Astragalus Saponins, Astragaloside VII and Newly Synthesized Derivatives, Induce Dendritic Cell Maturation and T Cell Activation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents, Cells, and Mice
2.2. Semi-Synthesis of AST VII Derivatives and Their Physicochemical Characterization
2.3. Cytotoxicity Evaluation of AST VII Analogs
2.4. Evaluation of Hemolytic Activities of AST VII Analogs
2.5. Human Whole Blood (hWB) Stimulation Assay
2.6. Generation of Bone Marrow-Derived Dendritic Cells (BMDCs) and Macrophages (BMDMs)
2.7. Stimulation of BMDCs and BMDMs with AST VII, DC-AST VII, and DAC-AST VII
2.8. Naive CD4+ and CD8+ T Cell Isolation
2.9. Mixed Lymphocyte Reaction (MLR)
2.10. Flow Cytometry
2.11. ELISA
2.12. Statistical Analysis
3. Results and Discussion
3.1. Semi-Synthesis of Astragaloside VII (AST VII) Derivatives
3.2. Cytotoxic and Hemolytic Activities of AST VII Analogs on Human Cancer Cell Lines and Erythrocytes
3.3. Evaluation of Immunomodulatory Activities of AST VII and Its Derivatives Based on Cytokine Release on Human Whole Blood
3.4. IL-1β Secretion Following Treatment with AST VII and Its Derivatives in BMDCs and BMDMs
3.5. AST VII and Its Derivatives Induced Dendritic Cell Maturation and Activation
3.6. AST VII and Its Derivatives Activated CD4+ and CD8+ T Cells in Mixed Leukocyte Reaction (MLR)
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reed, S.G.; Orr, M.T.; Fox, C.B. Key Roles of Adjuvants in Modern Vaccines. Nat. Med. 2013, 19, 1597–1608. [Google Scholar] [CrossRef]
- Pifferi, C.; Fuentes, R.; Fernández-Tejada, A. Natural and Synthetic Carbohydratebased Vaccine Adjuvants and Their Mechanisms of Action. Nat. Rev. Chem. 2021, 5, 197–216. [Google Scholar] [CrossRef] [PubMed]
- Mirotti, L.; Alberca Custódio, R.W.A.; Gomes, E.; Rammauro, F.; de Araujo, E.F.; Garcia Calich, V.L.G.; Russo, M. CpG-ODN Shapes Alum Adjuvant Activity Signaling via MyD88 and IL-10. Front. Immunol. 2017, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Bonam, S.R.; Partidos, C.D.; Halmuthur, S.K.M.; Muller, S. An Overview of Novel Adjuvants Designed for Improving Vaccine Efficacy. Trends Pharmacol. Sci. 2017, 38, 771–793. [Google Scholar] [CrossRef] [PubMed]
- Laupèze, B.; Hervé, C.; Di Pasquale, A.; Da Silva, F.D. Adjuvant Systems for Vaccines: 13 Years of Post-Licensure Experience in Diverse Populations Have Progressed the Way Adjuvanted Vaccine Safety Is Investigated and Understood. Vaccine 2019, 37, 5670–5680. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Rost, B.E. Aluminum Compounds as Vaccine Adjuvants. In Methods in Molecular Medicine, Vaccine Adjuvants Preparation Methods and Research Protocols; Humana Press: Totawa, NJ, USA, 2000; pp. 65–89. [Google Scholar]
- Saito, T.; Shukla, N.M.; Sato-kaneko, F.; Sako, Y.; Hosoya, T.; Yao, S.; Lao, F.S.; Messer, K.; Pu, M.; Chan, M.; et al. Small Molecule Calcium Channel Activator Potentiates Adjuvant Activity. ACS Chem. Biol. 2022, 17, 217–229. [Google Scholar] [CrossRef]
- Chea, E.K.; Fernández-Tejada, A.; Damani, P.; Adams, M.M.; Gardner, J.R.; Livingston, P.O.; Ragupathi, G.; Gin, D.Y. Synthesis and Preclinical Evaluation of QS-21 Variants Leading to Simplified Vaccine Adjuvants and Mechanistic Probes. J. Am. Chem. Soc. 2012, 134, 13448–13457. [Google Scholar] [CrossRef] [Green Version]
- Glauert, A.M.; Dingle, J.T.; Lucy, J.A. Action of Saponin on Biological Cell Membranes. Nature 1962, 196, 953–955. [Google Scholar] [CrossRef]
- Kensil, C.R.; Patel, U.; Lennick, M.; Marciani, D. Separation and characterization of saponins with adjuvant activity from Quillaja Saponaria molina cortex. J. Immunol. 1991, 146, 431–437. [Google Scholar] [CrossRef]
- Welsby, I.; Detienne, S.; N′Kuli, F.; Thomas, S.; Wouters, S.; Bechtold, V.; De Wit, D.; Gineste, R.; Reinheckel, T.; Elouahabi, A.; et al. Lysosome-Dependent Activation of Human Dendritic Cells by the Vaccine Adjuvant QS-21. Front. Immunol. 2017, 7, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Marty-Roix, R.; Vladimer, G.I.; Pouliot, K.; Weng, D.; Buglione-Corbett, R.; West, K.; MacMicking, J.D.; Chee, J.D.; Wang, S.; Lu, S.; et al. Identification of QS-21 as an Inflammasome-Activating Molecular Component of Saponin Adjuvants. J. Biol. Chem. 2016, 291, 1123–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, N.I.; Huis In′t Veld, L.G.M.; Raaijmakers, T.K.; Adema, G.J. Adjuvants Enhancing Cross-Presentation by Dendritic Cells: The Key to More Effective Vaccines? Front. Immunol. 2018, 9, 2874. [Google Scholar] [CrossRef]
- Den Brok, M.H.; Büll, C.; Wassink, M.; De Graaf, A.M.; Wagenaars, J.A.; Minderman, M.; Thakur, M.; Amigorena, S.; Rijke, E.O.; Schrier, C.C.; et al. Saponin-Based Adjuvants Induce Cross-Presentation in Dendritic Cells by Intracellular Lipid Body Formation. Nat. Commun. 2016, 7, 13324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonam, S.R.; Rénia, L.; Tadepalli, G.; Bayry, J.; Kumar, H.M.S. Plasmodium Falciparum Malaria Vaccines and Vaccine Adjuvants. Vaccines 2021, 9, 1072. [Google Scholar] [CrossRef] [PubMed]
- Eleuterio, M.I. Synthesis of Active Analogs of Adjuvant Quillaja Saponins in Order to Determine the Strucure-Activity Correlation. Studies towards the Synthesis of QS-21. In Studies Towards the Synthesis of QS-21; Cuvillier Verlag: Göttingen, Germany, 2005; p. 23. [Google Scholar]
- Fernández-Tejada, A.; Chea, E.K.; George, C.; Pillarsetty, N.; Gardner, J.R.; Livingston, P.O.; Ragupathi, G.; Lewis, J.S.; Tan, D.S.; Gin, D.Y. Development of a Minimal Saponin Vaccine Adjuvant Based on QS-21. Nat. Chem. 2014, 6, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Tejada, A.; Tan, D.S.; Gin, D.Y. Development of Improved Vaccine Adjuvants Based on the Saponin Natural Product QS-21 through Chemical Synthesis. Acc. Chem. Res. 2016, 49, 1741–1756. [Google Scholar] [CrossRef]
- Walkowicz, W.E.; Fernández-Tejada, A.; George, C.; Corzana, F.; Jiménez-Barbero, J.; Ragupathi, G.; Tan, D.S.; Gin, D.Y. Quillaja Saponin Variants with Central Glycosidic Linkage Modifications Exhibit Distinct Conformations and Adjuvant Activities. Chem. Sci. 2016, 7, 2371–2380. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Bungener, L.; ter Veer, W.; Coller, B.A.; Wilschut, J.; Huckriede, A. Preclinical Evaluation of the Saponin Derivative GPI-0100 as an Immunostimulating and Dose-Sparing Adjuvant for Pandemic Influenza Vaccines. Vaccine 2011, 29, 2037–2043. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, J. Evidence for an Intercellular Covalent Reaction Essential in Antigen-Specific T Cell Activation. J. Immunol. 1989, 143, 1482–1489. [Google Scholar] [CrossRef]
- Bedir, E.; Çalis, I.; Aquino, R.; Piacente, S.; Pizza, C. Secondary Metabolites from the Roots of Astragalus Trojanus. J. Nat. Prod. 1999, 62, 563–568. [Google Scholar] [CrossRef]
- Nalbantsoy, A.; Nesil, T.; Erden, S.; Calış, I.; Bedir, E. Adjuvant Effects of Astragalus Saponins Macrophyllosaponin B and Astragaloside VII. J. Ethnopharmacol. 2011, 134, 897–903. [Google Scholar] [CrossRef]
- Nalbantsoy, A.; Nesil, T.; Yilmaz-Dilsiz, Ö.; Aksu, G.; Khan, S.; Bedir, E. Evaluation of the Immunomodulatory Properties in Mice and in Vitro Anti-Inflammatory Activity of Cycloartane Type Saponins from Astragalus Species. J. Ethnopharmacol. 2012, 139, 574–581. [Google Scholar] [CrossRef]
- Yakuboğulları, N.; Genç, R.; Çöven, F.; Nalbantsoy, A.; Bedir, E. Development of Adjuvant Nanocarrier Systems for Seasonal Influenza A (H3N2) Vaccine Based on Astragaloside VII and Gum Tragacanth (APS). Vaccine 2019, 37, 3638–3645. [Google Scholar] [CrossRef] [PubMed]
- Genç, R.; Yakuboğullari, N.; Nalbantsoy, A.; Çöven, F.; Bedir, E. Adjuvant Potency of Astragaloside Vii Embedded Cholesterol Nanoparticles for H3N2 Influenza Vaccine. Turkish J. Biol. 2020, 44, 304–314. [Google Scholar] [CrossRef]
- Yakubogullari, N.; Coven, F.O.; Cebi, N.; Coven, F.; Coven, N.; Genc, R.; Bedir, E.; Nalbantsoy, A. Evaluation of Adjuvant Activity of Astragaloside VII and Its Combination with Different Immunostimulating Agents in Newcastle Disease Vaccine. Biologicals 2021, 70, 28–37. [Google Scholar] [CrossRef]
- Cekic, C.; Casella, C.R.; Sag, D.; Antignano, F.; Kolb, J.; Suttles, J.; Hughes, M.R.; Krystal, G.; Mitchell, T.C. MyD88-Dependent SHIP1 Regulates Proinflammatory Signaling Pathways in Dendritic Cells after Monophosphoryl Lipid A Stimulation of TLR4. J. Immunol. 2011, 186, 3858–3865. [Google Scholar] [CrossRef] [Green Version]
- Sag, D.; Carling, D.; Stout, R.D.; Suttles, J. Adenosine 5′-Monophosphate-Activated Protein Kinase Promotes Macrophage Polarization to an Anti-Inflammatory Functional Phenotype. J. Immunol. 2008, 181, 8633–8641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anelli, P.L.; Biffi, C.; Montanari, F.; Quici, S. Fast and Selective Oxidation of Primary Alcohols to Aldehydes or to Carboxylic Acids and of Secondary Alcohols to Ketones Mediated by Oxoammonium Salts under Two-Phase Conditions. J. Org. Chem. 1987, 52, 2559. [Google Scholar] [CrossRef]
- Podolak, I.; Galanty, A.; Sobolewska, D. Saponins as Cytotoxic Agents: A Review. Phytochem. Rev. 2010, 9, 425–474. [Google Scholar] [CrossRef] [Green Version]
- Parameswaran, N.; Patial, S. Tumor Necrosis Factor-α Signaling in Macrophages. Crit. Rev. Eukaryot. Gene Expr. 2011, 20, 87–103. [Google Scholar] [CrossRef]
- Crawford, T.Q.; Jalbert, E.; Ndhlovu, L.C.; Barbour, J.D. Concomitant Evaluation of PMA+ionomycin-Induced Kinase Phosphorylation and Cytokine Production in T Cell Subsets by Flow Cytometry. Cytom. Part A 2014, 85, 268–276. [Google Scholar] [CrossRef]
- Ben-Sasson, S.Z.; Hu-Li, J.; Quiel, J.; Cauchetaux, S.; Ratner, M.; Shapira, I.; Dinarello, C.A.; Paul, W.E. IL-1 Acts Directly on CD4 T Cells to Enhance Their Antigen-Driven Expansion and Differentiation. Proc. Natl. Acad. Sci. USA 2009, 106, 7119–7124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kryczek, I.; Wei, S.; Vatan, L.; Escara-Wilke, J.; Szeliga, W.; Keller, E.T.; Zou, W. Cutting Edge: Opposite Effects of IL-1 and IL-2 on the Regulation of IL-17+ T Cell Pool IL-1 Subverts IL-2-Mediated Suppression. J. Immunol. 2007, 179, 1423–1426. [Google Scholar] [CrossRef] [Green Version]
- Yesilada, E.; Bedir, E.; Caliş, I.; Takaishi, Y.; Ohmoto, Y. Effects of Triterpene Saponins from Astragalus Species on in Vitro Cytokine Release. J. Ethnopharmacol. 2005, 96, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Sotsios, Y.; Blair, P.; Westwick, J.; Ward, S.G. Disparate Effects of Phorbol Esters, CD3 and the Costimulatory Receptors CD2 and CD28 on RANTES Secretion by Human T Lymphocytes. Immunology 2000, 101, 30–37. [Google Scholar] [CrossRef]
- Mosley, B.; Beckmann, M.P.; March, C.J.; Idzerda, R.L.; Gimpel, S.D.; VandenBos, T.; Friend, D.; Alpert, A.; Anderson, D.; Jackson, J.; et al. The Murine Interleukin-4 Receptor: Molecular Cloning and Characterisation of Secreted and Membrane Bound Forms. Cell 1989, 59, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Lenarczyk, A.; Helsloot, J.; Farmer, K.; Peters, L.; Sturgess, A.; Kirkham, B. Antigen-Induced IL-17 Response in the Peripheral Blood Mononuclear Cells (PBMC) of Healthy Controls. Clin. Exp. Immunol. 2000, 122, 41–48. [Google Scholar] [CrossRef]
- Berraondo, P.; Sanmamed, M.F.; Ochoa, M.C.; Etxeberria, I.; Aznar, M.A.; Pérez-Gracia, J.L.; Rodríguez-Ruiz, M.E.; Ponz-Sarvise, M.; Castañón, E.; Melero, I. Cytokines in Clinical Cancer Immunotherapy. Br. J. Cancer 2019, 120, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.; Lin, J.X.; Wang, L.; Li, P.; Leonard, W.J. Modulation of Cytokine Receptors by IL-2 Broadly Regulates Differentiation into Helper T Cell Lineages. Nat. Immunol. 2011, 6, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Kelly, B.; O′Neill, L.A.J. Metabolic Reprogramming in Macrophages and Dendritic Cells in Innate Immunity. Cell Res. 2015, 25, 771–784. [Google Scholar] [CrossRef] [Green Version]
- Burns, K.; Martinon, F.; Tschopp, J. New Insights into the Mechanism of IL-1beta Maturation. Curr. Opin. Immunol. 2003, 15, 26–30. [Google Scholar] [CrossRef]
- Bedir, E.; Pugh, N.; Calis, I.; Pasco, D.S.; Khan, I.A. Immunostimulatory Effects of Cycloartane-Type Triterpene Glycosides from Astragalus Species. Biol. Pharm. Bull. 2000, 23, 834–837. [Google Scholar] [CrossRef] [Green Version]
- Ghonime, M.G.; Shamaa, O.R.; Das, S.; Eldomany, R.A.; Fernandes-Alnemri, T.; Alnemri, E.S.; Gavrilin, M.A.; Wewers, M.D. Inflammasome Priming by Lipopolysaccharide Is Dependent upon ERK Signaling and Proteasome Function. J. Immunol. 2014, 192, 3881–3888. [Google Scholar] [CrossRef] [Green Version]
- Sharp, F.A.; Ruane, D.; Claass, B.; Creagh, E.; Harris, J.; Malyala, P.; Singh, M.; O’Hagan, D.T.; Pétrilli, V.; Tschopp, J.; et al. Uptake of Particulate Vaccine Adjuvants by Dendritic Cells Activates the NALP3 Inflammasome. Proc. Natl. Acad. Sci. USA 2009, 106, 870–875. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.-J.; Frei, B. Astragaloside IV Inhibits NF- Kappa B Activation and Inflammatory Gene Expression in LPS-Treated Mice. Mediators Inflamm. 2015, 2015, 274314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Sun, X.; Gong, X.; Yang, Y.; Chen, C.; Shan, G.; Yao, Q. Astragaloside IV from Astragalus Membranaceus Ameliorates Renal Interstitial Fibrosis by Inhibiting Inflammation via TLR4/NF-KB in Vivo and in Vitro. Int. Immunopharmacol. 2017, 42, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Wesa, A.K.; Galy, A. IL-1β Induces Dendritic Cells to Produce IL-12. Int. Immunol. 2001, 13, 1053–1061. [Google Scholar] [CrossRef] [Green Version]
- Kaka, A.S.; Foster, A.E.; Weiss, H.L.; Rooney, C.M.; Leen, A.M. Using Dendritic Cell Maturation and IL-12 Producing Capacity as Markers of Function: A Cautionary Tale. J. Immunother. 2008, 31, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Kregiel, D.; Berlowska, J.; Witonska, I.; Antolak, H.; Proestos, C.; Zhang, M.B.; Babic, L.; Zhang, B. Saponin-Based, Biological-Active Surfactants from Plants. In Application and Characterization of Surfactants; IntechOpen: Internet, 2017; pp. 183–205. [Google Scholar]
- Peterson, A.M.; Tan, Z.; Kimbrough, E.M.; Heemstra, J.M. 3,3′-Dioctadecyloxacarbocyanine Perchlorate (DiO) as a Fluorogenic Probe for Measurement of Critical Micelle Concentration. Anal. Methods 2015, 7, 6877–6882. [Google Scholar] [CrossRef]
- Yu, L.; Tan, M.; Ho, B.; Ding, J.; Wohland, T. Determination of Critical Micelle Concentrations and Aggregation Numbers by Fluorescence Correlation Spectroscopy: Aggregation of a Lipopolysaccharide. Anal. Chim. Acta 2006, 556, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhou, C.; Qin, Y.; Wang, Z.; Wang, L.; Wei, X.; Zhou, Y.; Li, Q.; Zhou, H.; Wang, W.; et al. Coordinating Antigen Cytosolic Delivery and Danger Signaling to Program Potent Cross-Priming by Micelle-Based Nanovaccine. Cell Discov. 2017, 3, 17007. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; He, W.; Luo, G.; Wu, J. Mixed Lymphocyte Reaction Induced by Multiple Alloantigens and the Role for IL-10 in Proliferation Inhibition. Burn. Trauma 2014, 2, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Hegde, V.; Singh, N.; Nagarkatti, P.; Nagarkatti, M. CD44 Mobilization in Allogeneic Dendritic Cell-T Cell Immunological Synapse Plays a Key Role in T Cell Activation. J. Leukoc. Biol. 2008, 84, 134–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baaten, B.J.G.; Li, C.R.; Bradley, L.M. Multifaceted Regulation of T Cells by CD44. Commun. Integr. Biol. 2010, 3, 508–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marciani, D.J. Elucidating the Mechanisms of Action of Saponin-Derived Adjuvants. Trends Pharmacol. Sci. 2018, 39, 573–585. [Google Scholar] [CrossRef]
- Kensil, C.R.; Soltysik, S.; Wheeler, D.A.; Wu, J.Y. Structure/Function Studies on QS-21, a Unique Immunological Adjuvant from Quillaja Saponaria. Adv. Exp. Med. Biol. 1996, 404, 165–172. [Google Scholar]
- Fitzgerald, K.A.; O’Neill, L.A.J. Characterization of CD44 Induction by IL-1: A Critical Role for Egr-1. J. Immunol. 1999, 62, 4920–4927. [Google Scholar] [CrossRef]
- Cibulski, S.P.; Rivera-Patron, M.; Mourglia-Ettlin, G.; Casaravilla, C.; Yendo, A.C.A.; Fett-Neto, A.G.; Chabalgoity, J.A.; Moreno, M.; Roehe, P.M.; Silveira, F. Quillaja Brasiliensis Saponin-Based Nanoparticulate Adjuvants Are Capable of Triggering Early Immune Responses. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sander, V.A.; Corigliano, M.G.; Clemente, M. Promising Plant-Derived Adjuvants in the Development of Coccidial Vaccines. Front. Vet. Sci. 2019, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.; Damani, P.; Perl, N.; Won, A.; Hong, F.; Livingston, P.; Ragupathi, G.; Gin, D. Design and Synthesis of Potent Quillaja Saponin Vaccine Adjuvants. J. Am. Chem. Soc. 2010, 132, 1939–1945. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakubogullari, N.; Cagir, A.; Bedir, E.; Sag, D. Astragalus Saponins, Astragaloside VII and Newly Synthesized Derivatives, Induce Dendritic Cell Maturation and T Cell Activation. Vaccines 2023, 11, 495. https://doi.org/10.3390/vaccines11030495
Yakubogullari N, Cagir A, Bedir E, Sag D. Astragalus Saponins, Astragaloside VII and Newly Synthesized Derivatives, Induce Dendritic Cell Maturation and T Cell Activation. Vaccines. 2023; 11(3):495. https://doi.org/10.3390/vaccines11030495
Chicago/Turabian StyleYakubogullari, Nilgun, Ali Cagir, Erdal Bedir, and Duygu Sag. 2023. "Astragalus Saponins, Astragaloside VII and Newly Synthesized Derivatives, Induce Dendritic Cell Maturation and T Cell Activation" Vaccines 11, no. 3: 495. https://doi.org/10.3390/vaccines11030495
APA StyleYakubogullari, N., Cagir, A., Bedir, E., & Sag, D. (2023). Astragalus Saponins, Astragaloside VII and Newly Synthesized Derivatives, Induce Dendritic Cell Maturation and T Cell Activation. Vaccines, 11(3), 495. https://doi.org/10.3390/vaccines11030495