Adenovirus Transcriptome in Human Cells Infected with ChAdOx1-Vectored Candidate HIV-1 Vaccine Is Dominated by High Levels of Correctly Spliced HIVconsv1&62 Transgene RNA
Abstract
:1. Introduction
2. Materials and Methods
2.1. A Brief Description of the Vector and Vaccine Inserts
2.2. Preparation of the ChAdOx1.tHIVconsv1 and ChAdOx1.HIVconsv62 Vaccine Stocks
2.3. Cell Lines and Virus Infection
2.4. RNA Preparation and Sequencing
2.5. Viral Transcriptome and Data Analysis
3. Results
3.1. The HIVconsvX mRNAs Dominate Vaccine Transcriptomes in Nonpermissive Cell Lines
3.2. HIVconsvX Vaccines Produce a Full Range of Adenovirus Transcripts in Permissive HEK293 Cells
3.3. Minor Transcripts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aleem, A.; Nadeem, A.J. Coronavirus (COVID-19) Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Greinacher, A.; Selleng, K.; Mayerle, J.; Palankar, R.; Wesche, J.; Reiche, S.; Aebischer, A.; Warkentin, T.E.; Muenchhoff, M.; Hellmuth, J.C.; et al. Anti-Platelet Factor 4 Antibodies Causing VITT do not Cross-React with SARS-CoV-2 Spike Protein. Blood 2021, 138, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N. Engl. J. Med. 2021, 384, 2092–2101. [Google Scholar] [CrossRef]
- Milevoj Kopcinovic, L.; Unic, A.; Nikolac Gabaj, N.; Miler, M.; Vrtaric, A.; Bozovic, M.; Stefanovic, M. Reactogenicity and Peak Anti-RBD-S1 IgG Concentrations in Individuals with No Prior COVID-19 Infection Vaccinated with Different SARS-CoV-2 Vaccines. Lab Med. 2023, lmad044. [Google Scholar] [CrossRef]
- Petito, E.; Gresele, P. VITT two years later: Should it still be in the scientific agenda? Thromb Haemost. 2023. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Timeline-COVID-19. 2021. Available online: https://www.who.int/news/item/27-04-2020-who-timeline---covid-19 (accessed on 26 June 2023).
- Fernandes, J.; Jaggernauth, S.; Ramnarine, V.; Mohammed, S.R.; Khan, C.; Panday, A. Neurological Conditions Following COVID-19 Vaccinations: Chance or Association? Cureus 2022, 14, e21919. [Google Scholar] [CrossRef] [PubMed]
- Hanke, T.; Graham, F.L.; Rosenthal, K.L.; Johnson, D.C. Identification of an immunodominant cytotoxic T-lymphocyte recognition site in glycoprotein B of herpes simplex virus by using recombinant adenovirus vectors and synthetic peptides. J. Virol. 1991, 65, 1177–1186. [Google Scholar] [CrossRef] [Green Version]
- Tatsis, N.; Ertl, H.C. Adenoviruses as vaccine vectors. Mol. Ther. 2004, 10, 616–629. [Google Scholar] [CrossRef]
- Davison, A.J.; Benko, M.; Harrach, B. Genetic content and evolution of adenoviruses. J. Gen. Virol. 2003, 84, 2895–2908. [Google Scholar] [CrossRef]
- Dicks, M.D.J.; Spencer, A.J.; Edwards, N.J.; Wadell, G.; Bojang, K.; Gilbert, S.C.; Hill, A.V.S.; Cottingham, M.G. A novel chimpanzee adenovirus vector with low human seroprevalence: Improved systems for vector derivation and comparative immunogenicity. PLoS ONE 2012, 7, e40385. [Google Scholar] [CrossRef] [Green Version]
- Wold, W.S.; Toth, K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr. Gene Ther. 2013, 13, 421–433. [Google Scholar] [CrossRef] [Green Version]
- Graham, F.L.; Smiley, J.; Russell, W.C.; Nairn, R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 1977, 36, 59–74. [Google Scholar] [CrossRef]
- Sanders, B.P.; Edo-Matas, D.; Custers, J.H.; Koldijk, M.H.; Klaren, V.; Turk, M.; Luitjens, A.; Bakker, W.A.; Uytdehaag, F.; Goudsmit, J.; et al. PER.C6((R)) cells as a serum-free suspension cell platform for the production of high titer poliovirus: A potential low cost of goods option for world supply of inactivated poliovirus vaccine. Vaccine 2013, 31, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Antrobus, R.D.; Coughlan, L.; Berthoud, T.K.; Dicks, M.D.; Hill, A.V.; Lambe, T.; Gilbert, S.C. Clinical Assessment of a Novel Recombinant Simian Adenovirus ChAdOx1 as a Vectored Vaccine Expressing Conserved Influenza A Antigens. Mol. Ther. 2013, 22, 668–674. [Google Scholar] [CrossRef] [Green Version]
- Draper, S.J.; Biswas, S.; Spencer, A.J.; Remarque, E.J.; Capone, S.; Naddeo, M.; Dicks, M.D.; Faber, B.W.; de Cassan, S.C.; Folgori, A.; et al. Enhancing blood-stage malaria subunit vaccine immunogenicity in rhesus macaques by combining adenovirus, poxvirus, and protein-in-adjuvant vaccines. J. Immunol. 2012, 185, 7583–7595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewer, K.; Rampling, T.; Venkatraman, N.; Bowyer, G.; Wright, D.; Lambe, T.; Imoukhuede, E.B.; Payne, R.; Fehling, S.K.; Strecker, T.; et al. A Monovalent Chimpanzee Adenovirus Ebola Vaccine Boosted with MVA. N. Engl. J. Med. 2016, 374, 1635–1646. [Google Scholar] [CrossRef] [PubMed]
- Ewer, K.J.; O’Hara, G.A.; Duncan, C.J.; Collins, K.A.; Sheehy, S.H.; Reyes-Sandoval, A.; Goodman, A.L.; Edwards, N.J.; Elias, S.C.; Halstead, F.D.; et al. Protective CD8(+) T-cell immunity to human malaria induced by chimpanzee adenovirus-MVA immunisation. Nat. Commun. 2013, 4, 2836. [Google Scholar] [CrossRef] [Green Version]
- Madhavan, M.; Ritchie, A.J.; Aboagye, J.; Jenkin, D.; Provstgaad-Morys, S.; Tarbet, I.; Woods, D.; Davies, S.; Baker, M.; Platt, A.; et al. Tolerability and immunogenicity of an intranasally-administered adenovirus-vectored COVID-19 vaccine: An open-label partially-randomised ascending dose phase I trial. EBioMedicine 2022, 85, 104298. [Google Scholar] [CrossRef]
- O’Hara, G.A.; Duncan, C.J.; Ewer, K.J.; Collins, K.A.; Elias, S.C.; Halstead, F.D.; Goodman, A.L.; Edwards, N.J.; Reyes-Sandoval, A.; Bird, P.; et al. Clinical assessment of a recombinant simian adenovirus ChAd63: A potent new vaccine vector. J. Infect. Dis. 2012, 205, 772–781. [Google Scholar] [CrossRef]
- Rampling, T.; Ewer, K.J.; Bowyer, G.; Bliss, C.M.; Edwards, N.J.; Wright, D.; Payne, R.O.; Venkatraman, N.; de Barra, E.; Snudden, C.M.; et al. Safety and High Level Efficacy of the Combination Malaria Vaccine Regimen of RTS,S/AS01B With Chimpanzee Adenovirus 63 and Modified Vaccinia Ankara Vectored Vaccines Expressing ME-TRAP. J. Infect. Dis. 2016, 214, 772–781. [Google Scholar] [CrossRef] [Green Version]
- Sheehy, S.H.; Duncan, C.J.; Elias, S.C.; Choudhary, P.; Biswas, S.; Halstead, F.D.; Collins, K.A.; Edwards, N.J.; Douglas, A.D.; Anagnostou, N.A.; et al. ChAd63-MVA-vectored blood-stage malaria vaccines targeting MSP1 and AMA1: Assessment of efficacy against mosquito bite challenge in humans. Mol. Ther. 2013, 20, 2355–2368. [Google Scholar] [CrossRef] [Green Version]
- Berget, S.M.; Moore, C.; Sharp, P.A. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc. Natl. Acad. Sci. USA 1977, 74, 3171–3175. [Google Scholar] [CrossRef] [PubMed]
- Berget, S.M.; Sharp, P.A. A spliced sequence at the 5′-terminus of adenovirus late mRNA. Brookhaven Symp. Biol. 1977, 332–344. [Google Scholar]
- Chow, L.T.; Broker, T.R. The spliced structures of adenovirus 2 fiber message and the other late mRNAs. Cell 1978, 15, 497–510. [Google Scholar] [CrossRef]
- Chow, L.T.; Gelinas, R.E.; Broker, T.R.; Roberts, R.J. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 1977, 12, 1–8. [Google Scholar] [CrossRef]
- Evans, V.C.; Barker, G.; Heesom, K.J.; Fan, J.; Bessant, C.; Matthews, D.A. De novo derivation of proteomes from transcriptomes for transcript and protein identification. Nat. Methods 2012, 9, 1207–1211. [Google Scholar] [CrossRef]
- Falvey, E.; Ziff, E. Sequence arrangement and protein coding capacity of the adenovirus type 2 “I” leader. J. Virol. 1983, 45, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Ramke, M.; Lee, J.Y.; Dyer, D.W.; Seto, D.; Rajaiya, J.; Chodosh, J. The 5′UTR in human adenoviruses: Leader diversity in late gene expression. Sci. Rep. 2017, 7, 618. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.P.; Mathews, M.B. DNA replication and the early to late transition in adenovirus infection. Cell 1980, 22, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chen, M.; Pettersson, U. A new look at adenovirus splicing. Virology 2014, 456, 329–341. [Google Scholar] [CrossRef] [Green Version]
- Donovan-Banfield, I.; Turnell, A.S.; Hiscox, J.A.; Leppard, K.N.; Matthews, D.A. Deep splicing plasticity of the human adenovirus type 5 transcriptome drives virus evolution. Commun. Biol. 2020, 3, 124. [Google Scholar] [CrossRef] [Green Version]
- Westergren Jakobsson, A.; Segerman, B.; Wallerman, O.; Lind, S.B.; Zhao, H.; Rubin, C.J.; Pettersson, U.; Akusjarvi, G. The Human Adenovirus Type 2 Transcriptome: An Amazing Complexity of Alternatively Spliced mRNAs. J. Virol. 2021, 95, e01869-20. [Google Scholar] [CrossRef]
- Price, A.M.; Steinbock, R.T.; Lauman, R.; Charman, M.; Hayer, K.E.; Kumar, N.; Halko, E.; Lum, K.K.; Wei, M.; Wilson, A.C.; et al. Novel viral splicing events and open reading frames revealed by long-read direct RNA sequencing of adenovirus transcripts. PLoS Pathog. 2022, 18, e1010797. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Wang, Y.; Zou, X.; Hung, T. Analysis of Fowl Adenovirus 4 Transcriptome by De Novo ORF Prediction Based on Corrected Nanopore Full-Length cDNA Sequencing Data. Viruses 2023, 15, 529. [Google Scholar] [CrossRef] [PubMed]
- Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Kowarz, E.; Krutzke, L.; Kulp, M.; Streb, P.; Larghero, P.; Reis, J.; Bracharz, S.; Engler, T.; Kochanek, S.; Marschalek, R. Vaccine-induced COVID-19 mimicry syndrome. Elife 2022, 11, e74974. [Google Scholar] [CrossRef]
- Lundstrom, K.; Barh, D.; Uhal, B.D.; Takayama, K.; Aljabali, A.A.A.; Abd El-Aziz, T.M.; Lal, A.; Redwan, E.M.; Adadi, P.; Chauhan, G.; et al. COVID-19 Vaccines and Thrombosis-Roadblock or Dead-End Street? Biomolecules 2021, 11, 1020. [Google Scholar] [CrossRef]
- Almuqrin, A.; Davidson, A.D.; Williamson, M.K.; Lewis, P.A.; Heesom, K.J.; Morris, S.; Gilbert, S.C.; Matthews, D.A. SARS-CoV-2 vaccine ChAdOx1 nCoV-19 infection of human cell lines reveals low levels of viral backbone gene transcription alongside very high levels of SARS-CoV-2 S glycoprotein gene transcription. Genome Med. 2021, 13, 43. [Google Scholar] [CrossRef]
- McMichael, A.J.; Haynes, B.F. Lessons learned from HIV-1 vaccine trials: New priorities and directions. Nat. Immunol. 2012, 13, 423–427. [Google Scholar] [CrossRef] [Green Version]
- McMichael, A.J.; Koff, W.C. Vaccines that stimulate T cell immunity to HIV-1: The next step. Nat. Immunol. 2014, 15, 319–322. [Google Scholar] [CrossRef] [Green Version]
- Hanke, T.; Goonetilleke, N.; McMichael, A.J.; Dorrell, L. Clinical experience with plasmid DNA- and modified vaccinia vaccine Ankara (MVA)-vectored HIV-1 clade A vaccine inducing T cells. J. Gen. Virol. 2007, 88, 1–12. [Google Scholar] [CrossRef]
- Hanke, T. Aiming for protective T-cell responses: A focus on the first generation conserved-region HIVconsv vaccines in preventive and therapeutic clinical trials. Expert Rev. Vaccines 2019, 18, 1029–1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ondondo, B.; Murakoshi, H.; Clutton, G.; Abdul-Jawad, S.; Wee, E.G.; Gatanaga, H.; Oka, S.; McMichael, A.J.; Takiguchi, M.; Korber, B.; et al. Novel Conserved-region T-cell Mosaic Vaccine With High Global HIV-1 Coverage Is Recognized by Protective Responses in Untreated Infection. Mol. Ther. 2016, 24, 832–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, W.; Perkins, S.; Theiler, J.; Bhattacharya, T.; Yusim, K.; Funkhouser, R.; Kuiken, C.; Haynes, B.; Letvin, N.L.; Walker, B.D.; et al. Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants. Nat. Med. 2007, 13, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Malhotra, U.; Gilbert, P.B.; Hawkins, N.R.; Duerr, A.C.; McElrath, J.M.; Corey, L.; Self, S.G. Peptide selection for human immunodeficiency virus type 1 CTL-based vaccine evaluation. Vaccine 2006, 24, 6893–6904. [Google Scholar] [CrossRef]
- Malhotra, U.; Li, F.; Nolin, J.; Allison, M.; Zhao, H.; Mullins, J.I.; Self, S.; McElrath, M.J. Enhanced detection of human immunodeficiency virus type 1 (HIV-1) Nef-specific T cells recognizing multiple variants in early HIV-1 infection. J. Virol. 2007, 81, 5225–5237. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Y.; Song, W.T.; Li, Y.; Chen, W.J.; Yang, D.; Zhong, G.C.; Zhou, H.Z.; Ren, C.Y.; Yu, H.T.; Ling, H. Improved expression of secretory and trimeric proteins in mammalian cells via the introduction of a new trimer motif and a mutant of the tPA signal sequence. Appl. Microbiol. Biotechnol. 2011, 91, 731–740. [Google Scholar] [CrossRef]
- Andre, S.; Seed, B.; Eberle, J.; Schraut, W.; Bultmann, A.; Haas, J. Increased immune response elicited by DNA vaccination with a synthetic gp120 sequence with optimized codon usage. J. Virol. 1998, 72, 1497–1503. [Google Scholar] [CrossRef] [Green Version]
- Castro-Chavez, F. Most Used Codons per Amino Acid and per Genome in the Code of Man Compared to Other Organisms According to the Rotating Circular Genetic Code. Neuroquantology 2011, 9, 500. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, D.R.; Stenberg, R.M.; Goins, W.F.; Stinski, M.F. Promoter-regulatory region of the major immediate early gene of human cytomegalovirus. Proc. Natl. Acad. Sci. USA 1984, 81, 659–663. [Google Scholar] [CrossRef]
- Hannoun, Z.; Wee, E.G.; Crook, A.; Colloca, S.; Di Marco, S.; Hanke, T. Adenovirus DNA Polymerase Loses Fidelity on a Stretch of Eleven Homocytidines during Pre-GMP Vaccine Preparation. Vaccines 2022, 10, 960. [Google Scholar] [CrossRef]
- Wee, E.G.; Moyo, N.; Hannoun, Z.; Giorgi, E.; Korber, B.; Hanke, T. Effect of Epitope Variant Co-delivery on the Depth of CD8 T-cell responses Induced by HIV-1 Conserved Mosaic Vaccines. Mol. Ther. Methods Clin. Dev. 2021, 21, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Borthwick, N.; Ahmed, T.; Ondondo, B.; Hayes, P.; Rose, A.; Ebrahimsa, U.; Hayton, E.J.; Black, A.; Bridgeman, A.; Rosario, M.; et al. Vaccine-elicited human T cells recognizing conserved protein regions inhibit HIV-1. Mol. Ther. 2014, 22, 464–475. [Google Scholar] [CrossRef] [Green Version]
- Hanke, T.; Szawlowski, P.; Randall, R.E. Construction of solid matrix-antibody-antigen complexes containing simian immunodeficiency virus p27 using tag-specific monoclonal antibody and tag-linked antigen. J. Gen. Virol. 1992, 73, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.P.; Jones, C.M.; Baille, J.P. Characteristics of a human diploid cell designated MRC-5. Nature 1970, 227, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Giard, D.J.; Aaronson, S.A.; Todaro, G.J.; Arnstein, P.; Kersey, J.H.; Dosik, H.; Parks, W.P. In vitro cultivation of human tumors: Establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 1973, 51, 1417–1423. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilotta, C.; Perrone, G.; Adelfio, V.; Spatola, G.F.; Uzzo, M.L.; Argo, A.; Zerbo, S. COVID-19 Vaccine-Related Thrombosis: A Systematic Review and Exploratory Analysis. Front. Immunol. 2021, 12, 729251. [Google Scholar] [CrossRef]
- Marietta, M.; Coluccio, V.; Luppi, M. Potential mechanisms of vaccine-induced thrombosis. Eur. J. Intern. Med. 2022, 105, 1–7. [Google Scholar] [CrossRef]
- Graves, D.; Akkerman, N.; Bachus, S.; Pelka, P. Differential Splicing of Human Adenovirus 5 E1A RNA Expressed in cis versus in trans. J. Virol. 2021, 95, e02081-20. [Google Scholar] [CrossRef]
- Depledge, D.P.; Srinivas, K.P.; Sadaoka, T.; Bready, D.; Mori, Y.; Placantonakis, D.G.; Mohr, I.; Wilson, A.C. Direct RNA sequencing on nanopore arrays redefines the transcriptional complexity of a viral pathogen. Nat. Commun. 2019, 10, 754. [Google Scholar] [CrossRef] [Green Version]
- Garalde, D.R.; Snell, E.A.; Jachimowicz, D.; Sipos, B.; Lloyd, J.H.; Bruce, M.; Pantic, N.; Admassu, T.; James, P.; Warland, A.; et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 2018, 15, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Soneson, C.; Yao, Y.; Bratus-Neuenschwander, A.; Patrignani, A.; Robinson, M.D.; Hussain, S. A comprehensive examination of Nanopore native RNA sequencing for characterization of complex transcriptomes. Nat. Commun. 2019, 10, 3359. [Google Scholar] [CrossRef] [Green Version]
- Viehweger, A.; Krautwurst, S.; Lamkiewicz, K.; Madhugiri, R.; Ziebuhr, J.; Holzer, M.; Marz, M. Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Res. 2019, 29, 1545–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fields, B.N. Fields Virology, 5th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; Volume II. [Google Scholar]
- Joudeh, A.I.; Lutf, A.Q.; Mahdi, S.; Tran, G. Efficacy and safety of mRNA and AstraZeneca COVID-19 vaccines in patients with autoimmune rheumatic diseases: A systematic review. Vaccine 2023, 41, 3801–3812. [Google Scholar] [CrossRef]
- Mengstu, S.; Beyene Berha, A. Safety and Efficacy of COVID-19 Vaccine in Africa: Systematic Review. Infect. Drug Resist. 2023, 16, 3085–3100. [Google Scholar] [CrossRef] [PubMed]
- Tiozzo, G.; Louwsma, T.; Konings, S.R.A.; Vondeling, G.T.; Perez Gomez, J.; Postma, M.J.; Freriks, R.D. Evaluating the reactogenicity of COVID-19 vaccines from network-meta analyses. Expert Rev. Vaccines 2023, 22, 410–418. [Google Scholar] [CrossRef]
Sample | Total Reads | Longest Read | Average Read Length | Mapped to Human Transcriptome | Mapped to Vaccine Transcriptome—Average Length of Mapped Read: Reads Mapped to E1 (HEK293 Cells Only) | Vaccine Mapped Reads as % of Human Mapped Reads | |
---|---|---|---|---|---|---|---|
MRC-5 | C1 2d * | 774,687 | 23,376 | 1510 | 698,670 | 6006:2631 | 0.9 |
C62 2d | 947,095 | 25,754 | 1557 | 844,437 | 2802:2586 | 0.3 | |
A549 | C1 2d | 1064,854 | 18,931 | 1277 | 961,978 | 8899:2542 | 0.9 |
C62 2d | 552,201 | 18,522 | 1240 | 482,812 | 7015:2402 | 1.5 | |
HEK293 | C1 1d | 992,841 | 19,032 | 1615 | 487,145 | 343,747:2011:782 | 70.6 |
C62 1d | 1101,827 | 23,931 | 1637 | 505,580 | 460,727:2062:617 | 91.1 |
Feature | Cell Count MRC-5 Cells | % Total MRC-5 Cells | Cell Count A549 Cells | % Total A549 Cells |
---|---|---|---|---|
tHIVconsv1 | 3994 | 85.6 | 5698 | 87.66 |
None from the list | 99 | 2.1 | 157 | 2.42 |
DBP (E2A) | 0 | 0 | 52 | 0.80 |
E4 orf3 | 0 | 0 | 15 | 0.23 |
E4 orf2 | 0 | 0 | 7 | 0.11 |
pIX | 0 | 0 | 3 | 0.05 |
E4 orf4 | 0 | 0 | 3 | 0.05 |
IVa2 | 0 | 0 | 1 | 0.02 |
E4 orf1 | 0 | 0 | 1 | 0.02 |
i-leader protein | 0 | 0 | 1 | 0.02 |
100K (L4) | 0 | 0 | 1 | 0.02 |
Feature | Cell Count MRC-5 | % of Total MRC-5 Cells | Cell Count A549 Cells | % of Total A549 Cells |
---|---|---|---|---|
HIVconsv62 | 1804 | 86.3 | 3712 | 80.1 |
None from the list | 37 | 1.8 | 104 | 2.2 |
DBP (E2A) | 0 | 0 | 67 | 1.5 |
i-leader protein | 0 | 0 | 16 | 0.4 |
E4 orf3 | 0 | 0 | 8 | 0.2 |
Hexon (L3) | 0 | 0 | 7 | 0.2 |
22K (L4) | 0 | 0 | 6 | 0.1 |
E4 orf2 | 0 | 0 | 4 | 0.1 |
52/55K (L1) | 0 | 0 | 4 | 0.1 |
33K (L4) | 0 | 0 | 4 | 0.1 |
pIX | 0 | 0 | 4 | 0.09 |
IVa2 | 0 | 0 | 3 | 0.06 |
Fibre (L5) | 0 | 0 | 3 | 0.06 |
preVIII (L4) | 0 | 0 | 2 | 0.04 |
E4 orf4 | 0 | 0 | 2 | 0.04 |
Penton (L2) | 0 | 0 | 2 | 0.04 |
UXP | 0 | 0 | 1 | 0.02 |
preVII (L2) | 0 | 0 | 1 | 0.02 |
100K (L4) | 0 | 0 | 1 | 0.02 |
23K protease (L3) | 0 | 0 | 1 | 0.02 |
preTP (E2B) | 0 | 0 | 1 | 0.02 |
pV (L2) | 0 | 0 | 1 | 0.02 |
Feature | C1 Virus | C62 Virus | ||
---|---|---|---|---|
Count | % of Total | Count | % of Total | |
Total of all reads | 186,526 | 275,053 | ||
Fibre (L5) | 20,318 | 10.89 | 38,681 | 14.06 |
Hexon (L3) | 18,763 | 10.06 | 42,160 | 15.33 |
preVII (L2) | 17,459 | 9.36 | 27,061 | 9.84 |
tHIconsv1/HIVconsv62 | 14,442 | 7.74 | 6617 | 2.41 |
33K full-length (L4) | 13,598 | 7.29 | 14,569 | 5.30 |
None from list | 11,960 | 6.41 | 13,676 | 4.97 |
pV (L2) | 9224 | 4.94 | 13,075 | 4.75 |
preX (L2) | 8052 | 4.32 | 18,237 | 6.63 |
100K (L4) | 7103 | 3.81 | 8259 | 3.00 |
preVI (L3) | 5685 | 3.05 | 9242 | 3.36 |
i-leader protein | 5082 | 2.72 | 4093 | 1.49 |
IVa2 | 4709 | 2.52 | 4702 | 1.71 |
DBP (E2A) | 4538 | 2.43 | 3816 | 1.39 |
preVIII (L4) | 4151 | 2.23 | 7838 | 2.85 |
52/55K (L1) | 4073 | 2.18 | 4081 | 1.48 |
22K (L4) | 3872 | 2.08 | 3636 | 1.32 |
penton base (L2) | 2746 | 1.47 | 5077 | 1.85 |
preIIIa (L1) | 1859 | 1.00 | 3144 | 1.14 |
pIX | 911 | 0.49 | 1427 | 0.52 |
23K protease (L3) | 571 | 0.31 | 959 | 0.35 |
E1b 19K | 372 | 0.20 | 309 | 0.11 |
E4 orf2 | 285 | 0.15 | 148 | 0.05 |
E4 orf3 | 171 | 0.09 | 132 | 0.05 |
E4 orf6/orf7 | 114 | 0.06 | 90 | 0.03 |
E4 orf4 | 104 | 0.06 | 57 | 0.02 |
E1a 13S | 78 | 0.04 | 67 | 0.02 |
E4 orf1 | 31 | 0.02 | 21 | 0.01 |
E1a 12S | 24 | 0.01 | 24 | 0.01 |
UXP | 19 | 0.01 | 315 | 0.11 |
pIX ad5 | 11 | 0.01 | 10 | 0.004 |
E1b 22S (E1b 55K) | 3 | 0.002 | 8 | 0.003 |
E1a 10S (171R) | 3 | 0.002 | 3 | 0.001 |
E1a 9S | 2 | 0.001 | 2 | 0.0007 |
E1b 13S (E1b-84R) | 1 | 0.0005 | 1 | 0.0003 |
E1b novel-84R | 1 | 0.0005 | 1 | 0.0003 |
preTP (E2B) | 0 | 0 | 13 | 0.005 |
Pol (E2B) | 0 | 0 | 9 | 0.003 |
E4 orf6 | 0 | 0 | 4 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matthews, D.A.; Milligan, R.; Wee, E.G.; Hanke, T. Adenovirus Transcriptome in Human Cells Infected with ChAdOx1-Vectored Candidate HIV-1 Vaccine Is Dominated by High Levels of Correctly Spliced HIVconsv1&62 Transgene RNA. Vaccines 2023, 11, 1187. https://doi.org/10.3390/vaccines11071187
Matthews DA, Milligan R, Wee EG, Hanke T. Adenovirus Transcriptome in Human Cells Infected with ChAdOx1-Vectored Candidate HIV-1 Vaccine Is Dominated by High Levels of Correctly Spliced HIVconsv1&62 Transgene RNA. Vaccines. 2023; 11(7):1187. https://doi.org/10.3390/vaccines11071187
Chicago/Turabian StyleMatthews, David A., Rachel Milligan, Edmund G. Wee, and Tomáš Hanke. 2023. "Adenovirus Transcriptome in Human Cells Infected with ChAdOx1-Vectored Candidate HIV-1 Vaccine Is Dominated by High Levels of Correctly Spliced HIVconsv1&62 Transgene RNA" Vaccines 11, no. 7: 1187. https://doi.org/10.3390/vaccines11071187
APA StyleMatthews, D. A., Milligan, R., Wee, E. G., & Hanke, T. (2023). Adenovirus Transcriptome in Human Cells Infected with ChAdOx1-Vectored Candidate HIV-1 Vaccine Is Dominated by High Levels of Correctly Spliced HIVconsv1&62 Transgene RNA. Vaccines, 11(7), 1187. https://doi.org/10.3390/vaccines11071187