. 1997, 71, 9844–9848. [Google Scholar] [CrossRef] [Green Version]
- Terstappen, L.W.; Nguyen, M.; Lazarus, H.M.; Medof, M.E. Expression of the DAF (CD55) and CD59 antigens during normal hematopoietic cell differentiation. J. Leukoc. Biol. 1992, 52, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Nasu, J.; Mizuno, M.; Uesu, T.; Takeuchi, K.; Inaba, T.; Ohya, S.; Kawada, M.; Shimo, K.; Okada, H.; Fujita, T.; et al. Cytokine-stimulated release of decay-accelerating factor (DAF;CD55) from HT-29 human intestinal epithelial cells. Clin. Exp. Immunol. 1998, 113, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Medof, M.E.; Walter, E.I.; Rutgers, J.L.; Knowles, D.M.; Nussenzweig, V. Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids. J. Exp. Med. 1987, 165, 848–864. [Google Scholar] [CrossRef]
- Excoffon, K.J.; Gansemer, N.D.; Mobily, M.E.; Karp, P.H.; Parekh, K.R.; Zabner, J. Isoform-specific regulation and localization of the coxsackie and adenovirus receptor in human airway epithelia. PLoS One 2010, 5, e9909. [Google Scholar] [CrossRef]
- Bergelson, J.M.; Krithivas, A.; Celi, L.; Droguett, G.; Horwitz, M.S.; Wickham, T.; Crowell, R.L.; Finberg, R.W. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J. Virol. 1998, 72, 415–419. [Google Scholar] [CrossRef] [Green Version]
- Shaw, C.A.; Holland, P.C.; Sinnreich, M.; Allen, C.; Sollerbrant, K.; Karpati, G.; Nalbantoglu, J. Isoform-specific expression of the Coxsackie and adenovirus receptor (CAR) in neuromuscular junction and cardiac intercalated discs. BMC Cell Biol. 2004, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Zautner, A.E.; Körner, U.; Henke, A.; Badorff, C.; Schmidtke, M. Heparan sulfates and coxsackievirus-adenovirus receptor: Each one mediates coxsackievirus B3 PD infection. J. Virol. 2003, 77, 10071–10077. [Google Scholar] [CrossRef] [Green Version]
- Schmidtke, M.; Selinka, H.C.; Heim, A.; Jahn, B.; Tonew, M.; Kandolf, R.; Stelzner, A.; Zell, R. Attachment of coxsackievirus B3 variants to various cell lines: Mapping of phenotypic differences to capsid protein VP1. Virology 2000, 275, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Esfandiarei, M.; McManus, B.M. Molecular biology and pathogenesis of viral myocarditis. Annu. Rev. Pathol. 2008, 3, 127–155. [Google Scholar] [CrossRef]
- Sin, J.; Mangale, V.; Thienphrapa, W.; Gottlieb, R.A.; Feuer, R. Recent progress in understanding coxsackievirus replication, dissemination, and pathogenesis. Virology 2015, 484, 288–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmenberg, A.C. Proteolytic processing of picornaviral polyprotein. Annu. Rev. Microbiol. 1990, 44, 603–623. [Google Scholar] [CrossRef]
- Matthews, D.A.; Smith, W.W.; Ferre, R.A.; Condon, B.; Budahazi, G.; Sisson, W.; Villafranca, J.E.; Janson, C.A.; McElroy, H.E.; Gribskov, C.L.; et al. Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 1994, 77, 761–771. [Google Scholar] [CrossRef]
- Tam, P.E.; Messner, R.P. Molecular mechanisms of coxsackievirus persistence in chronic inflammatory myopathy: Viral RNA persists through formation of a double-stranded complex without associated genomic mutations or evolution. J. Virol. 1999, 73, 10113–10121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callon, D.; Guedra, A.; Lebreil, A.L.; Heng, L.; Bouland, N.; Fornès, P.; Berri, F.; Andreoletti, L. Replication Activities of Major 5′ Terminally Deleted Group-B Coxsackievirus RNA Forms Decrease PCSK2 mRNA Expression Impairing Insulin Maturation in Pancreatic Beta Cells. Viruses 2022, 14, 2781. [Google Scholar] [CrossRef] [PubMed]
- Lasrado, N.; Reddy, J. An overview of the immune mechanisms of viral myocarditis. Rev. Med. Virol. 2020, 30, 2131. [Google Scholar] [CrossRef]
- Lasrado, N.; Yalaka, B.; Reddy, J. Triggers of Inflammatory Heart Disease. Front. Cell Dev. Biol. 2020, 8, 192. [Google Scholar] [CrossRef] [Green Version]
- Rroku, A.; Kottwitz, J.; Heidecker, B. Update on myocarditis - what we know so far and where we may be heading. Eur. Heart J. Acute Cardiovasc. Care 2020, 2048872620910109. [Google Scholar] [CrossRef] [PubMed]
- Neuspiel, D.R.; Kuller, L.H. Sudden and unexpected natural death in childhood and adolescence. JAMA 1985, 254, 1321–1325. [Google Scholar] [CrossRef]
- Rasten-Almqvist, P.; Eksborg, S.; Rajs, J. Myocarditis and sudden infant death syndrome. APMIS 2002, 110, 469–480. [Google Scholar] [CrossRef]
- Topaz, O.; Edwards, J.E. Pathologic features of sudden death in children, adolescents, and young adults. Chest 1985, 87, 476–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fung, G.; Luo, H.; Qiu, Y.; Yang, D.; McManus, B. Myocarditis. Circ. Res. 2016, 118, 496–514. [Google Scholar] [CrossRef] [PubMed]
- Golpour, A.; Patriki, D.; Hanson, P.J.; McManus, B.; Heidecker, B. Epidemiological Impact of Myocarditis. J. Clin. Med. 2021, 10, 603. [Google Scholar] [CrossRef] [PubMed]
- Caforio, A.L.; Calabrese, F.; Angelini, A.; Tona, F.; Vinci, A.; Bottaro, S.; Ramondo, A.; Carturan, E.; Iliceto, S.; Thiene, G.; et al. A prospective study of biopsy-proven myocarditis: Prognostic relevance of clinical and aetiopathogenetic features at diagnosis. Eur. Heart J. 2007, 28, 1326–1333. [Google Scholar] [CrossRef] [Green Version]
- Fujinami, R.S.; von Herrath, M.G.; Christen, U.; Whitton, J.L. Molecular mimicry, bystander activation, or viral persistence: Infections and autoimmune disease. Clin. Microbiol. Rev. 2006, 19, 80–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Towbin, J.A.; Lowe, A.M.; Colan, S.D.; Sleeper, L.A.; Orav, E.J.; Clunie, S.; Messere, J.; Cox, G.F.; Lurie, P.R.; Hsu, D.; et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA 2006, 296, 1867–1876. [Google Scholar] [CrossRef]
- Yamada, A.; Takeichi, T.; Kiryu, K.; Takashino, S.; Yoshida, M.; Kitamura, O. Fatal human herpes virus 6B myocarditis: Postmortem diagnosis of HHV-6B based on CD134(+) T-cell tropism. Legal Med. 2022, 54, 102007. [Google Scholar] [CrossRef]
- Boehmer, T.K.; Kompaniyets, L.; Lavery, A.M.; Hsu, J.; Ko, J.Y.; Yusuf, H.; Romano, S.D.; Gundlapalli, A.V.; Oster, M.E.; Harris, A.M. Association Between COVID-19 and Myocarditis Using Hospital-Based Administrative Data—United States, March 2020–January 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1228–1232. [Google Scholar] [CrossRef]
- Archard, L.C.; Bowles, N.E.; Cunningham, L.; Freeke, C.A.; Olsen, E.G.; Rose, M.L.; Meany, B.; Why, H.J.; Richardson, P.J. Molecular probes for detection of persisting enterovirus infection of human heart and their prognostic value. Eur. Heart J. 1991, 12 (Suppl. D), 56–59. [Google Scholar] [CrossRef]
- Cihakova, D.; Rose, N.R. Pathogenesis of myocarditis and dilated cardiomyopathy. Adv. Immunol. 2008, 99, 95–114. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, U.; Pauschinger, M.; Noutsias, M.; Seeberg, B.; Bock, T.; Lassner, D.; Poller, W.; Kandolf, R.; Schultheiss, H.P. High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction. Circulation 2005, 111, 887–893. [Google Scholar] [CrossRef] [Green Version]
- Martino, T.; Liu, P.; Sole, M.J. Enteroviral myocarditis and dialted cardiomyopathy: A review of clinical and experimental studies. In Human Enterovirus Infections; ASM: Washington, DC, USA, 1995; Volume 14. [Google Scholar]
- Chapman, N.M.; Kim, K.S. Persistent coxsackievirus infection: Enterovirus persistence in chronic myocarditis and dilated cardiomyopathy. Curr. Top. Microbiol. Immunol. 2008, 323, 275–292. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.; Moaddab, A.; Hussain, S.W.; Viriya, G.; Graham-Hill, S. A Rare Case of Dilated Cardiomyopathy, Focal Segmental Glomerulosclerosis, and Bell’s Palsy in a 29-Year-Old Male After Coxsackievirus Infection. Cureus 2022, 14, e26285. [Google Scholar] [CrossRef] [PubMed]
- Bowles, N.E.; Richardson, P.J.; Olsen, E.G.; Archard, L.C. Detection of Coxsackie-B-virus-specific RNA sequences in myocardial biopsy samples from patients with myocarditis and dilated cardiomyopathy. Lancet 1986, 1, 1120–1123. [Google Scholar] [CrossRef]
- Fairley, C.K.; Ryan, M.; Wall, P.G.; Weinberg, J. The organisms reported to cause infective myocarditis and pericarditis in England and Wales. J. Infect. 1996, 32, 223–225. [Google Scholar] [CrossRef]
- Keeling, P.J.; Lukaszyk, A.; Poloniecki, J.; Caforio, A.L.; Davies, M.J.; Booth, J.C.; McKenna, W.J. A prospective case-control study of antibodies to coxsackie B virus in idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 1994, 23, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Mahfoud, F.; Gartner, B.; Kindermann, M.; Ukena, C.; Gadomski, K.; Klingel, K.; Kandolf, R.; Bohm, M.; Kindermann, I. Virus serology in patients with suspected myocarditis: Utility or futility? Eur. Heart J. 2011, 32, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Pollack, A.; Kontorovich, A.R.; Fuster, V.; Dec, G.W. Viral myocarditis--diagnosis, treatment options, and current controversies. Nat. Rev. Cardiol. 2015, 12, 670–680. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- Mobasseri, M.; Shirmohammadi, M.; Amiri, T.; Vahed, N.; Hosseini Fard, H.; Ghojazadeh, M. Prevalence and incidence of type 1 diabetes in the world: A systematic review and meta-analysis. Health Promot. Perspect. 2020, 10, 98–115. [Google Scholar] [CrossRef]
- Hyoty, H.; Knip, M. Developing a vaccine for Type 1 diabetes through targeting enteroviral infections. Expert Rev. Vaccines 2014, 13, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Dotta, F.; Censini, S.; van Halteren, A.G.; Marselli, L.; Masini, M.; Dionisi, S.; Mosca, F.; Boggi, U.; Muda, A.O.; Del Prato, S.; et al. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc. Natl. Acad. Sci. USA 2007, 104, 5115–5120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laitinen, O.H.; Honkanen, H.; Pakkanen, O.; Oikarinen, S.; Hankaniemi, M.M.; Huhtala, H.; Ruokoranta, T.; Lecouturier, V.; Andre, P.; Harju, R.; et al. Coxsackievirus B1 is associated with induction of beta-cell autoimmunity that portends type 1 diabetes. Diabetes 2014, 63, 446–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haller, M.J.; Atkinson, M.A.; Schatz, D. Type 1 diabetes mellitus: Etiology, presentation, and management. Pediatr. Clin. N. Am. 2005, 52, 1553–1578. [Google Scholar] [CrossRef]
- Ziegler, A.G.; Nepom, G.T. Prediction and pathogenesis in type 1 diabetes. Immunity 2010, 32, 468–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, S.J.; Morgan, N.G. Enteroviral infections in the pathogenesis of type 1 diabetes: New insights for therapeutic intervention. Curr. Opin. Pharmacol. 2018, 43, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ji, H.; Shao, J.; Jia, Y.; Bao, Q.; Zhu, J.; Zhang, L.; Shen, Y. Different Hepatitis C Virus Infection Statuses Show a Significant Risk of Developing Type 2 Diabetes Mellitus: A Network Meta-Analysis. Dig. Dis. Sci. 2020, 65, 1940–1950. [Google Scholar] [CrossRef]
- Klitz, W.; Niklasson, B. Extending the Enterovirus Lead: Could a Related Picornavirus be Responsible for Diabetes in Humans? Microorganisms 2020, 8, 1382. [Google Scholar] [CrossRef]
- Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol. 2021, 21, 83–100. [Google Scholar] [CrossRef]
- Ghattas, M.; Dwivedi, G.; Lavertu, M.; Alameh, M.G. Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges, and Opportunities. Vaccines 2021, 9, 1490. [Google Scholar] [CrossRef] [PubMed]
- Cameron-Wilson, C.L.; Pandolfino, Y.A.; Zhang, H.Y.; Pozzeto, B.; Archard, L.C. Nucleotide sequence of an attenuated mutant of coxsackievirus B3 compared with the cardiovirulent wildtype: Assessment of candidate mutations by analysis of a revertant to cardiovirulence. Clin. Diagn. Virol. 1998, 9, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Morgan-Capner, P.; Latif, N.; Pandolfino, Y.A.; Fan, W.; Dunn, M.J.; Archard, L.C. Coxsackievirus B3-induced myocarditis. Characterization of stable attenuated variants that protect against infection with the cardiovirulent wild-type strain. Am. J. Pathol. 1997, 150, 2197–2207. [Google Scholar] [PubMed]
- Zhang, H.; Blake, N.W.; Ouyang, X.; Pandolfino, Y.A.; Morgan-Capner, P.; Archard, L.C. A single amino acid substitution in the capsid protein VP1 of Coxsackievirus B3 (CVB3) alters plaque phenotype in Vero cells but not cardiovirulence in a mouse model. Arch. Virol. 1995, 140, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Yousef, G.E.; Cunningham, L.; Blake, N.W.; OuYang, X.; Bayston, T.A.; Kandolf, R.; Archard, L.C. Attenuation of a reactivated cardiovirulent coxsackievirus B3: The 5′-nontranslated region does not contain major attenuation determinants. J. Med. Virol. 1993, 41, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Neu, N.; Ploier, B.; Ofner, C. Cardiac myosin-induced myocarditis. Heart autoantibodies are not involved in the induction of the disease. J. Immunol. 1990, 145, 4094–4100. [Google Scholar] [CrossRef]
- Neumann, D.A.; Lane, J.R.; LaFond-Walker, A.; Allen, G.S.; Wulff, S.M.; Herskowitz, A.; Rose, N.R. Heart-specific autoantibodies can be eluted from the hearts of Coxsackievirus B3-infected mice. Clin. Exp. Immunol. 1991, 86, 405–412. [Google Scholar] [CrossRef]
- Basavalingappa, R.H.; Arumugam, R.; Lasrado, N.; Yalaka, B.; Massilamany, C.; Gangaplara, A.; Riethoven, J.J.; Xiang, S.H.; Steffen, D.; Reddy, J. Viral myocarditis involves the generation of autoreactive T cells with multiple antigen specificities that localize in lymphoid and non-lymphoid organs in the mouse model of CVB3 infection. Mol. Immunol. 2020, 124, 218–228. [Google Scholar] [CrossRef]
- Lindberg, A.M.; Crowell, R.L.; Zell, R.; Kandolf, R.; Pettersson, U. Mapping of the RD phenotype of the Nancy strain of coxsackievirus B3. Virus Res. 1992, 24, 187–196. [Google Scholar] [CrossRef]
- Reagan, K.J.; Goldberg, B.; Crowell, R.L. Altered receptor specificity of coxsackievirus B3 after growth in rhabdomyosarcoma cells. J. Virol. 1984, 49, 635–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landau, B.J.; Whittier, P.S.; Finkelstein, S.D.; Alstein, B.; Grun, J.B.; Schultz, M.; Crowell, R.L. Induction of heterotypic virus resistance in adult inbred mice immunized with a variant of Coxsackievirus B3. Microb. Pathog. 1990, 8, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Dan, M.; Chantler, J.K. A genetically engineered attenuated coxsackievirus B3 strain protects mice against lethal infection. J. Virol. 2005, 79, 9285–9295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stadnick, E.; Dan, M.; Sadeghi, A.; Chantler, J.K. Attenuating mutations in coxsackievirus B3 map to a conformational epitope that comprises the puff region of VP2 and the knob of VP3. J. Virol. 2004, 78, 13987–14002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.H.; Kim, D.S.; Cho, Y.J.; Kim, Y.J.; Jeong, S.Y.; Lee, S.M.; Cho, S.J.; Yun, C.W.; Jo, I.; Nam, J.H. Attenuation of coxsackievirus B3 by VP2 mutation and its application as a vaccine against virus-induced myocarditis and pancreatitis. Vaccine 2009, 27, 1974–1983. [Google Scholar] [CrossRef] [PubMed]
- Jrad-Battikh, N.; Souii, A.; Oueslati, L.; Aouni, M.; Hober, D.; Gharbi, J.; Ben M’hadheb-Gharbi, M. Neutralizing activity induced by the attenuated coxsackievirus B3 Sabin3-like strain against CVB3 infection. Curr. Microbiol. 2014, 68, 503–509. [Google Scholar] [CrossRef]
- M’Hadheb-Gharbi, M.B.; Paulous, S.; Aouni, M.; Kean, K.M.; Gharbi, J. The substitution U475 --> C with Sabin3-like mutation within the IRES attenuate Coxsackievirus B3 cardiovirulence. Mol. Biotechnol. 2007, 36, 52–60. [Google Scholar] [CrossRef]
- Dunn, J.J.; Chapman, N.M.; Tracy, S.; Romero, J.R. Genomic determinants of cardiovirulence in coxsackievirus B3 clinical isolates: Localization to the 5′ nontranslated region. J. Virol. 2000, 74, 4787–4794. [Google Scholar] [CrossRef] [Green Version]
- Chapman, N.M.; Romero, J.R.; Pallansch, M.A.; Tracy, S. Sites other than nucleotide 234 determine cardiovirulence in natural isolates of coxsackievirus B3. J. Med. Virol. 1997, 52, 258–261. [Google Scholar] [CrossRef]
- Dunn, J.J.; Bradrick, S.S.; Chapman, N.M.; Tracy, S.M.; Romero, J.R. The stem loop II within the 5′ nontranslated region of clinical coxsackievirus B3 genomes determines cardiovirulence phenotype in a murine model. J. Infect. Dis. 2003, 187, 1552–1561. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.K.; Kono, K.; Haas, E.; Kim, K.S.; Drescher, K.M.; Chapman, N.M.; Tracy, S. Characterization of an infectious cDNA copy of the genome of a naturally occurring, avirulent coxsackievirus B3 clinical isolate. J. Gen. Virol. 2005, 86, 197–210. [Google Scholar] [CrossRef]
- Chapman, N.M.; Ragland, A.; Leser, J.S.; Hofling, K.; Willian, S.; Semler, B.L.; Tracy, S. A group B coxsackievirus/poliovirus 5′ nontranslated region chimera can act as an attenuated vaccine strain in mice. J. Virol. 2000, 74, 4047–4056. [Google Scholar] [CrossRef] [Green Version]
- Trousdale, M.D.; Paque, R.E.; Nealon, T.; Gauntt, C.J. Assessment of coxsackievirus B3 ts mutants for induction of myocarditis in a murine model. Infect. Immun. 1979, 23, 486–495. [Google Scholar] [CrossRef] [Green Version]
- Gauntt, C.J.; Paque, R.E.; Trousdale, M.D.; Gudvangen, R.J.; Barr, D.T.; Lipotich, G.J.; Nealon, T.J.; Duffey, P.S. Temperature-sensitive mutant of coxsackievirus B3 establishes resistance in neonatal mice that protects them during adolescence against coxsackievirus B3-induced myocarditis. Infect. Immun. 1983, 39, 851–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gauntt, C.J.; Trousdale, M.D.; Lee, J.C.; Paque, R.E. Preliminary characterization of coxsackievirus B3 temperature-sensitive mutants. J. Virol. 1983, 45, 1037–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godney, E.K.; Arizpe, H.M.; Gaunti, C.J. Characterization of the antibody response in vaccinated mice protected against Coxsackievirus B3-induced myocarditis. Viral Immunol. 1987, 1, 305–314. [Google Scholar] [CrossRef]
- Hofling, K.; Tracy, S.; Chapman, N.; Kim, K.S.; Smith Leser, J. Expression of an antigenic adenovirus epitope in a group B coxsackievirus. J. Virol. 2000, 74, 4570–4578. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Yao, H.; Wang, J.; Xiao, Z.; Xin, L.; Liu, Z.; Ma, X.; Sun, J.; Jin, Q.; Liu, Z. Coxsackievirus B3 engineered to contain microRNA targets for muscle-specific microRNAs displays attenuated cardiotropic virulence in mice. J. Virol. 2015, 89, 908–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Z.; He, F.; Feng, M.; Liu, Z.; Liu, Z.; Li, S.; Wang, W.; Yao, H.; Wu, J. Engineered coxsackievirus B3 containing multiple organ-specific miRNA targets showed attenuated viral tropism and protective immunity. Infect. Genet. Evol. 2022, 103, 105316. [Google Scholar] [CrossRef]
- Lasrado, N.; Arumugam, R.; Rasquinha, M.T.; Sur, M.; Steffen, D.; Reddy, J. Mt10-CVB3 Vaccine Virus Protects against CVB4 Infection by Inducing Cross-Reactive, Antigen-Specific Immune Responses. Microorganisms 2021, 9, 2323. [Google Scholar] [CrossRef]
- Lasrado, N.; Gangaplara, A.; Massilamany, C.; Arumugam, R.; Shelbourn, A.; Rasquinha, M.T.; Basavalingappa, R.H.; Delhon, G.; Xiang, S.H.; Pattnaik, A.K.; et al. Attenuated strain of CVB3 with a mutation in the CAR-interacting region protects against both myocarditis and pancreatitis. Sci. Rep. 2021, 11, 12432. [Google Scholar] [CrossRef]
- Rasquinha, M.T.; Lasrado, N.; Sur, M.; Mone, K.; Qiu, H.; Riethoven, J.-J.; Sobel, R.A.; Reddy, J. A Monovalent Mt10-CVB3 Vaccine Prevents CVB4-Accelerated Type 1 Diabetes in NOD Mice. Vaccines 2023, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Fohlman, J.; Pauksen, K.; Morein, B.; Bjare, U.; Ilback, N.G.; Friman, G. High yield production of an inactivated coxsackie B3 adjuvant vaccine with protective effect against experimental myocarditis. Scand. J. Infect. Dis. Suppl. 1993, 88, 103–108. [Google Scholar]
- See, D.M.; Tilles, J.G. Efficacy of a polyvalent inactivated-virus vaccine in protecting mice from infection with clinical strains of group B coxsackieviruses. Scand. J. Infect. Dis. 1994, 26, 739–747. [Google Scholar] [CrossRef] [PubMed]
- See, D.M.; Tilles, J.G. Occurrence of coxsackievirus hepatitis in baby rabbits and protection by a formalin-inactivated polyvalent vaccine. Proc. Soc. Exp. Biol. Med. 1997, 216, 52–56. [Google Scholar] [CrossRef]
- Davydova, B.; Härkönen, T.; Kaialainen, S.; Hovi, T.; Vaarala, O.; Roivainen, M. Coxsackievirus immunization delays onset of diabetes in non-obese diabetic mice. J. Med. Virol. 2003, 69, 510–520. [Google Scholar] [CrossRef]
- Stone, V.M.; Hankaniemi, M.M.; Laitinen, O.H.; Sioofy-Khojine, A.B.; Lin, A.; Diaz Lozano, I.M.; Mazur, M.A.; Marjomaki, V.; Lore, K.; Hyoty, H.; et al. A hexavalent Coxsackievirus B vaccine is highly immunogenic and has a strong protective capacity in mice and nonhuman primates. Sci. Adv. 2020, 6, eaaz2433. [Google Scholar] [CrossRef] [PubMed]
- Stone, V.M.; Hankaniemi, M.M.; Svedin, E.; Sioofy-Khojine, A.; Oikarinen, S.; Hyoty, H.; Laitinen, O.H.; Hytonen, V.P.; Flodstrom-Tullberg, M. A Coxsackievirus B vaccine protects against virus-induced diabetes in an experimental mouse model of type 1 diabetes. Diabetologia 2018, 61, 476–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, V.M.; Butrym, M.; Hankaniemi, M.M.; Sioofy-Khojine, A.B.; Hytonen, V.P.; Hyoty, H.; Flodstrom-Tullberg, M. Coxsackievirus B Vaccines Prevent Infection-Accelerated Diabetes in NOD Mice and Have No Disease-Inducing Effect. Diabetes 2021, 70, 2871–2878. [Google Scholar] [CrossRef]
- Hankaniemi, M.M.; Laitinen, O.H.; Stone, V.M.; Sioofy-Khojine, A.; Maatta, J.A.E.; Larsson, P.G.; Marjomaki, V.; Hyoty, H.; Flodstrom-Tullberg, M.; Hytonen, V.P. Optimized production and purification of Coxsackievirus B1 vaccine and its preclinical evaluation in a mouse model. Vaccine 2017, 35, 3718–3725. [Google Scholar] [CrossRef] [Green Version]
- Larsson, P.G.; Lakshmikanth, T.; Laitinen, O.H.; Utorova, R.; Jacobson, S.; Oikarinen, M.; Domsgen, E.; Koivunen, M.R.; Chaux, P.; Devard, N.; et al. A preclinical study on the efficacy and safety of a new vaccine against Coxsackievirus B1 reveals no risk for accelerated diabetes development in mouse models. Diabetologia 2015, 58, 346–354. [Google Scholar] [CrossRef]
- Qi, X.; Xiong, S. Intein-mediated backbone cyclization of VP1 protein enhanced protection of CVB3-induced viral myocarditis. Sci. Rep. 2017, 7, 41485. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Yue, Y.; Xiong, S. Incorporation of a bi-functional protein FimH enhances the immunoprotection of chitosan-pVP1 vaccine against coxsackievirus B3-induced myocarditis. Antiviral Res. 2017, 140, 121–132. [Google Scholar] [CrossRef]
- Gao, Y.; Yue, Y.; Xiong, S. An Albumin-Binding Domain Peptide Confers Enhanced Immunoprotection Against Viral Myocarditis by CVB3 VP1 Vaccine. Front. Immunol. 2021, 12, 666594. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Xian, X.; Liu, G.X.; Lan, J.M.; Jin, Y.H.; Xie, L.X.; Zhang, H.; Wang, Y.X. [Construction of the recombinant adenovirus expressing the CVB3 sVP1-C3d3 protein and study on its immunological effects in mice]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2011, 27, 47–50. [Google Scholar] [PubMed]
- Fohlman, J.; Ilback, N.G.; Friman, G.; Morein, B. Vaccination of Balb/c mice against enteroviral mediated myocarditis. Vaccine 1990, 8, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Lu, Q.; Hu, J.; Xiong, S. Spontaneous C-cleavage of a truncated intein as fusion tag to produce tag-free VP1 inclusion body nanoparticle vaccine against CVB3-induced viral myocarditis by the oral route. Microb. Cell Fact. 2019, 18, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Fan, X.; Yue, Y.; Xiong, S.; Dong, C. A vesicular stomatitis virus-based mucosal vaccine promotes dendritic cell maturation and elicits preferable immune response against coxsackievirus B3 induced viral myocarditis. Vaccine 2014, 32, 3917–3926. [Google Scholar] [CrossRef] [PubMed]
- Henke, A.; Jarasch, N.; Martin, U.; Zell, R.; Wutzler, P. Characterization of the protective capability of a recombinant coxsackievirus B3 variant expressing interferon-gamma. Viral Immunol. 2008, 21, 38–48. [Google Scholar] [CrossRef]
- Henke, A.; Wagner, E.; Whitton, J.L.; Zell, R.; Stelzner, A. Protection of mice against lethal coxsackievirus B3 infection by using DNA immunization. J. Virol. 1998, 72, 8327–8331. [Google Scholar] [CrossRef] [Green Version]
- Henke, A.; Zell, R.; Stelzner, A. DNA vaccine-mediated immune responses in Coxsackie virus B3-infected mice. Antiviral Res. 2001, 49, 49–54. [Google Scholar] [CrossRef]
- Xu, W.; Shen, Y.; Jiang, Z.; Wang, Y.; Chu, Y.; Xiong, S. Intranasal delivery of chitosan-DNA vaccine generates mucosal SIgA and anti-CVB3 protection. Vaccine 2004, 22, 3603–3612. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yue, Y.; Dong, C.; Li, X.; Xu, W.; Xiong, S. Mucosal immunization with high-mobility group box 1 in chitosan enhances DNA vaccine-induced protection against coxsackievirus B3-induced myocarditis. Clin. Vaccine Immunol. 2013, 20, 1743–1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, D.; Yue, Y.; Xu, W.; Dong, C.; Xiong, S. Mucosal co-immunization with AIM2 enhances protective SIgA response and increases prophylactic efficacy of chitosan-DNA vaccine against coxsackievirus B3-induced myocarditis. Hum. Vaccine Immunother. 2014, 10, 1284–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, Y.; Xu, W.; Hu, L.; Jiang, Z.; Xiong, S. Enhanced resistance to coxsackievirus B3-induced myocarditis by intranasal co-immunization of lymphotactin gene encapsulated in chitosan particle. Virology 2009, 386, 438–447. [Google Scholar] [CrossRef]
- Liu, G.X.; Lan, J.M.; Chuai, X.; Gao, Z.Y.; Jin, Y.H.; Zhang, Y.H.; Xie, L.X.; Yin, C.F.; Wang, Y.X. [Immune effects of four coxsackievirus B3 VP1 DNA fusion vaccines in mice]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2010, 26, 103–106. [Google Scholar]
- Lan, J.; Gao, Z.; Xiong, H.; Chuai, X.; Jin, Y.; Li, J.; Xian, X.; Liu, G.; Xie, L.; Zhang, Y.; et al. Generation of protective immune responses against coxsackievirus B3 challenge by DNA prime-protein boost vaccination. Vaccine 2011, 29, 6894–6902. [Google Scholar] [CrossRef]
- Yan, L.J.; Gao, Z.Y.; Li, J.; Lan, J.M.; Jin, Y.H.; Xie, L.X.; Chuai, X.; Wang, Y.X. [Study on combined immunization of rAd/MDC-VP1 and pcDNA3/MDC-VP1 against Coxsackievirus B3 challenge in mice]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2012, 28, 228–231. [Google Scholar] [PubMed]
- Kim, J.Y.; Jeon, E.S.; Lim, B.K.; Kim, S.M.; Chung, S.K.; Kim, J.M.; Park, S.I.; Jo, I.; Nam, J.H. Immunogenicity of a DNA vaccine for coxsackievirus B3 in mice: Protective effects of capsid proteins against viral challenge. Vaccine 2005, 23, 1672–1679. [Google Scholar] [CrossRef]
- Hunziker, I.P.; Harkins, S.; Feuer, R.; Cornell, C.T.; Whitton, J.L. Generation and analysis of an RNA vaccine that protects against coxsackievirus B3 challenge. Virology 2004, 330, 196–208. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Ahn, J.; Jeung, S.Y.; Kim, D.S.; Na, H.N.; Cho, Y.J.; Yun, S.H.; Jee, Y.; Jeon, E.S.; Lee, H.; et al. Recombinant lentivirus-delivered short hairpin RNAs targeted to conserved coxsackievirus sequences protect against viral myocarditis and improve survival rate in an animal model. Virus Genes 2008, 36, 141–146. [Google Scholar] [CrossRef]
- Zhang, L.; Parham, N.J.; Zhang, F.; Aasa-Chapman, M.; Gould, E.A.; Zhang, H. Vaccination with coxsackievirus B3 virus-like particles elicits humoral immune response and protects mice against myocarditis. Vaccine 2012, 30, 2301–2308. [Google Scholar] [CrossRef] [PubMed]
- Koho, T.; Koivunen, M.R.; Oikarinen, S.; Kummola, L.; Makinen, S.; Mahonen, A.J.; Sioofy-Khojine, A.; Marjomaki, V.; Kazmertsuk, A.; Junttila, I.; et al. Coxsackievirus B3 VLPs purified by ion exchange chromatography elicit strong immune responses in mice. Antiviral Res. 2014, 104, 93–101. [Google Scholar] [CrossRef]
- Heinimaki, S.; Hankaniemi, M.M.; Sioofy-Khojine, A.B.; Laitinen, O.H.; Hyoty, H.; Hytonen, V.P.; Vesikari, T.; Blazevic, V. Combination of three virus-derived nanoparticles as a vaccine against enteric pathogens; enterovirus, norovirus and rotavirus. Vaccine 2019, 37, 7509–7518. [Google Scholar] [CrossRef]
- Zhang, N.; Zheng, T.; Chen, Y.; Zhu, H.; Qu, Y.; Zheng, H.; Liu, H.; Liu, Q. Coxsackievirus B5 virus-like particle vaccine exhibits greater immunogenicity and immunoprotection than its inactivated counterpart in mice. Vaccine 2021, 39, 5699–5705. [Google Scholar] [CrossRef] [PubMed]
- Hankaniemi, M.M.; Stone, V.M.; Andrejeff, T.; Heinimaki, S.; Sioofy-Khojine, A.B.; Marjomaki, V.; Hyoty, H.; Blazevic, V.; Flodstrom-Tullberg, M.; Hytonen, V.P.; et al. Formalin treatment increases the stability and immunogenicity of coxsackievirus B1 VLP vaccine. Antiviral Res. 2019, 171, 104595. [Google Scholar] [CrossRef] [PubMed]
- Hankaniemi, M.M.; Stone, V.M.; Sioofy-Khojine, A.B.; Heinimaki, S.; Marjomaki, V.; Hyoty, H.; Blazevic, V.; Laitinen, O.H.; Flodstrom-Tullberg, M.; Hytonen, V.P. A comparative study of the effect of UV and formalin inactivation on the stability and immunogenicity of a Coxsackievirus B1 vaccine. Vaccine 2019, 37, 5962–5971. [Google Scholar] [CrossRef]
- Bogue, M.A.; Churchill, G.A.; Chesler, E.J. Collaborative Cross and Diversity Outbred data resources in the Mouse Phenome Database. Mamm. Genome 2015, 26, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Sanders, B.; Koldijk, M.; Schuitemaker, H. Inactivated Viral Vaccines. In Vaccine Analysis: Strategies, Principles, and Control; Nunnally, B.K., Turula, V.E., Sitrin, R.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 45–80. [Google Scholar]
- Mendonca, S.A.; Lorincz, R.; Boucher, P.; Curiel, D.T. Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. NPJ Vaccines 2021, 6, 97. [Google Scholar] [CrossRef]
- Paoletti, E.; Lipinskas, B.R.; Samsonoff, C.; Mercer, S.; Panicali, D. Construction of live vaccines using genetically engineered poxviruses: Biological activity of vaccinia virus recombinants expressing the hepatitis B virus surface antigen and the herpes simplex virus glycoprotein D. Proc. Natl. Acad. Sci. USA 1984, 81, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.H. DNA vaccines: Roles against diseases. Germs 2013, 3, 26–35. [Google Scholar] [CrossRef]
- Lee, J.; Arun Kumar, S.; Jhan, Y.Y.; Bishop, C.J. Engineering DNA vaccines against infectious diseases. Acta Biomater. 2018, 80, 31–47. [Google Scholar] [CrossRef]
- Kutzler, M.A.; Weiner, D.B. DNA vaccines: Ready for prime time? Nat. Rev. Genet. 2008, 9, 776–788. [Google Scholar] [CrossRef]
- Nichols, W.W.; Ledwith, B.J.; Manam, S.V.; Troilo, P.J. Potential DNA vaccine integration into host cell genome. Ann. N. Y. Acad. Sci. 1995, 772, 30–39. [Google Scholar] [CrossRef]
- Doerfler, W. Adenoviral Vector DNA- and SARS-CoV-2 mRNA-Based COVID-19 Vaccines: Possible Integration into the Human Genome—Are Adenoviral Genes Expressed in Vector-based Vaccines? Virus Res. 2021, 302, 198466. [Google Scholar] [CrossRef]
- Ledwith, B.J.; Manam, S.; Troilo, P.J.; Barnum, A.B.; Pauley, C.J.; Griffiths, T.G., 2nd; Harper, L.B.; Beare, C.M.; Bagdon, W.J.; Nichols, W.W. Plasmid DNA vaccines: Investigation of integration into host cellular DNA following intramuscular injection in mice. Intervirology 2000, 43, 258–272. [Google Scholar] [CrossRef]
- Wang, Z.; Troilo, P.J.; Wang, X.; Griffiths, T.G.; Pacchione, S.J.; Barnum, A.B.; Harper, L.B.; Pauley, C.J.; Niu, Z.; Denisova, L.; et al. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther. 2004, 11, 711–721. [Google Scholar] [CrossRef]
- Faurez, F.; Dory, D.; Le Moigne, V.; Gravier, R.; Jestin, A. Biosafety of DNA vaccines: New generation of DNA vectors and current knowledge on the fate of plasmids after injection. Vaccine 2010, 28, 3888–3895. [Google Scholar] [CrossRef] [Green Version]
- Noad, R.; Roy, P. Virus-like particles as immunogens. Trends Microbiol. 2003, 11, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Grgacic, E.V.; Anderson, D.A. Virus-like particles: Passport to immune recognition. Methods 2006, 40, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.C.; Huang, J.H.; Lai, C.W.; Sheng, H.C.; Shih, S.R.; Ho, M.S.; Hu, Y.C. Expression, purification and characterization of enterovirus-71 virus-like particles. World J. Gastroenterol. 2006, 12, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Hassine, I.H.; Gharbi, J.; Hamrita, B.; Almalki, M.A.; Rodriguez, J.F.; Ben M’hadheb, M. Characterization of Coxsackievirus B4 virus-like particles VLP produced by the recombinant baculovirus-insect cell system expressing the major capsid protein. Mol. Biol. Rep. 2020, 47, 2835–2843. [Google Scholar] [CrossRef] [PubMed]
- Hyoty, H. Viruses in type 1 diabetes. Pediatr. Diabetes 2016, 17 (Suppl. 22), 56–64. [Google Scholar] [CrossRef]
- Coppieters, K.T.; Boettler, T.; von Herrath, M. Virus infections in type 1 diabetes. Cold Spring Harb. Perspect. Med. 2012, 2, a007682. [Google Scholar] [CrossRef] [PubMed]
- Filippi, C.; von Herrath, M. How viral infections affect the autoimmune process leading to type 1 diabetes. Cell Immunol. 2005, 233, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Babaya, N.; Liu, E.; Miao, D.; Li, M.; Yu, L.; Eisenbarth, G.S. Murine high specificity/sensitivity competitive europium insulin autoantibody assay. Diabetes Technol. Ther. 2009, 11, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Eisenbarth, G.; Bonifacio, E.; Thomas, J.; Atkinson, M.; Wasserfall, C. The second murine autoantibody workshop: Remarkable interlaboratory concordance for radiobinding assays to identify insulin autoantibodies in nonobese diabetic mice. Ann. N. Y. Acad. Sci. 2003, 1005, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, A.G.; Rewers, M.; Simell, O.; Simell, T.; Lempainen, J.; Steck, A.; Winkler, C.; Ilonen, J.; Veijola, R.; Knip, M.; et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 2013, 309, 2473–2479. [Google Scholar] [CrossRef] [Green Version]
- Ikegami, H.; Noso, S.; Babaya, N.; Kawabata, Y. Genetics and pathogenesis of type 1 diabetes: Prospects for prevention and intervention. J. Diabetes Investig. 2011, 2, 415–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippi, C.M.; von Herrath, M.G. Viral trigger for type 1 diabetes: Pros and cons. Diabetes 2008, 57, 2863–2871. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Heuser, J.S.; Cunningham, L.C.; Kosanke, S.D.; Cunningham, M.W. Mimicry and antibody-mediated cell signaling in autoimmune myocarditis. J. Immunol. 2006, 177, 8234–8240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascaro-Blanco, A.; Alvarez, K.; Yu, X.; Lindenfeld, J.; Olansky, L.; Lyons, T.; Duvall, D.; Heuser, J.S.; Gosmanova, A.; Rubenstein, C.J.; et al. Consequences of unlocking the cardiac myosin molecule in human myocarditis and cardiomyopathies. Autoimmunity 2008, 41, 442–453. [Google Scholar] [CrossRef] [Green Version]
- Ju, B.; Fan, Q.; Wang, M.; Liao, X.; Guo, H.; Wang, H.; Ge, X.; Liu, L.; Zhang, Z. Antigenic sin of wild-type SARS-CoV-2 vaccine shapes poor cross-neutralization of BA.4/5/2.75 subvariants in BA.2 breakthrough infections. Nat. Commun. 2022, 13, 7120. [Google Scholar] [CrossRef] [PubMed]
- Vatti, A.; Monsalve, D.M.; Pacheco, Y.; Chang, C.; Anaya, J.M.; Gershwin, M.E. Original antigenic sin: A comprehensive review. J. Autoimmun. 2017, 83, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Noori, M.; Nejadghaderi, S.A.; Rezaei, N. “Original antigenic sin”: A potential threat beyond the development of booster vaccination against novel SARS-CoV-2 variants. Infect. Control Hosp. Epidemiol. 2022, 43, 1091–1092. [Google Scholar] [CrossRef] [PubMed]
Type | Approach | Model | Outcome | Ref |
---|---|---|---|---|
Live attenuated | CVB3: p14V-1 Mutation: D155G in VP1 | SWR/Ola and Balb/c | Induced nAbs and low levels of anti-cardiac antibodies, but myocarditis was absent | [95,96,97,98] |
CVB3 (RD) Mutation: T151S of VP2 | C3H/HeJ, C57BL/6, Balb/c, and C57BL/6-beige | Low nAbs and low viral titers in hearts and pancreata with pancreatic cell necrosis. | [102,103,104] | |
CVB3 (KR/EG/DE) and (KR/EG/PM) | A/J | Low viral titers in the heart and generated nAbs; myocarditis was absent, but mild pancreatic damage was present | [105,106] | |
CVB3 (H3) Mutations: Y240F and Y254F in the C-terminal region of VP2 | Balb/c | Induced high nAbs and CTL response, but myocarditis and pancreatitis were absent | [107] | |
CVB3 Sabin3-like Mutation: Stem-loop V (nt U475C) | Swiss Albinos | Induced low nAbs against CVB3 and CVB4-E2, but a few lesions were present in the heart and pancreas | [108,109] | |
CVB3: Clinical isolates Mutation: Stem-loop II (nt 88–186) | C3H/HeJ and A/J | Low viral titers in the heart and pancreas; protected against CVB3 myocarditis | [106,110,111,112] | |
CVB3/GA | C3H/HeJ | Protected against CVB3-induced myocarditis and pancreatitis | [113] | |
CVB3: CPV/49 CVB3 5′NTR replaced with type 1 poliovirus | C3H/HeJ | nAbs against CVB3 and complete protection against both myocarditis and pancreatitis | [114] | |
CVB3: Temperature-sensitive mutants | CD-1 | Low viral titers in hearts, but myocarditis was absent; induced a low level of neutralizing IgG antibodies but low IFN-γ response | [115,116,117,118] | |
CVB3-PL2-Ad2L1 CVB3/0 encoding Ad2 hexon L1 loop and protease 2A (2Apro) | Balb/c | Low nAbs against both CVB3 and Ad2, but myocarditis and pancreatitis were absent; high IgG1 titer | [119] | |
CVB3: Incorporation of target sequences for miRNA-133 and miRNA-206 into the 5` UTR | Balb/c | High nAbs and survival rates, although mild tissue injury was seen in the heart and pancreas | [120,121] | |
Mt-10 CVB3 | A/J and NOD | High nAbs and virus-specific Ab and T cell responses; significant cross-reactive T cell and Ab responses against CVB1, CVB3, and CVB4; complete protection against CVB3-induced myocarditis and pancreatitis in A/J mice; significant protection (92%) against CVB4-induced myocarditis and pancreatitis in A/J mice; and significant protection (87%) against CVB4- accelerated T1D in NOD mice | [122,123,124] | |
Inactivated | CVB3: BPL treatment | Not reported | Low nAbs against CVB3 with a survival rate of 74%. | [125] |
Formalin-treated polyvalent CVB1 to CVB6 | CD1 and New Zealand white rabbits | Low nAbs and viral titers in the pancreas, but no mortalities | [126,127] | |
Formalin-treated CVB4-E2 | NOD | Delayed onset of T1D, but enhanced antibodies to Islet β-cell auto-antigens | [128] | |
Formalin-treated hexavalent vaccine (CVB1-6) | C57BL/6J, Balb/c, SOCS-1-Tg, and NOD Rhesus macaques | Strong nAbs; protection against acute CVB infections, CVB-induced myocarditis, and T1D Immunogenic and induced nAbs | [129,130] | |
Formalin-treated CVB1 monovalent vaccine | SOCS-1-Tg and NOD | Strong nAbs; protection against CVB1 infection and CVB1-accelerated T1D | [129,130,131,132,133] | |
Formalin-treated CVB4 monovalent vaccine | NOD | Moderate nAbs with complete protection against CVB4-accelerated T1D | [129] | |
Recombinant subunit | Rma DnaB intein cyclization of CVB3 VP1 | Balb/c | Increased VP1-specific IgG, IFN-γ+ T cells with 60% survival rate but mild myocarditis and viral loads were detected in hearts | [134] |
CVB3: FimH-Chitosan-pVP1 | Balb/c and C57BL/6 | Increased sIgA and virus-reactive T cells with a 60% survival rate, but mild myocarditis and virus load were detected in hearts | [135] | |
CVB3: ABD-VP1 fusion protein | Balb/c | A 73% survival rate with mild myocarditis and viral load was noted, accompanied by increased CTL and virus-specific memory T cell responses | [136] | |
CVB3 sVP1-C3d3, constructed from recombinant Ads | Balb/c | Induced nAbs and CTL response | [137] | |
CVB3: ISCOMs | Balb/c | High level of nAbs and all animals survived the challenge; complete protection against CVB3 infection | [125,138] | |
Tag-free VP1 inclusion body nanoparticles | Balb/c | Increased mucosal response and moderate protection against CVB3 myocarditis | [139] | |
Vector | CVB3: rVSV-VP1 | Balb/c | A 67% survival rate, reduced myocarditis and viral loads, and induced nAbs and CMI responses | [140] |
CVB3/IFN-γ | Balb/c | No tissue damage; no detectable virus; and no inflammation in the heart and pancreas | [141] | |
DNA | CVB3: pCMV/VP1 | Balb/c | Reduced cardiomyocyte destruction, low nAbs, and elevated IFN-γ and IL-6 with a ~72% survival rate | [142,143] |
CVB3: Chitosan DNA vaccine/HMGB1/AIM2/LTN | Balb/c | Increased mucosal sIgA and IgG, CTL responses in spleens with a 42–75% survival rate and reduced myocarditis and viral loads | [144,145,146,147] | |
CVB3: pcDNA3-STxB/C3d3/MDC/mBD2-VP1 and rAd/MDC-VP1 | Balb/c | Increased nAbs and CTL response; and reduced viral load with a 40–75% survival rate, but mild myocarditis was noted | [148,149,150] | |
CVB3: pCA-VP3, pCA-VP1 | Balb/c | Detected VP-reactive Abs, but not nAbs; increased survival rates were noted with VP3 DNA | [151] | |
RNA | CVB3: pH3IH1 | C57BL/6 | A 50% survival rate; no infectious particles generated; and reduced viral titers, but pancreatitis was evident | [152] |
CVB3: MET-2C lenti | Balb/c | A 50% survival rate; no infectious particles were generated; and reduced viral titers, myocardial lesions, and pro-inflammatory cytokines | [153] | |
VLP | CVB3: pBlueBac4.5/cb3 expressed in Baculovirus expression system | SWR/J | A 100% survival rate with enhanced Ab responses, but mild myocarditis was detected in 90% of animals | [154] |
CVB3: Dual cassette pFastBac CVB3 | Balb/c | No challenge studies were performed; but induced high nAbs | [155] | |
Recombinant virus-derived nanoparticles from CVB1, norovirus, and rotavirus | Balb/c | Strong nAbs; IgG1 and IgG2a responses | [156] | |
CVB5: Baculovirus expression system | Balb/c | Complete protection of suckling mice against CVB5 | [157] | |
Formalin-treated CVB1-VLP | Balb/c and C57BL/6 | High nAbs and CVB1-specific IgG1 response | [158,159] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mone, K.; Lasrado, N.; Sur, M.; Reddy, J. Vaccines against Group B Coxsackieviruses and Their Importance. Vaccines 2023, 11, 274. https://doi.org/10.3390/vaccines11020274
Mone K, Lasrado N, Sur M, Reddy J. Vaccines against Group B Coxsackieviruses and Their Importance. Vaccines. 2023; 11(2):274. https://doi.org/10.3390/vaccines11020274
Chicago/Turabian StyleMone, Kiruthiga, Ninaad Lasrado, Meghna Sur, and Jay Reddy. 2023. "Vaccines against Group B Coxsackieviruses and Their Importance" Vaccines 11, no. 2: 274. https://doi.org/10.3390/vaccines11020274
APA StyleMone, K., Lasrado, N., Sur, M., & Reddy, J. (2023). Vaccines against Group B Coxsackieviruses and Their Importance. Vaccines, 11(2), 274. https://doi.org/10.3390/vaccines11020274