Evaluation of DNA Vaccine Candidates against Foot-and-Mouth Disease Virus in Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of Plasmid Constructs
2.2. Construction of Minicircle Plasmid Vectors
2.2.1. Construction of pMC O1P1-HIV-3CT
2.2.2. Construction of pMC O1P1-3C
2.2.3. Construction of pMC SGLuc
2.3. Minicircle Production and Mammalian Cell Transfection
2.4. Evaluation of Transgene Expression, P1 Processing, and VLP Formation
2.4.1. Cesium Chloride Gradient Analysis
2.4.2. Immunogenicity in Guinea Pigs
2.5. Cattle Vaccination and FMDV Challenge
2.6. Testing Serum for Virus Neutralizing Antibody Titers
3. Results and Discussion
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bablanian, G.M.; Grubman, M.J. Characterization of the foot-and-mouth disease virus 3C protease expressed in Escherichia coli. Virology 1993, 197, 320–327. [Google Scholar] [CrossRef]
- Vakharia, V.N.; Devaney, M.A.; Moore, D.M.; Dunn, J.J.; Grubman, M.J. Proteolytic processing of foot-and-mouth disease virus polyproteins expressed in a cell-free system from clone-derived transcripts. J. Virol. 1987, 61, 3199–3207. [Google Scholar] [CrossRef]
- Mason, P.W.; Grubman, M.J.; Baxt, B. Molecular basis of pathogenesis of FMDV. Virus Res. 2003, 91, 9–32. [Google Scholar] [CrossRef]
- Breese, S.S., Jr.; Graves, J.H. Electron microscopic observation of crystalline arrays of foot-and-mouth disease virus. J. Bacteriol. 1966, 92, 1835–1837. [Google Scholar] [CrossRef]
- Martel, E.; Forzono, E.; Kurker, R.; Clark, B.A.; Neilan, J.G.; Puckette, M. Effect of foot-and-mouth disease virus 3C protease B2 beta-strand proline mutagenesis on expression and processing of the P1 polypeptide using a plasmid expression vector. J. Gen. Virol. 2019, 100, 446–456. [Google Scholar] [CrossRef]
- Puckette, M.; Burrage, T.; Neilan, J.G.; Rasmussen, M. Evaluation of Gaussia luciferase and foot-and-mouth disease virus 2A translational interrupter chimeras as polycistronic reporters for transgene expression. BMC Biotechnol. 2017, 17, 52. [Google Scholar] [CrossRef] [PubMed]
- Puckette, M.; Clark, B.A.; Smith, J.D.; Turecek, T.; Martel, E.; Gabbert, L.; Pisano, M.; Hurtle, W.; Pacheco, J.M.; Barrera, J.; et al. Foot-and-Mouth Disease (FMD) Virus 3C Protease Mutant L127P: Implications for FMD Vaccine Development. J. Virol. 2017, 91, e00924–17. [Google Scholar] [CrossRef] [PubMed]
- Puckette, M.; Primavera, V.; Martel, E.; Barrera, J.; Hurtle, W.; Clark, B.; Kamicker, B.; Zurita, M.; Brake, D.; Neilan, J. Transiently Transfected Mammalian Cell Cultures: An Adaptable and Effective Platform for Virus-like Particle-Based Vaccines against Foot-and-Mouth Disease Virus. Viruses 2022, 14, 989. [Google Scholar] [CrossRef] [PubMed]
- Doel, T.R.; Chong, W.K. Comparative immunogenicity of 146S, 75S and 12S particles of foot-and-mouth disease virus. Arch. Virol. 1982, 73, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Porta, C.; Xu, X.; Loureiro, S.; Paramasivam, S.; Ren, J.; Al-Khalil, T.; Burman, A.; Jackson, T.; Belsham, G.J.; Curry, S.; et al. Efficient production of foot-and-mouth disease virus empty capsids in insect cells following down regulation of 3C protease activity. J. Virol. Methods 2013, 187, 406–412. [Google Scholar] [CrossRef]
- Falk, M.M.; Grigera, P.R.; Bergmann, I.E.; Zibert, A.; Multhaup, G.; Beck, E. Foot-and-mouth disease virus protease 3C induces specific proteolytic cleavage of host cell histone H3. J. Virol. 1990, 64, 748–756. [Google Scholar] [CrossRef]
- Belsham, G.J.; McInerney, G.M.; Ross-Smith, N. Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. J. Virol. 2000, 74, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Mogensen, M.M.; Powell, P.P.; Curry, S.; Wileman, T. Foot-and-mouth disease virus 3C protease induces fragmentation of the Golgi compartment and blocks intra-Golgi transport. J. Virol. 2013, 87, 11721–11729. [Google Scholar] [CrossRef]
- Neilan, J.G.; Schutta, C.; Barrera, J.; Pisano, M.; Zsak, L.; Hartwig, E.; Rasmussen, M.V.; Kamicker, B.J.; Ettyreddy, D.; Brough, D.E.; et al. Efficacy of an adenovirus-vectored foot-and-mouth disease virus serotype A subunit vaccine in cattle using a direct contact transmission model. BMC Vet. Res. 2018, 14, 254. [Google Scholar] [CrossRef] [PubMed]
- Mayr, G.A.; O'Donnell, V.; Chinsangaram, J.; Mason, P.W.; Grubman, M.J. Immune responses and protection against foot-and-mouth disease virus (FMDV) challenge in swine vaccinated with adenovirus-FMDV constructs. Vaccine 2001, 19, 2152–2162. [Google Scholar] [CrossRef] [PubMed]
- Moraes, M.P.; Mayr, G.A.; Mason, P.W.; Grubman, M.J. Early protection against homologous challenge after a single dose of replication-defective human adenovirus type 5 expressing capsid proteins of foot-and-mouth disease virus (FMDV) strain A24. Vaccine 2002, 20, 1631–1639. [Google Scholar] [CrossRef]
- Liu, M.A. A Comparison of Plasmid DNA and mRNA as Vaccine Technologies. Vaccines 2019, 7, 37. [Google Scholar] [CrossRef]
- Fowler, V.; Robinson, L.; Bankowski, B.; Cox, S.; Parida, S.; Lawlor, C.; Gibson, D.; O'Brien, F.; Ellefsen, B.; Hannaman, D.; et al. A DNA vaccination regime including protein boost and electroporation protects cattle against foot-and-mouth disease. Antivir. Res. 2012, 94, 25–34. [Google Scholar] [CrossRef]
- Kay, M.A.; He, C.Y.; Chen, Z.Y. A robust system for production of minicircle DNA vectors. Nat. Biotechnol. 2010, 28, 1287–1289. [Google Scholar] [CrossRef]
- Valera, A.; Perales, J.C.; Hatzoglou, M.; Bosch, F. Expression of the neomycin-resistance (neo) gene induces alterations in gene expression and metabolism. Hum. Gene Ther. 1994, 5, 449–456. [Google Scholar] [CrossRef]
- Hartikka, J.; Sawdey, M.; Cornefert-Jensen, F.; Margalith, M.; Barnhart, K.; Nolasco, M.; Vahlsing, H.L.; Meek, J.; Marquet, M.; Hobart, P.; et al. An improved plasmid DNA expression vector for direct injection into skeletal muscle. Hum. Gene Ther. 1996, 7, 1205–1217. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Roman, M.; Tighe, H.; Lee, D.; Corr, M.; Nguyen, M.D.; Silverman, G.J.; Lotz, M.; Carson, D.A.; Raz, E. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 1996, 273, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Darquet, A.M.; Cameron, B.; Wils, P.; Scherman, D.; Crouzet, J. A new DNA vehicle for nonviral gene delivery: Supercoiled minicircle. Gene Ther. 1997, 4, 1341–1349. [Google Scholar] [CrossRef] [PubMed]
- Bigger, B.W.; Tolmachov, O.; Collombet, J.M.; Fragkos, M.; Palaszewski, I.; Coutelle, C. An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J. Biol. Chem. 2001, 276, 23018–23027. [Google Scholar] [CrossRef]
- Riu, E.; Grimm, D.; Huang, Z.; Kay, M.A. Increased maintenance and persistence of transgenes by excision of expression cassettes from plasmid sequences in vivo. Hum. Gene Ther. 2005, 16, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Hyde, S.C.; Pringle, I.A.; Abdullah, S.; Lawton, A.E.; Davies, L.A.; Varathalingam, A.; Nunez-Alonso, G.; Green, A.M.; Bazzani, R.P.; Sumner-Jones, S.G.; et al. CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat. Biotechnol. 2008, 26, 549–551. [Google Scholar] [CrossRef] [PubMed]
- Tolmachov, O.; Palaszewski, I.; Bigger, B.; Coutelle, C. RecET driven chromosomal gene targeting to generate a RecA deficient Escherichia coli strain for Cre mediated production of minicircle DNA. BMC Biotechnol. 2006, 6, 17. [Google Scholar] [CrossRef]
- Chen, Z.Y.; He, C.Y.; Ehrhardt, A.; Kay, M.A. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol. Ther. 2003, 8, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Y.; He, C.Y.; Kay, M.A. Improved production and purification of minicircle DNA vector free of plasmid bacterial sequences and capable of persistent transgene expression in vivo. Hum. Gene Ther. 2005, 16, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Jechlinger, W.; Azimpour Tabrizi, C.; Lubitz, W.; Mayrhofer, P. Minicircle DNA immobilized in bacterial ghosts: In vivo production of safe non-viral DNA delivery vehicles. J. Mol. Microbiol. Biotechnol. 2004, 8, 222–231. [Google Scholar] [CrossRef]
- Yang, M.; Clavijo, A.; Suarez-Banmann, R.; Avalo, R. Production and characterization of two serotype independent monoclonal antibodies against foot-and-mouth disease virus. Vet. Immunol. Immunopathol. 2007, 115, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Stave, J.W.; Card, J.L.; Morgan, D.O. Analysis of foot-and-mouth disease virus type O1 Brugge neutralization epitopes using monoclonal antibodies. J. Gen. Virol. 1986, 67 Pt 10, 2083–2092. [Google Scholar] [CrossRef]
- Barrera, J.; Brake, D.A.; Schutta, C.; Ettyreddy, D.; Kamicker, B.J.; Rasmussen, M.V.; Bravo de Rueda, C.; Zurita, M.; Pisano, M.; Hurtle, W.; et al. Versatility of the adenovirus-vectored foot-and-mouth disease vaccine platform across multiple foot-and-mouth disease virus serotypes and topotypes using a vaccine dose representative of the AdtA24 conditionally licensed vaccine. Vaccine 2018, 36, 7345–7352. [Google Scholar] [CrossRef] [PubMed]
- Grubman, M.J.; Morgan, D.O.; Kendall, J.; Baxt, B. Capsid intermediates assembled in a foot-and-mouth disease virus genome RNA-programmed cell-free translation system and in infected cells. J. Virol. 1985, 56, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Jamal, S.M.; Belsham, G.J. Foot-and-mouth disease: Past, present and future. Vet. Res. 2013, 44, 116. [Google Scholar] [CrossRef]
TG | n | Prime | Dose | 0 dpv | 7 dpv | 14 dpv | 21 dpv | Boost | Dose | 7 dpb | doc 14/10 dpb | Protected |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | MC O1P1-3C | 0.5 mg | 0.6 | 0.6 | 0.6 | 1.0 | MC O1P1-3C | 0.5 mg | 0.8 | 0.8 | 0 |
2 | 2 | MC O1P1-HIV-3CT | 0.5 mg | 0.6 | 0.6 | 0.6 | 0.6 | None | 0.6 | 0.6 | 0 | |
3 | 3 | MC SGLuc | 0.5 mg | 0.6 | 0.6 | 0.6 | 0.6 | Ad5 O1 Manisa | 1 × 109 PFU | 2.0 | 1.6 | 3 |
4 | 3 | pTarget O1P1-3C | 0.5 mg | 0.6 | 0.6 | 0.6 | 0.8 | Ad5 O1 Manisa | 1 × 109 PFU | 2.4 | 2.1 | 3 |
5 | 5 | mpTarget O1P1-3CLT | 1.0 mg | 0.6 | 0.7 | 0.7 | 0.6 | mpTarget O1P1-3CLT | 1.0 mg | 0.6 | 0.6 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puckette, M.; Clark, B.A.; Barrera, J.; Neilan, J.G.; Rasmussen, M.V. Evaluation of DNA Vaccine Candidates against Foot-and-Mouth Disease Virus in Cattle. Vaccines 2023, 11, 386. https://doi.org/10.3390/vaccines11020386
Puckette M, Clark BA, Barrera J, Neilan JG, Rasmussen MV. Evaluation of DNA Vaccine Candidates against Foot-and-Mouth Disease Virus in Cattle. Vaccines. 2023; 11(2):386. https://doi.org/10.3390/vaccines11020386
Chicago/Turabian StylePuckette, Michael, Benjamin A. Clark, José Barrera, John G. Neilan, and Max V. Rasmussen. 2023. "Evaluation of DNA Vaccine Candidates against Foot-and-Mouth Disease Virus in Cattle" Vaccines 11, no. 2: 386. https://doi.org/10.3390/vaccines11020386
APA StylePuckette, M., Clark, B. A., Barrera, J., Neilan, J. G., & Rasmussen, M. V. (2023). Evaluation of DNA Vaccine Candidates against Foot-and-Mouth Disease Virus in Cattle. Vaccines, 11(2), 386. https://doi.org/10.3390/vaccines11020386