Associations of HLA Polymorphisms with Anti-SARS-CoV-2 Spike and Neutralizing Antibody Titers in Japanese Rheumatoid Arthritis Patients Vaccinated with BNT162b2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Sera
2.2. Detection of Anti-SARS-CoV-2 N, S, and Neutralizing Abs
2.3. Genotyping
2.4. Statistical Analysis
3. Results
3.1. Clinical Characteristics of RA Patients
3.2. Association of HLA with Anti-SARS-CoV-2 Abs in RA Patients
3.3. Logistic Regression Analysis of HLA Alleles and Clinical Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Meyer, B.; Reimerink, J.; Torriani, G.; Brouwer, F.; Godeke, G.J.; Yerly, S.; Hoogerwerf, M.; Vuilleumier, N.; Kaiser, L.; Eckerle, I.; et al. Validation and clinical evaluation of a SARS-CoV-2 surrogate virus neutralisation test (sVNT). Emerg. Microbes Infect. 2020, 9, 2394–2403. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.J.; McIntosh, M.; Atkinson, C.; Mahungu, T.; Wright, E.; Chatterton, W.; Gandy, M.; Reeves, M.B. Validation of a commercially available indirect assay for SARS-CoV-2 neutralising antibodies using a pseudotyped virus assay. J. Infect. 2021, 82, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Papenburg, J.; Cheng, M.P.; Corsini, R.; Caya, C.; Mendoza, E.; Manguiat, K.; Lindsay, L.R.; Wood, H.; Drebot, M.A.; Dibernardo, A.; et al. Evaluation of a Commercial Culture-Free Neutralization Antibody Detection Kit for Severe Acute Respiratory Syndrome-Related Coronavirus-2 and Comparison with an Antireceptor-Binding Domain Enzyme-Linked Immunosorbent Assay. In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2021; Volume 8, p. ofab220. [Google Scholar]
- Kageyama, T.; Ikeda, K.; Tanaka, S.; Taniguchi, T.; Igari, H.; Onouchi, Y.; Kaneda, A.; Matsushita, K.; Hanaoka, H.; Nakada, T.A.; et al. Antibody responses to BNT162b2 mRNA COVID-19 vaccine and their predictors among healthcare workers in a tertiary referral hospital in Japan. Clin. Microbiol. Infect. 2021, 27, 1861.e1–1861.e5. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Fukunaga, A.; Tanaka, A.; Takeuchi, J.S.; Inoue, Y.; Kimura, M.; Maeda, K.; Ueda, G.; Mizoue, T.; Ujiie, M.; et al. Association between reactogenicity and SARS-CoV-2 antibodies after the second dose of the BNT162b2 COVID-19 vaccine. Vaccine 2022, 40, 1924–1927. [Google Scholar] [CrossRef] [PubMed]
- Midorikawa, R.; Nakama, M.; Furukawa, H.; Oka, S.; Higuchi, T.; Nagai, H.; Nagai, N.; Tohma, S. Detection of SARS-CoV-2 nucleocapsid, spike, and neutralizing antibodies in vaccinated Japanese. Viruses 2022, 14, 965. [Google Scholar] [CrossRef] [PubMed]
- Boyarsky, B.J.; Ruddy, J.A.; Connolly, C.M.; Ou, M.T.; Werbel, W.A.; Garonzik-Wang, J.M.; Segev, D.L.; Paik, J.J. Antibody response to a single dose of SARS-CoV-2 mRNA vaccine in patients with rheumatic and musculoskeletal diseases. Ann. Rheum. Dis. 2021, 2021, 1098–1099. [Google Scholar] [CrossRef]
- Simon, D.; Tascilar, K.; Fagni, F.; Krönke, G.; Kleyer, A.; Meder, C.; Atreya, R.; Leppkes, M.; Kremer, A.E.; Ramming, A.; et al. SARS-CoV-2 vaccination responses in untreated, conventionally treated and anticytokine-treated patients with immune-mediated inflammatory diseases. Ann. Rheum. Dis. 2021, 80, 1312–1316. [Google Scholar] [CrossRef]
- Farroni, C.; Picchianti-Diamanti, A.; Aiello, A.; Nicastri, E.; Laganà, B.; Agrati, C.; Castilletti, C.; Meschi, S.; Colavita, F.; Cuzzi, G.; et al. Kinetics of the B- and T-Cell Immune Responses after 6 Months from SARS-CoV-2 mRNA Vaccination in Patients with Rheumatoid Arthritis. Front. Immunol. 2022, 13, 846753. [Google Scholar] [CrossRef]
- Ovsyannikova, I.G.; Jacobson, R.M.; Poland, G.A. Variation in vaccine response in normal populations. Pharmacogenomics 2004, 5, 417–427. [Google Scholar] [CrossRef]
- Ovsyannikova, I.G.; Pankratz, V.S.; Vierkant, R.A.; Jacobson, R.M.; Poland, G.A. Consistency of HLA associations between two independent measles vaccine cohorts: A replication study. Vaccine 2012, 30, 2146–2152. [Google Scholar] [CrossRef] [PubMed]
- Alper, C.A.; Kruskall, M.S.; Marcus-Bagley, D.; Craven, D.E.; Katz, A.J.; Brink, S.J.; Dienstag, J.L.; Awdeh, Z.; Yunis, E.J. Genetic prediction of nonresponse to hepatitis B vaccine. N. Engl. J. Med. 1989, 321, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Nishida, N.; Sugiyama, M.; Sawai, H.; Nishina, S.; Sakai, A.; Ohashi, J.; Khor, S.S.; Kakisaka, K.; Tsuchiura, T.; Hino, K.; et al. Key HLA-DRB1-DQB1 haplotypes and role of the BTNL2 gene for response to a hepatitis B vaccine. Hepatology 2018, 68, 848–858. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.K.; Nie, J.J.; Li, J.; Zhuang, H. The effect of HLA on immunological response to hepatitis B vaccine in healthy people: A meta-analysis. Vaccine 2013, 31, 4355–4361. [Google Scholar] [CrossRef]
- Poland, G.A.; Ovsyannikova, I.G.; Jacobson, R.M. Immunogenetics of seasonal influenza vaccine response. Vaccine 2008, 26 (Suppl. S4), D35–D40. [Google Scholar] [CrossRef]
- Moss, A.J.; Gaughran, F.P.; Karasu, A.; Gilbert, A.S.; Mann, A.J.; Gelder, C.M.; Oxford, J.S.; Stephens, H.A.; Lambkin-Williams, R. Correlation between human leukocyte antigen class II alleles and HAI titers detected post-influenza vaccination. PLoS ONE 2013, 8, e71376. [Google Scholar] [CrossRef]
- Khor, S.S.; Omae, Y.; Takeuchi, J.S.; Fukunaga, A.; Yamamoto, S.; Tanaka, A.; Matsuda, K.; Kimura, M.; Maeda, K.; Ueda, G.; et al. An Association Study of HLA with the Kinetics of SARS-CoV-2 Spike Specific IgG Antibody Responses to BNT162b2 mRNA Vaccine. Vaccines 2022, 10, 563. [Google Scholar] [CrossRef]
- Ragone, C.; Meola, S.; Fiorillo, P.C.; Penta, R.; Auriemma, L.; Tornesello, M.L.; Miscio, L.; Cavalcanti, E.; Botti, G.; Buonaguro, F.M.; et al. HLA Does Not Impact on Short-Medium-Term Antibody Response to Preventive Anti-SARS-Cov-2 Vaccine. Front. Immunol. 2021, 12, 734689. [Google Scholar] [CrossRef]
- Arnett, F.C.; Edworthy, S.M.; Bloch, D.A.; McShane, D.J.; Fries, J.F.; Cooper, N.S.; Healey, L.A.; Kaplan, S.R.; Liang, M.H.; Luthra, H.S.; et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988, 31, 315–324. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef]
- Furukawa, H.; Oka, S.; Higuchi, T.; Nakama, M.; Nagai, N.; Tohma, S. Anti-SARS-CoV-2 Spike Antibody Titers and Neutralizing Antibodies in Vaccinated Rheumatoid Arthritis Patients. Vaccines 2022, 10, 1365. [Google Scholar] [CrossRef]
- Rousset, F. Genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 2008, 8, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, F.; Nakamura, J.; Yokota, T. Analysis of HLA haplotypes in Japanese, using high resolution allele typing. Major Histocompat. Complex 2001, 8, 1–32. [Google Scholar] [CrossRef]
- Connolly, C.M.; Boyarsky, B.J.; Ruddy, J.A.; Werbel, W.A.; Christopher-Stine, L.; Garonzik-Wang, J.M.; Segev, D.L.; Paik, J.J. Absence of Humoral Response after Two-Dose SARS-CoV-2 Messenger RNA Vaccination in Patients with Rheumatic and Musculoskeletal Diseases: A Case Series. Ann. Intern. Med. 2021, 174, 1332–1334. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Nojima, T.; Yasuoka, H.; Satoh, S.; Nakamura, K.; Kuwana, M.; Suwa, A.; Hirakata, M.; Mimori, T. Cytokine and immunogenetic profiles in Japanese patients with adult Still’s disease. Association with chronic articular disease. Rheumatology 2001, 40, 1398–1404. [Google Scholar] [CrossRef] [PubMed]
- Asano, T.; Furukawa, H.; Sato, S.; Yashiro, M.; Kobayashi, H.; Watanabe, H.; Suzuki, E.; Ito, T.; Ubara, Y.; Kobayashi, D.; et al. Effects of HLA-DRB1 alleles on susceptibility and clinical manifestations in Japanese patients with adult onset Still’s disease. Arthritis Res. Ther. 2017, 19, 199. [Google Scholar] [CrossRef] [PubMed]
- Muench, F.; Krusche, M.; Sander, L.E.; Rose, T.; Burmester, G.R.; Schneider, U. Macrophage activation syndrome in a patient with adult-onset Still’s disease following first COVID-19 vaccination with BNT162b2. BMC Rheumatol. 2021, 5, 60. [Google Scholar] [CrossRef]
- Magliulo, D.; Narayan, S.; Ue, F.; Boulougoura, A.; Badlissi, F. Adult-onset Still’s disease after mRNA COVID-19 vaccine. Lancet Rheumatol. 2021, 3, e680–e682. [Google Scholar] [CrossRef]
- Chua, X.H.; Lin, W.L.; Lee, Y.T. Adult-Onset Still’s Disease following Coronavirus 2 (SARS-CoV-2) Vaccination: A Case Report. Vaccines 2022, 10, 1687. [Google Scholar] [CrossRef]
- Willyard, C. What the Omicron wave is revealing about human immunity. Nature 2022, 602, 22–25. [Google Scholar] [CrossRef]
- Takeuchi, J.S.; Fukunaga, A.; Yamamoto, S.; Tanaka, A.; Matsuda, K.; Kimura, M.; Kamikawa, A.; Kito, Y.; Maeda, K.; Ueda, G.; et al. SARS-CoV-2 specific T cell and humoral immune responses upon vaccination with BNT162b2: A 9 months longitudinal study. Sci. Rep. 2022, 12, 15447. [Google Scholar] [CrossRef] [PubMed]
S High | S Low | p | Neu High | Neu Low | p | |
---|---|---|---|---|---|---|
Number | 22 | 65 | 22 | 65 | ||
Age, years (SD) | 67.7 (10.6) | 73.8 (8.1) | 0.0147 | 73.0 (7.5) | 72.0 (9.6) | 0.7359 |
Male, n (%) | 4 (18.2) | 17 (26.2) | 0.5707 * | 7 (31.8) | 14 (21.5) | * 0.3904 |
Corticosteroid administration, n (%) | 8 (36.4) | 25 (38.5) | 1.0000 * | 7 (31.8) | 26 (40.0) | * 0.6138 |
csDMARDs administration, n (%) | 17 (77.3) | 39 (60.0) | 0.1992 * | 15 (68.2) | 41 (63.1) | * 0.7986 |
bDMARDs administration, n (%) | 1 (4.5) | 10 (15.4) | 0.2769 * | 1 (4.5) | 10 (15.4) | * 0.2769 |
tsDMARDs administration, n (%) | 5 (22.7) | 17 (26.2) | 1.0000 * | 4 (18.2) | 18 (27.7) | * 0.5710 |
Interval between last vaccination and blood collection, days (SD) | 145.6 (41.8) | 143.5 (28.1) | 0.6115 | 129.2 (27.5) | 149.0 (31.8) | 0.0370 |
Anti-SARS-CoV-2 S Ab, U/mL (SD) | 791.2 (999.6) | 119.3 (94.5) | 2.90 × 10−12 | 369.8 (383.9) | 261.9 (633.5) | 0.0066 |
Anti-SARS-CoV-2 neutralizing Ab, inhibition rate, % (SD) | 11.7 (4.3) | 10.2 (3.8) | 0.1288 | 15.8 (1.9) | 8.8 (2.7) | 2.88 × 10−12 |
S High | S Low | ||||
---|---|---|---|---|---|
(n = 22) | (n = 65) | p | OR | 95% CI | |
DRB1*12:01 | 5 (22.7) | 3 (4.6) | 0.0225 | 6.08 | (1.32–28.03) |
DQB1*03:01 | 10 (45.5) | 15 (23.1) | 0.0583 | 2.78 | (1.00–7.69) |
DQB1*03:02 | 0 (0.0) | 16 (24.6) | 0.0089 | 0.07 | (0.00–1.16) |
DRB1*04:01-DQB1*03:01 | 3 (13.6) | 4 (6.2) | 0.3625 | 2.41 | (0.49–11.73) |
DRB1*11:01-DQB1*03:01 | 0 (0.0) | 2 (3.1) | 1.0000 | 0.56 | (0.03–12.21) |
DRB1*12:01-DQB1*03:01 | 5 (22.7) | 3 (4.6) | 0.0225 | 6.08 | (1.32–28.03) |
DRB1*12:02-DQB1*03:01 | 2 (9.1) | 2 (3.1) | 0.2641 | 3.15 | (0.42–23.83) |
DRB1*14:03-DQB1*03:01 | 0 (0.0) | 3 (4.6) | 0.5683 | 0.40 | (0.02–7.99) |
DRB1*14:06-DQB1*03:01 | 1 (4.5) | 1 (1.5) | 0.4440 | 3.05 | (0.18–50.89) |
DRB1*15:01-DQB1*03:01 | 0 (0.0) | 1 (1.5) | 1.0000 | 0.96 | (0.04–24.31) |
Neu High | Neu Low | ||||
---|---|---|---|---|---|
(n = 22) | (n = 65) | p | OR | 95% CI | |
DRB1*15:01 | 5 (22.7) | 2 (3.1) | 0.0102 | 9.26 | (1.65–52.01) |
DQB1*06:02 | 4 (18.2) | 2 (3.1) | 0.0337 | 7.00 | (1.18–41.36) |
DRB1*15:01-DQB1*03:01 | 1 (4.5) | 0 (0.0) | 0.2529 | 9.14 | (0.36–232.79) |
DRB1*15:01-DQB1*06:02 | 4 (18.2) | 2 (3.1) | 0.0337 | 7.00 | (1.18–41.36) |
Anti-SARS-CoV-2 S Abs | DQB1*03:01 (+) | DQB1*03:01 (−) | p | OR | (95% CI) |
---|---|---|---|---|---|
S high without DRB1*12:01 | 5 (29.4) | 12 (70.6) | 0.5052 | 1.74 | (0.51–5.87) |
S low without DRB1*12:01 | 12 (19.4) | 50 (80.6) | |||
S high with DRB1*12:01 | 5 (100.0) | 0 (0.0) | NA | NA | NA |
S low with DRB1*12:01 | 3 (100.0) | 0 (0.0) | |||
anti-SARS-CoV-2 S Abs | DRB1*12:01(+) | DRB1*12:01(−) | p | OR | (95% CI) |
S high without DQB1*03:01 | 0 (0.0) | 12 (100.0) | NA | NA | NA |
S low without DQB1*03:01 | 0 (0.0) | 50 (100.0) | |||
S high with DQB1*03:01 | 5 (50.0) | 5 (50.0) | 0.1936 | 4.00 | (0.68–23.51) |
S low with DQB1*03:01 | 3 (20.0) | 12 (80.0) |
Anti-SARS-CoV-2 Neutralizing Abs | DQB1*06:02 (+) | DQB1*06:02 (−) | p | OR | (95% CI) |
---|---|---|---|---|---|
Neu high without DRB1*15:01 | 0 (0.0) | 17 (100.0) | NA | NA | NA |
Neu low without DRB1*15:01 | 0 (0.0) | 63 (100.0) | |||
Neu high with DRB1*15:01 | 4 (80.0) | 1 (20.0) | 1.0000 | 0.60 | (0.02–20.98) |
Neu low with DRB1*15:01 | 2 (100.0) | 0 (0.0) | |||
anti-SARS-CoV-2 neutralizing Abs | DRB1*15:01(+) | DRB1*15:01(−) | p | OR | (95% CI) |
Neu high without DQB1*06:02 | 1 (5.6) | 17 (94.4) | 0.2222 | 10.89 | (0.42–279.10) |
Neu low without DQB1*06:02 | 0 (0.0) | 63 (100.0) | |||
Neu high with DQB1*06:02 | 4 (100.0) | 0 (0.0) | NA | NA | NA |
Neu low with DQB1*06:02 | 2 (100.0) | 0 (0.0) |
Anti-SARS-CoV-2 S Abs | Unconditioned | Conditioned on the Other Clinical Manifestations | ||||
---|---|---|---|---|---|---|
Clinical Manifestations | OR | 95% CI | p | ORadjusted | 95% CI | Padjusted |
Age, years | 0.93 | (0.88–0.98) | 0.0097 | 0.94 | (0.88–0.99) | 0.0328 |
Male | 0.63 | (0.19–2.12) | 0.4527 | 0.81 | (0.22–3.02) | 0.7533 |
Corticosteroid administration | 0.91 | (0.34–2.49) | 0.8609 | 0.80 | (0.23–2.72) | 0.7178 |
csDMARD administration | 2.27 | (0.74–6.90) | 0.1499 | 5.18 | (0.74–36.15) | 0.0968 |
bDMARD administration | 0.26 | (0.03–2.17) | 0.2147 | 0.61 | (0.06–5.99) | 0.6687 |
tsDMARD administration | 0.83 | (0.27–2.60) | 0.7495 | 3.29 | (0.41–26.23) | 0.2611 |
The interval between last vaccination and blood collection, days | 1.00 | (0.99–1.02) | 0.7881 | 1.00 | (0.98–1.02) | 0.8222 |
DRB1*12:01 | 6.08 | (1.32–28.03) | 0.0207 | 8.40 | (1.29–54.77) | 0.0261 |
Anti-SARS-CoV-2 Neutralizing Abs. | Unconditioned | Conditioned on the Other Clinical Manifestations | ||||
---|---|---|---|---|---|---|
Clinical Manifestations | OR | 95% CI | p | ORadjusted | 95% CI | Padjusted |
Age, years | 1.01 | (0.96–1.07) | 0.6265 | 1.04 | (0.97–1.11) | 0.2777 |
Male | 1.70 | (0.58–4.98) | 0.3331 | 1.42 | (0.40–5.09) | 0.5871 |
Corticosteroid administration | 0.70 | (0.25–1.95) | 0.4953 | 0.57 | (0.17–1.98) | 0.3781 |
csDMARD administration | 1.25 | (0.45–3.51) | 0.6660 | 0.70 | (0.12–4.05) | 0.6891 |
bDMARD administration | 0.26 | (0.03–2.17) | 0.2147 | 0.23 | (0.02–2.31) | 0.2107 |
tsDMARD administration | 0.58 | (0.17–1.95) | 0.3787 | 0.39 | (0.05–3.14) | 0.3761 |
The interval between the last vaccination and blood collection, days | 0.97 | (0.95–1.00) | 0.0160 | 0.97 | (0.94–0.99) | 0.0191 |
DRB1*15:01 | 9.26 | (1.65–52.00) | 0.0114 | 12.10 | (1.84–79.70) | 0.0095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Higuchi, T.; Oka, S.; Furukawa, H.; Tohma, S. Associations of HLA Polymorphisms with Anti-SARS-CoV-2 Spike and Neutralizing Antibody Titers in Japanese Rheumatoid Arthritis Patients Vaccinated with BNT162b2. Vaccines 2023, 11, 404. https://doi.org/10.3390/vaccines11020404
Higuchi T, Oka S, Furukawa H, Tohma S. Associations of HLA Polymorphisms with Anti-SARS-CoV-2 Spike and Neutralizing Antibody Titers in Japanese Rheumatoid Arthritis Patients Vaccinated with BNT162b2. Vaccines. 2023; 11(2):404. https://doi.org/10.3390/vaccines11020404
Chicago/Turabian StyleHiguchi, Takashi, Shomi Oka, Hiroshi Furukawa, and Shigeto Tohma. 2023. "Associations of HLA Polymorphisms with Anti-SARS-CoV-2 Spike and Neutralizing Antibody Titers in Japanese Rheumatoid Arthritis Patients Vaccinated with BNT162b2" Vaccines 11, no. 2: 404. https://doi.org/10.3390/vaccines11020404
APA StyleHiguchi, T., Oka, S., Furukawa, H., & Tohma, S. (2023). Associations of HLA Polymorphisms with Anti-SARS-CoV-2 Spike and Neutralizing Antibody Titers in Japanese Rheumatoid Arthritis Patients Vaccinated with BNT162b2. Vaccines, 11(2), 404. https://doi.org/10.3390/vaccines11020404