Coping Strategies for Pertussis Resurgence
Abstract
:1. Introduction
2. Causes for Pertussis Resurgence
3. Optimize Vaccination Policies to Address Pertussis Resurgence
4. Critical Needs for New Pertussis Vaccines
4.1. Virulence and Antigen Optimization of Existing Pertussis Vaccines
4.2. Enhancing the Degree of Immune Response with Outer Membrane Vesicular Vaccines
4.3. Exploration of Novel Adjuvants in the Use of Pertussis Vaccines
4.4. Live Attenuated Vaccines May Be Dark Horses to Control Pertussis Resurgence
4.5. Pertussis Nucleic Acid Vaccine
5. Feasibility of Future Development of Pertussis Vaccines
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diavatopoulos, D.A.; Mills, K.H.G.; Kester, K.E.; Kampmann, B.; Silerova, M.; Heininger, U.; van Dongen, J.J.M.; van der Most, R.G.; Huijnen, M.A.; Siena, E.; et al. PERISCOPE: Road towards effective control of pertussis. Lancet Infect. Dis. 2019, 19, e179–e186. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, C.L.; Gonyar, L.A.; Zacca, F.; Sisti, F.; Fernandez, J.; Wong, T.; Damron, F.H.; Hewlett, E.L. Bordetella pertussis can be motile and express flagellum-like structures. mBio 2019, 10, 1128. [Google Scholar] [CrossRef]
- Clark, T.A.; Messonnier, N.E.; Hadler, S.C. Pertussis Control: Time Something New? Trends Microbiol. 2012, 20, 211–213. [Google Scholar] [CrossRef] [PubMed]
- Stewart, G.T. Whooping cough and pertussis vaccine: A comparison of risks and benefits in Britain during the period 1968–83. Dev. Biol. Stand. 1985, 61, 395–405. [Google Scholar]
- Cherry, J.D. The 112-Year Odyssey of Pertussis and Pertussis Vaccines-Mistakes Made and Implications for the Future. J. Pediatr. Infect. Dis. Soc. 2019, 8, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, H.J.; Von König, C.H.; Neiss, A.; Bogaerts, H.; Bock, H.L.; Schulte-Wissermann, H.; Gahr, M.; Schult, R.; Folkens, J.U.; Rauh, W.; et al. Efficacy of acellular pertussis vaccine in early childhood after household exposure. JAMA 1996, 275, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Klein, N.P. Licensed pertussis vaccines in the United States. Hist. Curr. State. Hum. Vaccin. Immunother. 2014, 10, 2684–2690. [Google Scholar] [CrossRef]
- Simondon, F.; Preziosi, M.P.; Yam, A.; Kane, C.T.; Chabirand, L.; Iteman, I.; Sanden, G.; Mboup, S.; Hoffenbach, A.; Knudsen, K.; et al. A randomized double-blind trial comparing a two-component acellular to a whole-cell pertussis vaccine in Senegal. Vaccine 1997, 15, 1606–1612. [Google Scholar] [CrossRef]
- Gustafsson, L.; Hallander, H.O.; Olin, P.; Reizenstein, E.; Storsaeter, J. A controlled trial of a two-component acellular, a five-component acellular, and a whole-cell pertussis vaccine. N. Engl. J. Med. 1996, 334, 349–355. [Google Scholar] [CrossRef]
- Belchior, E.; Guillot, S.; Poujol, I.; Thabuis, A.; Chouin, L.; Martel, M.; Delisle, E.; Six, C.; Guiso, N.; Lévy-Bruhl, D. Comparison of whole-cell versus acellular pertussis vaccine effectiveness in school clusters of pertussis, France 2013. Med. Et. Mal. Infect. 2020, 50, 617–619. [Google Scholar] [CrossRef]
- Gorringe, A.R.; Vaughan, T.E. Bordetella pertussis fimbriae (Fim): Relevance for vaccines. Expert. Rev. Vaccines 2014, 13, 1205–1214. [Google Scholar] [CrossRef] [Green Version]
- Kimura, A.; Mountzouros, K.T.; Relman, D.A.; Falkow, S.; Cowell, J.L. Bordetella pertussis filamentous hemagglutinin: Evaluation as a protective antigen and colonization factor in a mouse respiratory infection model. Infect. Immun. 1990, 58, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Asgarian-Omran, H.; Golara, M.; Abdolmaleki, S.; Navabi, S.S.; Alipour, H.; Khoshnoodi, J.; Hemmati, A.; Zarei, S.; Jeddi-Tehrani, M.; Shokri, F. Restricted antibody response to Bordetella pertussis filamentous hemagglutinin induced by whole-cell and acellular pertussis vaccines. Infect. Dis. 2016, 48, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.L. Secretion of Pertussis Toxin from Bordetella pertussis. Toxins 2021, 13, 574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbonetti, N.H. Pertussis toxin and adenylate cyclase toxin: Key virulence factors of Bordetella pertussis and cell biology tools. Future Microbiol. 2010, 5, 455–569. [Google Scholar] [CrossRef]
- Organization World Health. Summary of the Pertussis Vaccines: WHO Position Paper-September. 2015. Available online: https://cdn.who.int/media/docs/default-source/immunization/position_paper_documents/pertussis/pertussis-pp-2015-summary.pdf. (accessed on 3 April 2023).
- Organization World Health. Diphtheria Tetanus Toxoid and Pertussis (DTP) Vaccination Coverage. 2023. Available online: https://immunizationdata.who.int/pages/coverage/dtp.html?CODE=Global&ANTIGEN=DTPCV1+DTPCV3&YEAR= (accessed on 3 April 2023).
- Yeung, K.H.T.; Duclos, P.; Nelson, E.A.S.; Hutubessy, R.C.W. An update of the global burden of pertussis in children younger than 5 years: A modelling study. Lancet Infect. Dis. 2017, 17, 974–980. [Google Scholar] [CrossRef] [Green Version]
- Fulton, T.R.; Phadke, V.K.; Orenstein, W.A.; Hinman, A.R.; Johnson, W.D.; Omer, S.B. Protective Effect of Contemporary Pertussis Vaccines: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2016, 62, 1100–1110. [Google Scholar] [CrossRef]
- Guerra, F.A.; Blatter, M.M.; Greenberg, D.P.; Pichichero, M.; Noriega, F.R. Safety and immunogenicity of a pentavalent vaccine compared with separate administration of licensed equivalent vaccines in US infants and toddlers and persistence of antibodies before a preschool booster dose: A randomized, clinical trial. Pediatrics 2009, 123, 301–312. [Google Scholar] [CrossRef]
- Weaver, K.L.; Blackwood, C.B.; Horspool, A.M.; Pyles, G.M.; Sen-Kilic, E.; Grayson, E.M.; Huckaby, A.B.; Witt, W.T.; DeJong, M.A.; Wolf, M.A.; et al. Long-Term Analysis of Pertussis Vaccine Immunity to Identify Potential Markers of Vaccine-Induced Memory Associated With Whole Cell But Not Acellular Pertussis Immunization in Mice. Front. Immunol. 2022, 13, 316. [Google Scholar] [CrossRef] [Green Version]
- da Silva Antunes, R.; Babor, M.; Carpenter, C.; Khalil, N.; Cortese, M.; Mentzer, A.J. Th1/Th17 polarization persists following whole-cell pertussis vaccination despite repeated acellular boosters. J. Clin. Investig. 2018, 128, 3853–3865. [Google Scholar] [CrossRef] [Green Version]
- Mills, K.H.; Gerdts, V. Mouse and pig models for studies of natural and vaccine-induced immunity to Bordetella pertussis. J. Infect. Dis. 2014, 209 (Suppl. 1), S16–S19. [Google Scholar] [CrossRef] [Green Version]
- Mills, K.H.; Barnard, A.; Watkins, J.; Redhead, K. Cell-mediated immunity to Bordetella pertussis: Role of Th1 cells in bacterial clearance in a murine respiratory infection model. Infect. Immun. 1993, 61, 399–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, K.M.; Berbers, G.A. Immune responses to pertussis vaccines and disease. J. Infect. Dis. 2014, 209 (Suppl 1), S10–S15. [Google Scholar] [CrossRef]
- van der Lee, S.; Hendrikx, L.H.; Sanders, E.A.M.; Berbers, G.A.M.; Buisman, A.M. Whole-Cell or Acellular Pertussis Primary Immunizations in Infancy Determines Adolescent Cellular Immune Profiles. Front. Immunol. 2018, 9, 51. [Google Scholar] [CrossRef] [Green Version]
- Wilk, M.M.; Borkner, L.; Misiak, A.; Curham, L.; Allen, A.C.; Mills, K.H.G. Immunization with whole cell but not acellular pertussis vaccines primes CD4 T(RM) cells that sustain protective immunity against nasal colonization with Bordetella pertussis. Emerg. Microbes Infect. 2019, 8, 169–185. [Google Scholar] [CrossRef]
- Plans, R.P. Vaccination coverage for routine vaccines and herd immunity levels against measles and pertussis in the world in 2019. Vaccines 2021, 9, 256. [Google Scholar] [CrossRef] [PubMed]
- Kallonen, T.; He, Q. Bordetella pertussis strain variation and Evolution postvaccination. Expert. Rev. Vaccines 2009, 8, 863–875. [Google Scholar] [CrossRef] [Green Version]
- Litt, D.J.; Neal, S.E.; Fry, N.K. Changes in genetic diversity of the Bordetella pertussis population in the United Kingdom between 1920 and 2006 reflect vaccination coverage and emergence of a single dominant clonal type. J. Clin. Microbiol. 2009, 47, 680–688. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Liu, B.; Gröndahl-Yli-Hannuksila, K.; Tan, Y.; Feng, L.; Kallonen, T.; Wang, L.; Peng, D.; He, Q.; Wang, L. Whole-genome sequencing reveals the effect of vaccination on the evolution of Bordetella pertussis. Sci. Rep. 2015, 5, 12888. [Google Scholar] [CrossRef] [Green Version]
- Zeddeman, A.; Van Gent, M.; Heuvelman, C.J.; van der Heide, H.G.; Bart, M.J.; Advani, A.; Hallander, H.O.; Wirsing von König, C.H.; Riffelman, M.; Storsaeter, J.; et al. Investigations into the emergence of pertactin-deficient Bordetella pertussis isolates in six European countries 1996 to 2012. Eurosurveillance 2014, 19, 20881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, M.M.; Sen, K.; Weigand, M.R.; Skoff, T.H.; Cunningham, V.A.; Halse, T.A.; Tondella, M.L. Bordetella pertussis Strain Lacking Pertactin and Pertussis Toxin. Emerg. Infect. Dis. 2016, 22, 319–322. [Google Scholar] [CrossRef]
- Lesne, E.; Cavell, B.E.; Freire-Martin, I.; Persaud, R.; Alexander, F.; Taylor, S.; Matheson, M.; van Els, C.A.; Gorringe, A. Acellular Pertussis Vaccines Induce Anti-pertactin Bactericidal Antibodies Which Drives the Emergence of Pertactin-Negative Strains. Front. Microbiol. 2020, 11, 2108. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Y.; Zhao, J.; Kallonen, T.; Cui, S.; Xu, Y.; Hou, Q.; Li, F.; Wang, J.; He, Q.; et al. Effect of vaccination on Bordetella pertussis strains, China. Emerg. Infect. Dis. 2010, 16, 1695–1701. [Google Scholar] [CrossRef]
- Petersen, R.F.; Dalby, T.; Dragsted, D.M.; Mooi, F.; Lambertsen, L. Temporal trends in Bordetella pertussis populations, Denmark 1949–2010. Emerg. Infect. Dis. 2012, 18, 767–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bart, M.J.; Harris, S.R.; Advani, A.; Arakawa, Y.; Bottero, D.; Bouchez, V.; Cassiday, P.K.; Chiang, C.S.; Dalby, T.; Fry, N.K.; et al. Global population structure and evolution of Bordetella pertussis and their relationship with vaccination. mBio 2014, 5, e01074. [Google Scholar] [CrossRef] [PubMed]
- Safarchi, A.; Octavia, S.; Luu, L.D.; Tay, C.Y.; Sintchenko, V.; Wood, N.; Marshall, H.; McIntyre, P.; Lan, R. Pertactin negative Bordetella pertussis demonstrates higher fitness under vaccine selection pressure in a mixed infection model. Vaccine 2015, 33, 6277–6281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Octavia, S.; Luu, L.D.W.; Payne, M.; Timms, V.; Tay, C.Y.; Keil, A.D.; Sintchenko, V.; Guiso, N.; Lan, R. Pertactin-Negative and Filamentous Hemagglutinin-Negative Bordetella pertussis, Australia 2013–2017. Emerg. Infect. Dis. 2019, 25, 1196–1199. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Correia, D.E.; Sousa, J.; Fletcher, M.; Gabutti, G.; Harrington, L.; Holden, M.; Kim, H.; Michel, J.P.; Mukherjee, P.; et al. Improving vaccination rates in older adults and at-risk groups: Focus on pertussis. Aging Clin. Exp. Res. 2022, 34, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Menzies, R.I.; Royle, J.; Macintyre, C.R. Vaccine myopia: Adult vaccination also needs attention. Med. J. Aust. 2017, 207, 407. [Google Scholar] [CrossRef]
- Macina, D.; Evans, K.E. Bordetella pertussis in School-Age Children, Adolescents and Adults: A Systematic Review of Epidemiology and Mortality in Europe. Infect. Dis. Ther. 2021, 10, 2071–2118. [Google Scholar] [CrossRef]
- Qin, X.; Turgeon, D.K.; Ingersoll, B.P.; Monsaas, P.W.; Lemoine, C.J.; Tsosie, T.; Stapp, L.O.; Abe, P.M. Bordetella pertussis PCR: Simultaneous targeting of signature sequences. Diagn. Microbiol. Infect. Dis. 2002, 43, 269–275. [Google Scholar] [CrossRef]
- Abu-Raya, B.; Forsyth, K.; Halperin, S.A.; Maertens, K.; Jones, C.E.; Heininger, U.; Hozbor, D.; Wirsing von König, C.H.; Chitkara, A.J.; Muloiwa, R.; et al. Vaccination in Pregnancy against Pertussis: A Consensus Statement on Behalf of the Global Pertussis Initiative. Vaccines 2022, 10, 1990. [Google Scholar] [CrossRef] [PubMed]
- Kandeil, W.; van den Ende, C.; Bunge, E.M.; Jenkins, V.A.; Ceregido, M.A.; Guignard, A. A systematic review of the burden of pertussis disease in infants and the effectiveness of maternal immunization against pertussis. Expert. Rev. Vaccines 2020, 19, 621–638. [Google Scholar] [CrossRef] [PubMed]
- Government Of Canada. Canadian Immunization Guide: Part 4-Active Vaccines. 2014. Available online: https://www.gov.uk/government/publications/vaccination-against-pertussis-whooping-cough-for-pregnant-women (accessed on 3 April 2023).
- CDC. Pertussis: Summary of Vaccine Recommendations. 2020. Available online: https://www.cdc.gov/vaccines/vpd/pertussis/recs-summary.html (accessed on 3 April 2023).
- CARE D O H, A.A. Whooping Cough (Pertussis) Vaccine. 2022. Available online: https://www.health.gov.au/topics/immunisation/vaccines/whooping-cough-pertussis-immunisation-service?language=und (accessed on 3 April 2023). [Green Version]
- Healy, C.M.; Munoz, F.M.; Rench, M.A.; Halasa, N.B.; Edwards, K.M.; Baker, C.J. Prevalence of pertussis antibodies in maternal delivery, cord, and infant serum. J. Infect. Dis. 2004, 190, 335–340. [Google Scholar] [CrossRef]
- CDC. Updated recommendations for use of tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccine (Tdap) in pregnant women and persons who have or anticipate having close contact with an infant aged <12 months—Advisory Committee on Immunization Practices (ACIP) 2011. MMWR Morb. Mortal. Wkly. Rep. 2011, 60, 1424–1426. [Google Scholar]
- Amirthalingam, G.; Andrews, N.; Campbell, H.; Ribeiro, S.; Kara, E.; Donegan, K.; Fry, N.K.; Miller, E.; Ramsay, M. Effectiveness of maternal pertussis vaccination in England: An observational study. Lancet 2014, 384, 1521–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovac, M.; Kostanyan, L.; Mesaros, N.; Kuriyakose, S.; Varman, M. Immunogenicity and safety of a second booster dose of an acellular pertussis vaccine combined with reduced antigen content diphtheria-tetanus toxoids 10 years after a first booster in adolescence: An open, phase III, non-randomized, multi-center study. Hum. Vaccin. Immunother. 2018, 14, 1977–1986. [Google Scholar] [CrossRef]
- Halperin, S.A.; Donovan, C.; Marshall, G.S.; Pool, V.; Decker, M.D.; Johnson, D.R.; Greenberg, D.P. Randomized Controlled Trial of the Safety and Immunogenicity of Revaccination With Tetanus-Diphtheria-Acellular Pertussis Vaccine (Tdap) in Adults 10 Years After a Previous Dose. J. Pediatr. Infect. Dis. Soc. 2019, 8, 105–114. [Google Scholar] [CrossRef]
- WHO. 2023. Available online: https://immunizationdata.who.int/pages/schedule-by-disease/pertussis.html?.ISO_3_CODE=&TARGETPOP_GENERAL= (accessed on 3 April 2023).
- ECDC. Pertussis: Recomm. Vaccin. 2023. Available online: https://vaccine-schedule.ecdc.europa.eu/Scheduler/ByDisease?SelectedDiseaseId=3&SelectedCountryIdByDisease=-1 (accessed on 3 April 2023). [Green Version]
- Terranella, A.; Asay, G.R.; Messonnier, M.L.; Clark, T.A.; Liang, J.L. Pregnancy dose Tdap and postpartum cocooning to prevent infant pertussis: A decision analysis. Pediatrics 2013, 131, e1748–e1756. [Google Scholar] [CrossRef] [Green Version]
- Lim, G.H.; Deeks, S.L.; Crowcroft, N.S. A cocoon immunisation strategy against pertussis for infants: Does it make sense for Ontario? Eurosurveillance 2014, 19, 20688. [Google Scholar] [CrossRef]
- Healy, C.M.; Rench, M.A.; Wootton, S.H.; Castagnini, L.A. Evaluation of the impact of a pertussis cocooning program on infant pertussis infection. Pediatr. Infect. Dis. J. 2015, 34, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Higgs, R.; Higgins, S.C.; Ross, P.J.; Mills, K.H. Immunity to the respiratory pathogen Bordetella pertussis. Mucosal Immunol. 2012, 5, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Byrne, P.; Mcguirk, P.; Todryk, S.; Mills, K.H. Depletion of NK cells results in disseminating lethal infection with Bordetella pertussis associated with a reduction of antigen-specific Th1 and enhancement of Th2, but not Tr1 cells. Eur. J. Immunol. 2004, 34, 2579–2588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, P.J.; Sutton, C.E.; Higgins, S.; Allen, A.C.; Walsh, K.; Misiak, A.; Lavelle, E.C.; McLoughlin, R.M.; Mills, K.H.G. Relative contribution of Th1 and Th17 cells in adaptive immunity to Bordetella pertussis: Towards the rational design of an improved acellular pertussis vaccine. PLoS Pathog. 2013, 9, e1003264. [Google Scholar] [CrossRef] [PubMed]
- Olin, P.; Rasmussen, F.; Gustafsson, L.; Hallander, H.O.; Heijbel, H. Randomised controlled trial of two-component, three-component, and five-component acellular pertussis vaccines compared with whole-cell pertussis vaccine. Ad Hoc Group for the Study of Pertussis Vaccines. Lancet 1997, 350, 1569–1577. [Google Scholar] [CrossRef] [Green Version]
- Dias, W.O.; van der Ark, A.A.; Sakauchi, M.A.; Kubrusly, F.S.; Prestes, A.F.; Borges, M.M.; Furuyama, N.; Horton, D.S.P.Q.; Quintilio, W.; Antoniazi, M.; et al. An improved whole cell pertussis vaccine with reduced content of endotoxin. Hum. Vaccin. Immunother. 2013, 9, 339–348. [Google Scholar] [CrossRef]
- Ausar, S.F.; Zhu, S.; Duprez, J.; Cohen, M.; Bertrand, T.; Steier, V.; Wilson, D.J.; Li, S.; Sheung, A.; Brookes, R.H.; et al. Genetically detoxified pertussis toxin displays near identical structure to its wild-type and exhibits robust immunogenicity. Commun. Biol. 2020, 3, 427. [Google Scholar] [CrossRef]
- Seubert, A.; D’oro, U.; Scarselli, M.; Pizza, M. Genetically detoxified pertussis toxin (PT-9K/129G): Implications for immunization and vaccines. Expert. Rev. Vaccines 2014, 13, 1191–1204. [Google Scholar] [CrossRef] [Green Version]
- Boehm, D.T.; Hall, J.M.; Wong, T.Y.; Divenere, A.M.; Sen-Kilic, E.; Bevere, J.R.; Bradford, S.D.; Blackwood, C.B.; Elkins, C.M.; DeRoos, K.A.; et al. Evaluation of Adenylate Cyclase Toxoid Antigen in Acellular Pertussis Vaccines by Using a Bordetella pertussis Challenge Model in Mice. Infect. Immun. 2018, 86, 10. [Google Scholar] [CrossRef]
- Divenere, A.M.; Amengor, D.; Silva, R.P.; Goldsmith, J.A.; Mclellan, J.S.; Maynard, J.A. Blockade of the Adenylate Cyclase Toxin Synergizes with Opsonizing Antibodies to Protect Mice against Bordetella pertussis. mBio 2022, 13, e0152722. [Google Scholar] [CrossRef]
- Macdonald-Fyall, J.; Xing, D.; Corbel, M.; Baillie, S.; Parton, R.; Coote, J. Adjuvanticity of native and detoxified adenylate cyclase toxin of Bordetella pertussis towards co-administered antigens. Vaccine 2004, 22, 4270–4281. [Google Scholar] [CrossRef]
- Alvarez Hayes, J.; Erben, E.; Lamberti, Y.; Principi, G.; Maschi, F.; Ayala, M.; Rodriguez, M.E. Bordetella pertussis iron regulated proteins as potential vaccine components. Vaccine 2013, 31, 3543–3548. [Google Scholar] [CrossRef] [PubMed]
- Alvarez Hayes, J.; Erben, E.; Lamberti, Y.; Ayala, M.; Maschi, F.; Carbone, C.; Gatti, B.; Parisi, G.; Rodriguez, M.E. Identification of a new protective antigen of Bordetella pertussis. Vaccine 2011, 29, 8731–8739. [Google Scholar] [CrossRef] [PubMed]
- Tefon, B.E.; Maass, S.; Ozcengiz, E.; Becher, D.; Hecker, M.; Ozcengiz, G. A comprehensive analysis of Bordetella pertussis surface proteome and identification of new immunogenic proteins. Vaccine 2011, 29, 3583–3595. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, Ç.; Apak, A.; Özcengiz, E.; Özcengiz, G. Immunogenicity and protective efficacy of recombinant iron superoxide dismutase protein from Bordetella pertussis in mice models. Microbiol. Immunol. 2016, 60, 717–724. [Google Scholar] [CrossRef]
- Marr, N.; Oliver, D.C.; Laurent, V.; Poolman, J.; Denoël, P.; Fernandez, R.C. Protective activity of the Bordetella pertussis BrkA autotransporter in the murine lung colonization model. Vaccine 2008, 26, 4306–4311. [Google Scholar] [CrossRef] [Green Version]
- Cattelan, N.; Jennings-Gee, J.; Dubey, P.; Yantorno, O.M.; Deora, R. Hyperbiofilm Formation by Bordetella pertussis Strains Correlates with Enhanced Virulence Traits. Infect. Immun. 2017, 85, 12. [Google Scholar] [CrossRef]
- de Gouw, D.; Serra, D.O.; de Jonge, M.I.; Hermans, P.W.; Wessels, H.J.; Zomer, A.; Yantorno, O.M.; Diavatopoulos, D.A.; Mooi, F.R. The vaccine potential of Bordetella pertussis biofilm-derived membrane proteins. Emerg. Microbes Infect. 2014, 3, e58. [Google Scholar] [CrossRef]
- Dorji, D.; Graham, R.M.; Richmond, P.; Keil, A.; Mukkur, T.K. Biofilm forming potential and antimicrobial susceptibility of newly emerged Western Australian Bordetella pertussis clinical isolates. Biofouling 2016, 32, 1141–1152. [Google Scholar] [CrossRef] [Green Version]
- Dorji, D.; Graham, R.M.; Singh, A.K.; Ramsay, J.P.; Price, P.; Lee, S. Immunogenicity and protective potential of Bordetella pertussis biofilm and its associated antigens in a murine model. Cell. Immunol. 2019, 337, 42–47. [Google Scholar] [CrossRef]
- Holst, J.; Martin, D.; Arnold, R.; Huergo, C.C.; Oster, P.; O’hallahan, J.; Rosenqvist, E. Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis. Vaccine 2009, 27 (Suppl. 2), B3–B12. [Google Scholar] [CrossRef]
- Roberts, R.; Moreno, G.; Bottero, D.; Gaillard, M.E.; Fingermann, M.; Graieb, A.; Rumbo, M.; Hozbor, D. Outer membrane vesicles as acellular vaccine against pertussis. Vaccine 2008, 26, 4639–4646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raeven, R.H.; Brummelman, J.; Pennings, J.L.; van der Maas, L.; Tilstra, W.; Helm, K.; van Riet, E.; Jiskoot, W.; van Els, C.A.; Han, W.G.; et al. Bordetella pertussis outer membrane vesicle vaccine confers equal efficacy in mice with milder inflammatory responses compared to a whole-cell vaccine. Sci. Rep. 2016, 6, 38240. [Google Scholar] [CrossRef] [PubMed]
- Qasim, M.; Wrage, M.; Nüse, B.; Mattner, J. Shigella Outer Membrane Vesicles as Promising Targets for Vaccination. Int. J. Mol. Sci. 2022, 23, 994. [Google Scholar] [CrossRef] [PubMed]
- Asensio, C.J.A.; Gaillard, M.E.; Moreno, G.; Bottero, D.; Zurita, E.; Rumbo, M.; van der Ley, P.; van der Ark, A.; Hozbor, D. Outer membrane vesicles obtained from Bordetella pertussis Tohama expressing the lipid A deacylase PagL as a novel acellular vaccine candidate. Vaccine 2011, 29, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Zurita, M.E.; Wilk, M.M.; Carriquiriborde, F.; Bartel, E.; Moreno, G.; Misiak, A.; Mills, K.H.G.; Hozbor, D. A Pertussis Outer Membrane Vesicle-Based Vaccine Induces Lung-Resident Memory CD4 T Cells and Protection Against Bordetella pertussis, Including Pertactin Deficient Strains. Front. Cell. Infect. Microbiol. 2019, 9, 125. [Google Scholar] [CrossRef] [PubMed]
- Bottero, D.; Gaillard, M.E.; Zurita, E.; Moreno, G.; Martinez, D.S.; Bartel, E.; Bravo, S.; Carriquiriborde, F.; Errea, A.; Castuma, C.; et al. Characterization of the immune response induced by pertussis OMVs-based vaccine. Vaccine 2016, 34, 3303–3309. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, M.E.; Bottero, D.; Errea, A.; Ormazábal, M.; Zurita, M.E.; Moreno, G.; Rumbo, M.; Castuma, C.; Bartel, E.; Flores, D.; et al. Acellular pertussis vaccine based on outer membrane vesicles capable of conferring both long-lasting immunity and protection against different strain genotypes. Vaccine 2014, 32, 931–937. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.W.; Pawloski, L.; Williams, M.; Weening, K.; Debolt, C.; Qin, X.; Reynolds, L.; Kenyon, C.; Giambrone, G.; Kudish, K.; et al. Pertactin-negative Bordetella pertussis strains: Evidence for a possible selective advantage. Clin. Infect. Dis. 2015, 60, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Higgins, S.C.; Jarnicki, A.G.; Lavelle, E.C.; Mills, K.H. TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: Role of IL-17-producing T cells. J. Immunol. 2006, 177, 7980–7989. [Google Scholar] [CrossRef]
- Allen, A.C.; Mills, K.H. Improved pertussis vaccines based on adjuvants that induce cell-mediated immunity. Expert. Rev. Vaccines 2014, 13, 1253–1264. [Google Scholar] [CrossRef]
- Luchner, M.; Reinke, S.; Milicic, A. TLR Agonists as Vaccine Adjuvants Targeting Cancer and Infectious Diseases. Pharmaceutics 2021, 13, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunne, A.; Mielke, L.A.; Allen, A.C.; Sutton, C.E.; Higgs, R.; Cunningham, C.C.; Higgins, S.C.; Mills, K.H. A novel TLR2 agonist from Bordetella pertussis is a potent adjuvant that promotes protective immunity with an acellular pertussis vaccine. Mucosal Immunol. 2015, 8, 607–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, A.C.; Wilk, M.M.; Misiak, A.; Borkner, L.; Murphy, D.; Mills, K.H.G. Sustained protective immunity against Bordetella pertussis nasal colonization by intranasal immunization with a vaccine-adjuvant combination that induces IL-17-secreting T(RM) cells. Mucosal Immunol. 2018, 11, 1763–1776. [Google Scholar] [CrossRef] [PubMed]
- Aibani, N.; Patel, P.; Buchanan, R.; Strom, S.; Wasan, K.M.; Hancock, R.E.W.; Gerdts, V.; Wasan, E.K. Assessing the In Vivo Effectiveness of Cationic Lipid Nanoparticles with a Triple Adjuvant for Intranasal Vaccination against the Respiratory Pathogen Bordetella pertussis. Mol. Pharm. 2022, 19, 1814–1824. [Google Scholar] [CrossRef] [PubMed]
- Dowling, D.J.; Barman, S.; Smith, A.J.; Borriello, F.; Chaney, D.; Brightman, S.E.; Melhem, G.; Brook, B.; Menon, M.; Soni, D.; et al. Development of a TLR7/8 agonist adjuvant formulation to overcome early life hyporesponsiveness to DTaP vaccination. Sci. Rep. 2022, 12, 16860. [Google Scholar] [CrossRef]
- Misiak, A.; Leuzzi, R.; Allen, A.C.; Galletti, B.; Baudner, B.C.; D’oro, U.; O’Hagan, D.T.; Pizza, M.; Seubert, A.; Mills, K.H.G. Addition of a TLR7 agonist to an acellular pertussis vaccine enhances Th1 and Th17 responses and protective immunity in a mouse model. Vaccine 2017, 35, 5256–5263. [Google Scholar] [CrossRef]
- Bruno, C.; Agnolon, V.; Berti, F.; Bufali, S.; O’hagan, D.T.; Baudner, B.C. The preparation and characterization of PLG nanoparticles with an entrapped synthetic TLR7 agonist and their preclinical evaluation as adjuvant for an adsorbed DTaP vaccine. Eur. J. Pharm. Biopharmaceutics. 2016, 105, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Auderset, F.; Ballester, M.; Mastelic-Gavillet, B.; Fontannaz, P.; Chabaud-Riou, M.; Reveneau, N.; Garinot, M.; Mistretta, N.; Liu, Y.; Lambert, P.H.; et al. Reactivating Immunity Primed by Acellular Pertussis Vaccines in the Absence of Circulating Antibodies: Enhanced Bacterial Control by TLR9 Rather Than TLR4 Agonist-Including Formulation. Front. Immunol. 2019, 10, 1520. [Google Scholar] [CrossRef]
- Girndt, M.; Plüer, M.; Dellanna, F.; Michelsen, A.K.; Beige, J.; Toussaint, K.; Wehweck, H.J.; Koch, M.; Hafezi Rachti, S.; Faust, J.; et al. Immunogenicity and safety of a booster dose of the hepatitis B vaccine HepB-CpG (HEPLISAV-B®) compared with HepB-Eng (Engerix-B®) and HepB-AS04 (Fendrix®) in adults receiving hemodialysis who previously received hepatitis B vaccination and are not seroprotected: Results of a randomized, multicenter phase 3 study. Hum. Vaccin. Immunother. 2022, 18, 2136912. [Google Scholar] [Green Version]
- Asokanathan, C.; Corbel, M.; Xing, D. A CpG-containing oligodeoxynucleotide adjuvant for acellular pertussis vaccine improves the protective response against Bordetella pertussis. Hum. Vaccin. Immunother. 2013, 9, 325–331. [Google Scholar] [CrossRef]
- Kindrachuk, J.; Jenssen, H.; Elliott, M.; Townsend, R.; Nijnik, A.; Lee, S.F.; Gerdts, V.; Babiuk, L.A.; Halperin, S.A.; Hancock, R.E. A novel vaccine adjuvant comprised of a synthetic innate defence regulator peptide and CpG oligonucleotide links innate and adaptive immunity. Vaccine 2009, 27, 4662–4671. [Google Scholar] [CrossRef] [PubMed]
- Dejong, M.A.; Wolf, M.A.; Bitzer, G.J.; Hall, J.M.; Sen-Kilic, E.; Blake, J.M.; Petty, J.E.; Wong, T.Y.; Barbier, M.; Campbell, J.D. CpG 1018® adjuvant enhances Tdap immune responses against Bordetella pertussis in mice. Vaccine 2022, 40, 5229–5240. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xu, M.; Li, G.; Zheng, Y.; Zhang, Y.; Xia, D.; Wang, S.; Chen, Y. Mg/Al-LDH as a nano-adjuvant for pertussis vaccine: A evaluation compared with aluminum hydroxide adjuvant. Nanotechnology 2022, 33, 235102. [Google Scholar] [CrossRef]
- Shim, D.H.; Ko, H.J.; Volker, G.; Potter, A.A.; Mutwiri, G.; Babiuk, L.A.; Kweon, M.N. Efficacy of poly [di(sodium carboxylatophenoxy)phosphazene] (PCPP) as mucosal adjuvant to induce protective immunity against respiratory pathogens. Vaccine 2010, 28, 2311–2317. [Google Scholar] [CrossRef] [Green Version]
- Jahnmatz, M.; Amu, S.; Ljungman, M.; Wehlin, L.; Chiodi, F.; Mielcarek, N.; Locht, C.; Thorstensson, R. B-cell responses after intranasal vaccination with the novel attenuated Bordetella pertussis vaccine strain BPZE1 in a randomized phase I clinical trial. Vaccine 2014, 32, 3350–3356. [Google Scholar] [CrossRef] [PubMed]
- Jahnmatz, M.; Richert, L.; Al-Tawil, N.; Storsaeter, J.; Colin, C.; Bauduin, C.; Thalen, M.; Solovay, K.; Rubin, K.; Mielcarek, N.; et al. Safety and immunogenicity of the live attenuated intranasal pertussis vaccine BPZE1: A phase 1b, double-blind, randomised, placebo-controlled dose-escalation study. Lancet Infect. Dis. 2020, 20, 1290–1301. [Google Scholar] [CrossRef]
- Buddy Creech, C.; Jimenez-Truque, N.; Kown, N.; Sokolow, K.; Brady, E.J.; Yoder, S.; Solovay, K.; Rubin, K.; Noviello, S.; Hensel, E.; et al. Safety and immunogenicity of live, attenuated intranasal Bordetella pertussis vaccine (BPZE1) in healthy adults. Vaccine 2022, 40, 6740–6746. [Google Scholar] [CrossRef]
- Keech, C.; Miller, V.E.; Rizzardi, B.; Hoyle, C.; Pryor, M.J.; Ferrand, J.; Solovay, K.; Thalen, M.; Noviello, S.; Goldstein, P.; et al. Immunogenicity and safety of BPZE1, an intranasal live attenuated pertussis vaccine, versus tetanus-diphtheria-acellular pertussis vaccine: A randomised, double-blind, phase 2b trial. Lancet 2023, 401, 843–855. [Google Scholar] [CrossRef]
- Karataev, G.; Medkova, A.; Semin, E.; Sinyashina, L.; Sioundioukova, R.; Kulikov, S.; Snegireva, N.; Chernishova, I.; Gavrilova, M.; Bushkova, K.K.; et al. Development of a Method and a Scheme for the Use of a Live Recombinant Vaccine “GamLPV”. Safety and Tolerability of Double Intranasal Vaccination of Healthy Adult Volunteers. Drug. Dev. Regist. 2022, 11, 202–208. [Google Scholar] [CrossRef]
- Mielcarek, N.; Debrie, A.S.; Mahieux, S.; Locht, C. Dose response of attenuated Bordetella pertussis BPZE1-induced protection in mice. Clin. Vaccine Immunol. 2010, 17, 317–324. [Google Scholar] [Green Version]
- Feunou, P.F.; Bertout, J.; Locht, C. T-and B-cell-mediated protection induced by novel, live attenuated pertussis vaccine in mice. Cross protection against parapertussis. PLoS ONE 2010, 5, e10178. [Google Scholar] [CrossRef] [Green Version]
- Solans, L.; Locht, C. The Role of Mucosal Immunity in Pertussis. Front. Immunol. 2018, 9, 3068. [Google Scholar] [CrossRef]
- Fedele, G.; Bianco, M.; Debrie, A.S.; Locht, C.; Ausiello, C.M. Attenuated Bordetella pertussis vaccine candidate BPZE1 promotes human dendritic cell CCL21-induced migration and drives a Th1/Th17 response. J. Immunol. 2011, 186, 5388–5396. [Google Scholar] [CrossRef] [PubMed]
- Skerry, C.M.; Mahon, B.P. A live, attenuated Bordetella pertussis vaccine provides long-term protection against virulent challenge in a murine model. Clin. Vaccine Immunol. 2011, 18, 187–193. [Google Scholar] [CrossRef]
- Wolf, M.A.; Boehm, D.T.; Dejong, M.A.; Wong, T.Y.; Sen-Kilic, E.; Hall, J.M.; Blackwood, C.B.; Weaver, K.L.; Kelly, C.O.; Kisamore, C.A.; et al. Intranasal Immunization with Acellular Pertussis Vaccines Results in Long-Term Immunity to Bordetella pertussis in Mice. Infect. Immun. 2021, 89, e00607–e00620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debrie, A.S.; Mielcarek, N.; Lecher, S.; Roux, X.; Sirard, J.C.; Locht, C. Early Protection against Pertussis Induced by Live Attenuated Bordetella pertussis BPZE1 Depends on TLR4. J. Immunol. 2019, 203, 3293–3300. [Google Scholar] [CrossRef]
- Locht, C.; Papin, J.F.; Lecher, S.; Debrie, A.S.; Thalen, M.; Solovay, K.; Rubin, K.; Mielcarek, N. Live Attenuated Pertussis Vaccine BPZE1 Protects Baboons Against Bordetella pertussis Disease and Infection. J. Infect. Dis. 2017, 216, 117–124. [Google Scholar] [CrossRef]
- Kamachi, K.; Konda, T.; Arakawa, Y. DNA vaccine encoding pertussis toxin S1 subunit induces protection against Bordetella pertussis in mice. Vaccine 2003, 21, 4609–4615. [Google Scholar] [CrossRef] [PubMed]
- Fry, S.R.; Chen, A.Y.; Daggard, G.; Mukkur, T.K.S. Parenteral immunization of mice with a genetically inactivated pertussis toxin DNA vaccine induces cell-mediated immunity and protection. J. Med. Microbiol. 2008, 57 Pt 1, 28–35. [Google Scholar] [CrossRef]
- Kamachi, K.; Arakawa, Y. Development of safer pertussis DNA vaccine expressing non-toxic C180 polypeptide of pertussis toxin S1 subunit. Vaccine 2007, 25, 1000–1006. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhu, Y.; Chu, J.; Wang, Y.; Xu, Y.; Hou, Q.; Zhang, S.; Guo, X. Protective immunity against Bordetella pertussis by a recombinant DNA vaccine and the effect of coinjection with a granulocyte-macrophage colony stimulating factor gene. Microbiol. Immunol. 2006, 50, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.T.; Zhu, Y.Z.; Chu, J.Y.; Dong, K.; He, P.; Feng, C.Y.; Hu, B.Y.; Zhang, S.M.; Guo, X.K. Granulocyte-macrophage colony-stimulating factor DNA prime-protein boost strategy to enhance efficacy of a recombinant pertussis DNA vaccine. Acta Pharmacol. Sin. 2006, 27, 1487–1494. [Google Scholar] [CrossRef]
- Octavia, S.; Sintchenko, V.; Gilbert, G.L.; Lawrence, A.; Keil, A.D.; Hogg, G.; Lan, R. Newly emerging clones of Bordetella pertussis carrying prn2 and ptxP3 alleles implicated in Australian pertussis epidemic in 2008–2010. J. Infect. Dis. 2012, 205, 1220–1224. [Google Scholar] [CrossRef]
- Safarchi, A.; Octavia, S.; Wu, S.Z.; Kaur, S.; Sintchenko, V.; Gilbert, G.L.; Wood, N.; McIntyre, P.; Marshall, H.; Keil, A.D.; et al. Genomic dissection of Australian Bordetella pertussis isolates from the 2008–2012 epidemic. J. Infect. 2016, 72, 468–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safarchi, A.; Octavia, S.; Luu, L.D.; Tay, C.Y.; Sintchenko, V.; Wood, N.; Marshall, H.; McIntyre, P.; Lan, R. Better colonisation of newly emerged Bordetella pertussis in the co-infection mouse model study. Vaccine 2016, 34, 3967–3971. [Google Scholar] [CrossRef]
- Sirivichayakul, C.; Chanthavanich, P.; Limkittikul, K.; Siegrist, C.A.; Wijagkanalan, W.; Chinwangso, P.; Petre, J.; Hong Thai, P.; Chauhan, M.; Viviani, S. Safety and immunogenicity of a combined Tetanus, Diphtheria, recombinant acellular Pertussis vaccine (TdaP) in healthy Thai adults. Hum. Vaccin. Immunother. 2017, 13, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Fortuna, L.; Chaithongwongwatthana, S.; Soonthornworasiri, N.; Spiegel, J.; Wijagkanalan, W.; Mansouri, S.; van den Biggelaar, A.H.J.; Pham, H.T. Enhanced post-licensure safety surveillance of a new recombinant acellular pertussis vaccine licensed as a monovalent (aP, Pertagen®) and tetanus, reduced-dose diphtheria combination (TdaP, Boostagen®) vaccine for immunization of adolescents and adults in Thailand. Vaccine 2020, 38, 8194–8199. [Google Scholar]
- Dubois, V.; Locht, C. Mucosal Immunization Against Pertussis: Lessons From the Past and Perspectives. Front. Immunol. 2021, 12, 701285. [Google Scholar] [CrossRef] [PubMed]
- Wing, S.; Thomas, D.; Balamchi, S.; Ip, J.; Naylor, K.; Dixon, S.N.; McArthur, E.; Kwong, J.C.; Perl, J.; Atiquzzaman, M.; et al. Effectiveness of Three Doses of mRNA COVID-19 Vaccines in the Hemodialysis Population during the Omicron Period. Clin. J. Am. Soc. Nephrol. 2023, 18, 491–498. [Google Scholar] [CrossRef] [PubMed]
Nation | Vaccination Schedule |
---|---|
Mauritius | 1m/2m/3m/18m/5y/11y/pregnant |
New Zealand/Niue | 1m/3m/5m/4y/11y/pregnant |
Burkina Faso | 2m/3m/4m/pregnant |
Belgium | 2m/3m/4m/15m/5–6y/14–16y/pregnant |
Netherlands | 2m/3m/5m/11m/4y/pregnant |
Israel | 2m/4m/6m/12m/7y/13y/pregnant |
Costa Rica | 2m/4m/6m/15m/pregnant |
El Salvador | 2m/4m/6m/15–18m/4y/pregnant |
Costa Rica | 2m/4m/6m/15m/4–6y/14–16/pregnant |
Brazil/The Bahamas | 2m/4m/6m/15m/4y/pregnant |
USA | 2m/4m/6m/15m/4y/11y/pregnant |
Uruguay | 2m/4m/6m/15m/5y/11y/pregnant |
Argentina | 2m/4m/6m/15–18 m/6y/11y/pregnant |
China Hongkong | 2m/4m/6m/18m/6y/11y/pregnant |
China Macao SAR | 2m/4m/6m/18m/5–6y/7y/11y/pregnant |
Colombia/Portugal | 2m/4m/6m/18m/5y/pregnant |
Dominican Republic/Guatemala/Honduras/Peru/Mexico/British Virgin Islands | 2m/4m/6m/18m/4y/pregnant |
Saudi Arabia | 2m/4m/6m/18m/4–6y/pregnant |
Panama | 2m/4m/6m/18m/4–16y/pregnant |
Australia | 2m/4m/6m/4y/11–13y/pregnant |
France | 2m/4m/11m/6y/11–13y/25y/pregnant |
Spain | 2m/4m/11m/6y/pregnant |
Romania | 2m/4m/11m/6y/14y/pregnant |
Bermuda | 2m/4m/6m/4–6y/11–18y/pregnant |
Ireland | 2m/4m/6m/4y/12–13y/pregnant |
Singapore | 3m/4m/5m/18m/11y/pregnant |
Slovenia | 3m/5m/11–14m/9y/pregnant |
Italy | 3m/5m/11m/6y/12y/pregnant |
Denmark | 3m/5m/12m/5y/pregnant |
NCT Number | Status | Phase | Interventions | Inoculation Mode | S-Type |
---|---|---|---|---|---|
NCT04793620 | Terminated | 1 | aP+TQL1055 | I.M. | Adjuvant subunit |
ACTRN12620001177943p | Completed | 1 | Tdap-CpG 1018 | I.M. | Adjuvant subunit |
NCT05116241 | Recruiting | 2 | BPZE1 | I.N. | Lived |
NCT03942406 | Completed | 2 | BPZE1 | I.N. | Lived |
NCT01188512 | Completed | 1 | BPZE1 | I.N. | Lived |
NCT02453048 | Completed | 1 | BPZE1 | I.N. | Lived |
NCT03541499 | Completed | 2 | BPZE1 | I.N. | Lived |
NCT05461131 | Recruiting | 2 | BPZE1 | I.N. | Lived |
NCT03137927 | Completed | 1 | GamLPV | I.N. | Lived |
NCT04036526 | / | 1/2 | GamLPV | I.N. | Lived |
NCT05193734 | Recruiting | 2/3 | aP+detoxied PT | I.M. | Recombined |
NCT04102137 | Completed | / | Pertagen (aP BioNet) | I.M. | Subunit, genetically inactivated (Arg9Lys and Glu129Gly) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nian, X.; Liu, H.; Cai, M.; Duan, K.; Yang, X. Coping Strategies for Pertussis Resurgence. Vaccines 2023, 11, 889. https://doi.org/10.3390/vaccines11050889
Nian X, Liu H, Cai M, Duan K, Yang X. Coping Strategies for Pertussis Resurgence. Vaccines. 2023; 11(5):889. https://doi.org/10.3390/vaccines11050889
Chicago/Turabian StyleNian, Xuanxuan, Hongbo Liu, Mengyao Cai, Kai Duan, and Xiaoming Yang. 2023. "Coping Strategies for Pertussis Resurgence" Vaccines 11, no. 5: 889. https://doi.org/10.3390/vaccines11050889
APA StyleNian, X., Liu, H., Cai, M., Duan, K., & Yang, X. (2023). Coping Strategies for Pertussis Resurgence. Vaccines, 11(5), 889. https://doi.org/10.3390/vaccines11050889