Advances in Adjuvanted Influenza Vaccines
Abstract
:1. Introduction
2. Current Licensed Influenza Vaccines
2.1. Inactivated Vaccines
2.2. Live Attenuated Vaccines
2.3. Recombinant HA Vaccines
2.4. Effectiveness of Licensed Seasonal Influenza Vaccines
3. Adjuvants Used for Licensed Influenza Vaccines
3.1. Alum
3.2. MF59
3.3. AS03
3.4. AF03
3.5. Virosomes
4. Adverse Effects Related to Adjuvanted Vaccines
5. Progress in the Development of Adjuvants for Influenza Vaccines
5.1. Saponin
5.2. TLR Agonists
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Influenza (Seasonal). Available online: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) (accessed on 20 June 2023).
- Iuliano, A.D.; Roguski, K.M.; Chang, H.H.; Muscatello, D.J.; Palekar, R.; Tempia, S.; Cohen, C.; Gran, J.M.; Schanzer, D.; Cowling, B.J.; et al. Estimates of Global Seasonal Influenza-Associated Respiratory Mortality: A Modelling Study. Lancet 2018, 391, 1285–1300. [Google Scholar] [CrossRef] [PubMed]
- CDC. Fluzone High-Dose Seasonal Influenza Vaccine. Available online: https://www.cdc.gov/flu/prevent/qa_fluzone.htm (accessed on 20 June 2023).
- Smetana, J.; Chlibek, R.; Shaw, J.; Splino, M.; Prymula, R. Influenza Vaccination in the Elderly. Hum. Vaccin. Immunother. 2018, 14, 540–549. [Google Scholar] [CrossRef] [PubMed]
- WHO. Avian Influenza Weekly Update Number 898. Available online: https://cdn.who.int/media/docs/default-source/wpro---documents/emergency/surveillance/avian-influenza/ai_20230608.pdf?sfvrsn=5bc7c406_26 (accessed on 20 June 2023).
- Skowronski, D.M.; Janjua, N.Z.; De Serres, G. Understanding Suboptimal Influenza Vaccine Effectiveness within the Agent, Host, and Environment Paradigm. Clin. Infect. Dis. 2013, 57, 476–477. [Google Scholar] [CrossRef] [PubMed]
- Petrovsky, N. Comparative Safety of Vaccine Adjuvants: A Summary of Current Evidence and Future Needs. Drug Saf. 2015, 38, 1059–1074. [Google Scholar] [CrossRef] [PubMed]
- National Vaccine Advisory Committee. Strategies to Achieve the Healthy People 2020 Annual Influenza Vaccine Coverage Goal for Health-Care Personnel: Recommendations from the National Vaccine Advisory Committee. Public. Health Rep. 2013, 128, 7–25. [Google Scholar] [CrossRef]
- Russell, C.A.; Jones, T.C.; Barr, I.G.; Cox, N.J.; Garten, R.J.; Gregory, V.; Gust, I.D.; Hampson, A.W.; Hay, A.J.; Hurt, A.C.; et al. Influenza Vaccine Strain Selection and Recent Studies on the Global Migration of Seasonal Influenza Viruses. Vaccine 2008, 26, 31–34. [Google Scholar] [CrossRef]
- Belongia, E.A.; Kieke, B.A.; Donahue, J.G.; Greenlee, R.T.; Balish, A.; Foust, A.; Lindstrom, S.; Shay, D.K. Effectiveness of Inactivated Influenza Vaccines Varied Substantially with Antigenic Match from the 2004–2005 Season to the 2006–2007 Season. J. Infect. Dis. 2009, 199, 159–167. [Google Scholar] [CrossRef]
- Carrat, F.; Flahault, A. Influenza Vaccine: The Challenge of Antigenic Drift. Vaccine 2007, 25, 6852–6862. [Google Scholar] [CrossRef]
- Onodera, T.; Hosono, A.; Odagiri, T.; Tashiro, M.; Kaminogawa, S.; Okuno, Y.; Kurosaki, T.; Ato, M.; Ko-bayashi, K.; Takahashi, Y. Whole-Virion Influenza Vaccine Recalls an Early Burst of High-Affinity Memory B Cell Response through TLR Signaling. J. Immunol. 2016, 196, 4172–4184. [Google Scholar] [CrossRef]
- Geeraedts, F.; Goutagny, N.; Hornung, V.; Severa, M.; De Haan, A.; Pool, J.; Wilschut, J.; Fitzgerald, K.A.; Huckriede, A. Superior immunogenicity of inactivated whole virus H5N1 influenza vaccine is primarily controlled by Toll-like receptor signalling. PLoS Pathog. 2008, 4, e1000138. [Google Scholar] [CrossRef]
- Siegert, R.; Braune, P. The Pyrogens of Myxoviruses. II. Resistance of Influenza A Pyrogens to Heat, Ultraviolet, and Chemical Treatment. Virology 1964, 24, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.S.; Webby, R.J. Traditional and New Influenza Vaccines. Clin. Microbiol. Rev. 2013, 26, 476–492. [Google Scholar] [CrossRef] [PubMed]
- Shingai, M.; Nomura, N.; Sekiya, T.; Ohno, M.; Fujikura, D.; Handabile, C.; Omori, R.; Ohara, Y.; Nishimura, T.; Endo, M.; et al. Potent priming by inactivated whole influenza virus particle vaccines is linked to viral RNA uptake into antigen presenting cells. Vaccine 2021, 39, 3940–3951. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Meliopoulos, V.A.; Wang, W.; Lin, X.; Stucker, K.M.; Halpin, R.A.; Stockwell, T.B.; Schultz-Cherry, S.; Wentworth, D.E. Reversion of Cold-Adapted Live Attenuated Influenza Vaccine into a Pathogenic Virus. J. Virol. 2016, 90, 8454–8463. [Google Scholar] [CrossRef] [PubMed]
- Coffman, R.L.; Sher, A.; Seder, R.A. Vaccine Adjuvants: Putting Innate Immunity to Work. Immunity 2010, 33, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Reed, S.G.; Bertholet, S.; Coler, R.N.; Friede, M. New Horizons in Adjuvants for Vaccine Development. Trends Immunol. 2009, 30, 23–32. [Google Scholar] [CrossRef]
- CDC. Live Attenuated Influenza Vaccine [LAIV] (The Nasal Spray Flu Vaccine). Available online: https://www.cdc.gov/flu/prevent/nasalspray.htm (accessed on 20 June 2023).
- Ambrose, C.S.; Bright, H.; Mallory, R. Letter to the Editor: Potential Causes of the Decreased Effectiveness of the Influenza A(H1N1)Pdm09 Strain in Live Attenuated Influenza Vaccines. Eurosurveillance 2016, 21, 24–25. [Google Scholar] [CrossRef]
- Grohskopf, L.A.; Sokolow, L.Z.; Broder, K.R.; Walter, E.B.; Bresee, J.S.; Fry, A.M.; Jernigan, D.B. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices—United States, 2017–2018 Influenza Season. MMWR Recomm. Rep. 2017, 66, 1–20. [Google Scholar] [CrossRef]
- Dunkle, L.M.; Izikson, R.; Patriarca, P.; Goldenthal, K.L.; Muse, D.; Callahan, J.; Cox, M.M.J. Efficacy of Recombinant Influenza Vaccine in Adults 50 Years of Age or Older. N. Engl. J. Med. 2017, 376, 2427–2436. [Google Scholar] [CrossRef]
- CDC. Past Seasons’ Vaccine Effectiveness Estimates. Available online: https://www.cdc.gov/flu/vaccines-work/past-seasons-estimates.html (accessed on 20 June 2023).
- Kissling, E.; Pozo, F.; Martínez-Baz, I.; Buda, S.; Vilcu, A.M.; Domegan, L.; Mazagatos, C.; Dijkstra, F.; Latorre-Margalef, N.; Kurečić Filipović, S.; et al. Influenza vaccine effectiveness against influenza A subtypes in Europe: Results from the 2021–2022 I-MOVE primary care multicentre study. Influenza Other Respir. Viruses 2023, 17, e13069. [Google Scholar] [CrossRef]
- Price, A.M.; Flannery, B.; Talbot, H.K.; Grijalva, C.G.; Wernli, K.J.; Phillips, C.H.; Monto, A.S.; Martin, E.T.; Belongia, E.A.; McLean, H.Q.; et al. Influenza Vaccine Effectiveness Against Influenza A(H3N2)-Related Illness in the United States during the 2021–2022 Influenza Season. Clin. Infect. Dis. 2023, 76, 1358–1363. [Google Scholar] [CrossRef] [PubMed]
- Klingen, T.R.; Reimering, S.; Guzmán, C.A.; McHardy, A.C. In Silico Vaccine Strain Prediction for Human Influenza Viruses. Trends Microbiol. 2018, 26, 119–131. [Google Scholar] [CrossRef]
- Skowronski, D.M.; Serres, G.D. De Role of Egg-Adaptation Mutations in Low Influenza A(H3N2) Vaccine Effectiveness during the 2012–2013 Season. Clin. Infect. Dis. 2018, 67, 1474–1476. [Google Scholar] [CrossRef] [PubMed]
- Belongia, E.A.; Skowronski, D.M.; McLean, H.Q.; Chambers, C.; Sundaram, M.E.; De Serres, G. Repeated Annual Influenza Vaccination and Vaccine Effectiveness: Review of Evidence. Expert. Rev. Vaccines 2017, 16, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, C.S.; Levin, M.J. The Rationale for Quadrivalent Influenza Vaccines. Hum. Vaccin. Immunother. 2012, 8, 81–88. [Google Scholar] [CrossRef]
- Pelton, S.I.; Divino, V.; Shah, D.; Mould-Quevedo, J.; Dekoven, M.; Krishnarajah, G.; Postma, M.J. Evaluating the Relative Vaccine Effectiveness of Adjuvanted Trivalent Influenza Vaccine Compared to High-Dose Trivalent and Other Egg-Based Influenza Vaccines among Older Adults in the US during the 2017–2018 Influenza Season. Vaccines 2020, 8, 446. [Google Scholar] [CrossRef]
- Ng, T.W.Y.; Cowling, B.J.; Gao, H.Z.; Thompson, M.G. Comparative Immunogenicity of Enhanced Seasonal Influenza Vaccines in Older Adults: A Systematic Review and Meta-Analysis. J. Infect. Dis. 2019, 219, 1525–1535. [Google Scholar] [CrossRef]
- Ansaldi, F.; Bacilieri, S.; Durando, P.; Sticchi, L.; Valle, L.; Montomoli, E.; Icardi, G.; Gasparini, R.; Crovari, P. Cross-Protection by MF59TM-Adjuvanted Influenza Vaccine: Neutralizing and Haemagglutination-Inhibiting Antibody Activity against A(H3N2) Drifted Influenza Viruses. Vaccine 2008, 26, 1525–1529. [Google Scholar] [CrossRef]
- Tetsutani, K.; Ishii, K.J. Adjuvants in Influenza Vaccines. Vaccine 2012, 30, 7658–7661. [Google Scholar] [CrossRef]
- De Gregorio, E.; Caproni, E.; Ulmer, J.B. Vaccine Adjuvants: Mode of Action. Front. Immunol. 2013, 4, 214. [Google Scholar] [CrossRef]
- Reed, S.G.; Orr, M.T.; Fox, C.B. Key Roles of Adjuvants in Modern Vaccines. Nat. Med. 2013, 19, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
- Tregoning, J.S.; Russell, R.F.; Kinnear, E. Adjuvanted Influenza Vaccines. Hum. Vaccin. Immunother. 2018, 14, 550–564. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K. Aluminum Compounds as Vaccine Adjuvants. Adv. Drug Deliv. Rev. 1998, 32, 155–172. [Google Scholar] [CrossRef] [PubMed]
- Di Pasquale, A.; Preiss, S.; Da Silva, F.T.; Garçon, N. Vaccine Adjuvants: From 1920 to 2015 and Beyond. Vaccines 2015, 3, 320–343. [Google Scholar] [CrossRef] [PubMed]
- De Gregorio, E.; Tritto, E.; Rappuoli, R. Alum Adjuvanticity: Unraveling a Century Old Mystery. Eur. J. Immunol. 2008, 38, 2068–2071. [Google Scholar] [CrossRef]
- Bernstein, D.I.; Edwards, K.M.; Dekker, C.L.; Belshe, R.; Talbot, H.K.B.; Graham, I.L.; Noah, D.L.; He, F.; Hill, H. Effects of Adjuvants on the Safety and Immunogenicity of an Avian Influenza H5N1 Vaccine in Adults. J. Infect. Dis. 2008, 197, 667–675. [Google Scholar] [CrossRef]
- Zhu, F.-C.; Wang, H.; Fang, H.-H.; Yang, J.G.; Lin, X.J.; Liang, X.-F.; Zhang, X.-F.; Pan, H.-X.; Meng, F.-Y.; Hu, Y.M.; et al. A Novel Influenza A (H1N1) Vaccine in Various Age Groups. N. Engl. J. Med. 2009, 361, 2414–2423. [Google Scholar] [CrossRef]
- Marrack, P.; McKee, A.S.; Munks, M.W. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 2009, 9, 287–293. [Google Scholar] [CrossRef]
- Calabro, S.; Tortoli, M.; Baudner, B.C.; Pacitto, A.; Cortese, M.; O’Hagan, D.T.; De Gregorio, E.; Seubert, A.; Wack, A. Vaccine Adjuvants Alum and MF59 Induce Rapid Recruitment of Neutrophils and Monocytes That Participate in Antigen Transport to Draining Lymph Nodes. Vaccine 2011, 29, 1812–1823. [Google Scholar] [CrossRef]
- Seubert, A.; Calabro, S.; Santini, L.; Galli, B.; Genovese, A.; Valentini, S.; Aprea, S.; Colaprico, A.; D’Oro, U.; Giuliani, M.M.; et al. Adjuvanticity of the Oil-in-Water Emulsion MF59 Is Independent of Nlrp3 Inflammasome but Requires the Adaptor Protein MyD88. Proc. Natl. Acad. Sci. USA 2011, 108, 11169–11174. [Google Scholar] [CrossRef]
- O’Hagan, D.T.; Ott, G.S.; De Gregorio, E.; Seubert, A. The Mechanism of Action of MF59—An Innately Attractive Adjuvant Formulation. Vaccine 2012, 30, 4341–4348. [Google Scholar] [CrossRef] [PubMed]
- Seubert, A.; Monaci, E.; Pizza, M.; O’Hagan, D.T.; Wack, A. The adjuvants aluminum hydroxide and MF59 induce monocyte and granulocyte chemoattractants and enhance monocyte differentiation toward dendritic cells. J. Immunol. 2008, 180, 5402–5412. [Google Scholar] [CrossRef] [PubMed]
- Camilloni, B.; Basileo, M.; Valente, S.; Nunzi, E.; Iorio, A.M. Immunogenicity of Intramuscular MF59- Adjuvanted and Intradermal Administered Influenza Enhanced Vaccines in Subjects Aged over 60: A Literature Review. Hum. Vaccin. Immunother. 2015, 11, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Cowling, B.J.; Perera, R.A.P.M.; Valkenburg, S.A.; Leung, N.H.L.; Iuliano, A.D.; Tam, Y.H.; Wong, J.H.F.; Fang, V.J.; Li, A.P.Y.; So, H.C.; et al. Comparative Immunogenicity of Several Enhanced Influenza Vaccine Options for Older Adults: A Randomized, Controlled Trial. Clin. Infect. Dis. 2020, 71, 1704–1714. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, R.; Pozzi, T.; Montomoli, E.; Fragapane, E.; Senatore, F.; Minutello, M.; Podda, A. Increased Immunogenicity of the MF59-Adjuvanted Influenza Vaccine Compared to a Conventional Subunit Vaccine in Elderly Subjects. Eur. J. Epidemiol. 2001, 17, 135–140. [Google Scholar] [CrossRef]
- O’Hagan, D.T.; Ott, G.S.; Van Nest, G.; Rappuoli, R.; Del Giudice, G. The History of MF59® Adjuvant: A Phoenix That Arose from the Ashes. Expert. Rev. Vaccines 2013, 12, 13–30. [Google Scholar] [CrossRef]
- Vesikari, T.; Groth, N.; Karvonen, A.; Borkowski, A.; Pellegrini, M. MF59®-Adjuvanted Influenza Vaccine (FLUAD®) in Children: Safety and Immunogenicity Following a Second Year Seasonal Vaccination. Vaccine 2009, 27, 6291–6295. [Google Scholar] [CrossRef]
- Leroux-Roels, I.; Borkowski, A.; Vanwolleghem, T.; Dramé, M.; Clement, F.; Hons, E.; Devaster, J.M.; Leroux-Roels, G. Antigen Sparing and Cross-Reactive Immunity with an Adjuvanted rH5N1 Prototype Pandemic Influenza Vaccine: A Randomised Controlled Trial. Lancet 2007, 370, 580–589. [Google Scholar] [CrossRef]
- Clark, T.W.; Pareek, M.; Hoschler, K.; Dillon, H.; Nicholson, K.G.; Groth, N.; Stephenson, I. Trial of 2009 Influenza A (H1N1) Monovalent MF59-Adjuvanted Vaccine. N. Engl. J. Med. 2009, 361, 2424–2435. [Google Scholar] [CrossRef]
- Galli, G.; Hancock, K.; Hoschler, K.; DeVos, J.; Praus, M.; Bardelli, M.; Malzone, C.; Castellino, F.; Gentile, C.; McNally, T.; et al. Fast Rise of Broadly Cross-Reactive Antibodies after Boosting Long-Lived Human Memory B Cells Primed by an MF59 Adjuvanted Prepandemic Vaccine. Proc. Natl. Acad. Sci. USA 2009, 106, 7962–7967. [Google Scholar] [CrossRef]
- Khurana, S.; Verma, N.; Yewdell, J.W.; Hilbert, A.K.; Castellino, F.; Lattanzi, M.; Del Giudice, G.; Rappuoli, R.; Golding, H. MF59 Adjuvant Enhances Diversity and Affinity of Antibody-Mediated Immune Response to Pandemic Influenza Vaccines. Sci. Transl. Med. 2011, 3, 85ra48. [Google Scholar] [CrossRef] [PubMed]
- Morel, S.; Didierlaurent, A.; Bourguignon, P.; Delhaye, S.; Baras, B.; Jacob, V.; Planty, C.; Elouahabi, A.; Harvengt, P.; Carlsen, H.; et al. Adjuvant System AS03 Containing α-Tocopherol Modulates Innate Immune Response and Leads to Improved Adaptive Immunity. Vaccine 2011, 29, 2461–2473. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, K.G.; Abrams, K.R.; Batham, S.; Clark, T.W.; Hoschler, K.; Lim, W.S.; Medina, M.J.; Nguyen-Van-Tam, J.S.; Read, R.C.; Warren, F.C.; et al. Immunogenicity and Safety of a Two-Dose Schedule of Whole-Virion and AS03A-Adjuvanted 2009 Influenza A (H1N1) Vaccines: A Randomised, Multicentre, Age-Stratified, Head-to-Head Trial. Lancet Infect. Dis. 2011, 11, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Mendes, A.; Azevedo-Silva, J.; Fernandes, J.C. From Sharks to Yeasts: Squalene in the Development of Vaccine Adjuvants. Pharmaceuticals 2022, 15, 265. [Google Scholar] [CrossRef] [PubMed]
- Baz, M.; Samant, M.; Zekki, H.; Tribout-Jover, P.; Plante, M.; Lanteigne, A.M.; Hamelin, M.E.; Mallett, C.; Papadopoulou, B.; Boivin, G. Effects of different adjuvants in the context of intramuscular and intranasal routes on humoral and cellular immune responses induced by detergent-split A/H3N2 influenza vaccines in mice. Clin. Vaccine Immunol. 2012, 19, 209–218. [Google Scholar] [CrossRef]
- European Medicines Agency. Assessment Report: Humenza; European Medicines Agency: London, UK, 2010. [Google Scholar]
- Caillet, C.; Piras, F.; Bernard, M.C.; de Montfort, A.; Boudet, F.; Vogel, F.R.; Hoffenbach, A.; Moste, C.; Kusters, I. AF03-Adjuvanted and Non-Adjuvanted Pandemic Influenza A (H1N1) 2009 Vaccines Induce Strong Antibody Responses in Seasonal Influenza Vaccine-Primed and Unprimed Mice. Vaccine 2010, 28, 3076–3079. [Google Scholar] [CrossRef]
- Klucker, M.F.; Dalençon, F.; Probeck, P.; Haensler, J. AF03, an Alternative Squalene Emulsion-Based Vaccine Adjuvant Prepared by a Phase Inversion Temperature Method. J. Pharm. Sci. 2012, 101, 4490–4500. [Google Scholar] [CrossRef]
- Mischler, R.; Metcalfe, I.C. Inflexal V a trivalent virosome subunit influenza vaccine: Production. Vaccine 2002, 20 (Suppl. S5), B17–B23. [Google Scholar] [CrossRef]
- Herzog, C.; Hartmann, K.; Künzi, V.; Kürsteiner, O.; Mischler, R.; Lazar, H.; Glück, R. Eleven Years of Inflexal® V-a Virosomal Adjuvanted Influenza Vaccine. Vaccine 2009, 27, 4381–4387. [Google Scholar] [CrossRef]
- Sarkanen, T.O.; Alakuijala, A.P.E.; Dauvilliers, Y.A.; Partinen, M.M. Incidence of Narcolepsy after H1N1 Influenza and Vaccinations: Systematic Review and Meta-Analysis. Sleep Med. Rev. 2018, 38, 177–186. [Google Scholar] [CrossRef]
- Verstraeten, T.; Cohet, C.; Dos Santos, G.; Ferreira, G.L.C.; Bollaerts, K.; Bauchau, V.; Shinde, V. PandemrixTM and Narcolepsy: A Critical Appraisal of the Observational Studies. Hum. Vaccin. Immunother. 2016, 12, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Sturkenboom, M.C.J.M. The Narcolepsy-Pandemic Influenza Story: Can the Truth Ever Be Unraveled? Vaccine 2015, 33, B6–B13. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Ambati, A.; Lin, L.; Bonvalet, M.; Partinen, M.; Ji, X.; Maecker, H.T.; Mignot, E.J. Autoimmunity to hypocretin and molecular mimicry to flu in type 1 narcolepsy. Proc. Natl. Acad. Sci. USA 2018, 115, E12323–E12332. [Google Scholar] [CrossRef] [PubMed]
- Latorre, D.; Kallweit, U.; Armentani, E.; Foglierini, M.; Mele, F.; Cassotta, A.; Jovic, S.; Jarrossay, D.; Mathis, J.; Zellini, F.; et al. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature 2018, 562, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Bernard-Valnet, R.; Frieser, D.; Nguyen, X.H.; Khajavi, L.; Quériault, C.; Arthaud, S.; Melzi, S.; Fusade-Boyer, M.; Masson, F.; Zytnicki, M.; et al. Influenza vaccination induces autoimmunity against orexinergic neurons in a mouse model for narcolepsy. Brain 2022, 145, 2018–2030. [Google Scholar] [CrossRef]
- Jiang, W.; Birtley, J.R.; Hung, S.C.; Wang, W.; Chiou, S.H.; Macaubas, C.; Kornum, B.; Tian, L.; Huang, H.; Adler, L.; et al. In vivo clonal expansion and phenotypes of hypocretin-specific CD4+ T cells in narcolepsy patients and controls. Nat. Commun. 2019, 10, 5247. [Google Scholar] [CrossRef]
- Spickler, A.R.; Roth, J.A. Adjuvants in Veterinary Vaccines: Modes of Action and Adverse Effects. J. Vet. Intern. Med. 2003, 17, 273–281. [Google Scholar] [CrossRef]
- Mbawuike, I.; Zang, Y.; Couch, R.B. Humoral and Cell-Mediated Immune Responses of Humans to Inactivated Influenza Vaccine with or without QS21 Adjuvant. Vaccine 2007, 25, 3263–3269. [Google Scholar] [CrossRef]
- Shinde, V.; Cho, I.; Plested, J.S.; Agrawal, S.; Fiske, J.; Cai, R.; Zhou, H.; Pham, X.; Zhu, M.; Cloney-Clark, S.; et al. Comparison of the Safety and Immunogenicity of a Novel Matrix-M-Adjuvanted Nanoparticle Influenza Vaccine with a Quadrivalent Seasonal Influenza Vaccine in Older Adults: A Phase 3 Randomised Controlled Trial. Lancet Infect. Dis. 2022, 22, 73–84. [Google Scholar] [CrossRef]
- Feng, H.; Yamashita, M.; Wu, L.; da Silva Lopes, T.J.; Watanabe, T.; Kawaoka, Y. Food Additives as Novel Influenza Vaccine Adjuvants. Vaccines 2019, 7, 127. [Google Scholar] [CrossRef]
- Fries, L.F.; Smith, G.E.; Glenn, G.M. A Recombinant Viruslike Particle Influenza A (H7N9) Vaccine. N. Engl. J. Med. 2013, 369, 2564–2566. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Gao, F.; Zhao, C.; Ding, Y.; Cao, Y.; Yang, T.; Xu, X.; Chen, Z. Comparative Effectiveness of H7N9 Vaccines in Healthy Individuals. Hum. Vaccin. Immunother. 2019, 15, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Cox, R.J.; Pedersen, G.; Madhun, A.S.; Svindland, S.; Sævik, M.; Breakwell, L.; Hoschler, K.; Willemsen, M.; Campitelli, L.; Nøstbakken, J.K.; et al. Evaluation of a Virosomal H5N1 Vaccine Formulated with Matrix MTM Adjuvant in a Phase I Clinical Trial. Vaccine 2011, 29, 8049–8059. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, G.; Major, D.; Roseby, S.; Wood, J.; Madhun, A.S.; Cox, R.J. Matrix-M Adjuvanted Virosomal H5N1 Vaccine Confers Protection against Lethal Viral Challenge in a Murine Model. Influenza Other Respir. Viruses 2011, 5, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.A.; Devita, V.; Levy, H.B.; Baron, S.; Hubbard, S.P.; Levine, A.S. A phase I-II trial of multiple-dose polyriboinosic-polyribocytidylic acid in patieonts with leukemia or solid tumors. J. Natl. Cancer Inst. 1976, 57, 599–602. [Google Scholar] [CrossRef]
- Ichinohe, T.; Kawaguchi, A.; Tamura, S.; Takahashi, H.; Sawa, H.; Ninomiya, A.; Imai, M.; Itamura, S.; Odagiri, T.; Tashiro, M.; et al. Intranasal Immunization with H5N1 Vaccine plus Poly I:Poly C12U, a Toll-like Receptor Agonist, Protects Mice against Homologous and Heterologous Virus Challenge. Microbes Infect. 2007, 9, 1333–1340. [Google Scholar] [CrossRef]
- Overton, E.T.; Goepfert, P.A.; Cunningham, P.; Carter, W.A.; Horvath, J.; Young, D.; Strayer, D.R. Intranasal Seasonal Influenza Vaccine and a TLR-3 Agonist, Rintatolimod, Induced Cross-Reactive IgA Antibody Formation against Avian H5N1 and H7N9 Influenza HA in Humans. Vaccine 2014, 32, 5490–5495. [Google Scholar] [CrossRef]
- Lau, Y.F.; Tang, L.H.; McCall, A.W.; Ooi, E.E.; Subbarao, K. An Adjuvant for the Induction of Potent, Protective Humoral Responses to an H5N1 Influenza Virus Vaccine with Antigen-Sparing Effect in Mice. J. Virol. 2010, 84, 8639–8649. [Google Scholar] [CrossRef]
- Lau, Y.F.; Tang, L.H.; Ooi, E.E. A TLR3 ligand that exhibits potent inhibition of influenza virus replication and has strong adjuvant activity has the potential for dual applications in an influenza pandemic. Vaccine 2009, 27, 1354–1364. [Google Scholar] [CrossRef]
- Pillet, S.; Aubin, É.; Trépanier, S.; Poulin, J.F.; Yassine-Diab, B.; Ter Meulen, J.; Ward, B.J.; Landry, N. Humoral and Cell-Mediated Immune Responses to H5N1 Plant-Made Virus-like Particle Vaccine Are Differentially Impacted by Alum and GLA-SE Adjuvants in a Phase 2 Clinical Trial. NPJ Vaccines 2018, 3, 3. [Google Scholar] [CrossRef]
- Tussey, L.; Strout, C.; Davis, M.; Johnson, C.; Lucksinger, G.; Umlauf, S.; Song, L.; Liu, G.; Abraham, K.; White, C.J. Phase 1 Safety and Immunogenicity Study of a Quadrivalent Seasonal Flu Vaccine Comprising Recombinant Hemagglutinin-Flagellin Fusion Proteins. Open Forum Infect. Dis. 2016, 3, ofw015. [Google Scholar] [CrossRef] [PubMed]
- Krammer, F. The human antibody response to influenza A virus infection and vaccination. Nat. Rev. Immunol. 2019, 19, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, A.; Adachi, Y.; Tonouchi, K.; Moriyama, S.; Sun, L.; Aoki, M.; Asanuma, H.; Shirakura, M.; Fukushima, A.; Yamamoto, T.; et al. Post-fusion influenza vaccine adjuvanted with SA-2 confers heterologous protection via Th1-polarized, non-neutralizing antibody responses. Vaccine 2023. epub ahead of print. [Google Scholar] [CrossRef]
- Yamamoto, T.; Masuta, Y.; Momota, M.; Kanekiyo, M.; Kanuma, T.; Takahama, S.; Moriishi, E.; Yasutomi, Y.; Saito, T.; Graham, B.S.; et al. A unique nanoparticulate TLR9 agonist enables a HA split vaccine to confer FcγR-mediated protection against heterologous lethal influenza virus infection. Int. Immunol. 2019, 31, 81–90. [Google Scholar] [CrossRef] [PubMed]
Vaccine Type | Adjuvant | Production Platform | Dose | Age Indication | Tradename (Manufacturer), Route |
---|---|---|---|---|---|
Split | None | Embryonated egg | 45 µg (15 µg HA/strain) | ≥6 mo | Afluria Quadrivalent (Seqirus), i.m./i.n. a |
None | Embryonated egg | 45 µg (15 µg HA/strain) | ≥6 mo | Afluria Southern Hemisphere (Seqirus), i.m./i.n. a | |
None | Embryonated egg | 45 µg (15 µg HA/strain) | ≥3 yrs | Fluarix (Glaxosmithkline), i.m. | |
None | Embryonated egg | 45 µg (15 µg HA/strain) | ≥6 mo | FluLaval (GlaxoSmithKline), i.m. | |
None | Embryonated egg | 60 µg (15 µg HA/strain) | ≥6 mo | FluLaval Quadrivalent (GlaxoSmithKline), i.m. | |
None | Embryonated egg | 60 µg (15 µg HA/strain) | ≥6 mo | Fluzone Quadrivalent (Sanofi Pasteur), i.m. | |
None | Embryonated egg | 180 µg (60 µg HA/strain) | ≥65 yrs | Fluzone High Dose Quadrivalent (Sanofi Pasteur), i.m. | |
None | Embryonated egg | 36 µg (9 µg HA/strain) | 18–64 yrs | Fluzone-Intradermal (Sanofi Pasteur), i.d. | |
Subunit | MF59 | Embryonated egg | 45 µg (15 µg HA/strain) | ≥65 yrs | FLUAD (Seqirus), i.m. |
MF59 | Embryonated egg | 60 µg (15 µg HA/strain) | ≥65 yrs | FLUAD Quadrivalent (Seqirus), i.m. | |
None | Embryonated egg | 45 µg (15 µg HA/strain) | ≥4 yrs | Fluvirin (Seqirus), i.m. | |
None | Embryonated egg | 45 µg (15 µg HA/strain) | ≥18 yrs | Agriflu (Seqirus), i.m. | |
None | Madin-Darby canine kidney (MDCK) cell | 60 µg (15 µg HA/strain) | ≥6 mo | Flucelvax Quadrivalent (Seqirus), i.m. | |
Live Attenuated | None | Embryonated egg | 106.5–7.5 FFU b virus/strain | 2–49 yrs | FluMist (AstraZeneca), i.n. |
Recombinant | None | Baculovirus/Insect cell | 135 µg (45 µg HA/strain) | ≥18 yrs | FluBlok (Sanofi Pasteur), i.m. |
180 µg (45 µg HA/strain) | ≥18 yrs | FluBlok Quadrivalent (Sanofi Pasteur), i.m. |
Adjuvant Name | Adjuvant Type | Components | Vaccines for |
---|---|---|---|
Alum | Aluminum salts | KAI(SO4)2, Aluminum phosphate, Aluminum hydroxide | Pre-pandemic influenza |
MF59 | Oil-in-water emulsion | Squalene, Tween 80, Sorbitan trioleate | Seasonal influenza, Pandemic influenza, Pre-pandemic influenza |
AS03 | Oil-in-water emulsion | Squalene, Tween 80, α-tocopherol | Pandemic influenza, Pre-pandemic influenza |
AF03 | Oil-in-water emulsion | Squalene, Polyoxyethylene cetostearyl ether, Mannitol, Sorbitanoleate | Pandemic influenza |
Virosomes | Liposomes | Lipids, Hemagglutinin | Seasonal influenza |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shichinohe, S.; Watanabe, T. Advances in Adjuvanted Influenza Vaccines. Vaccines 2023, 11, 1391. https://doi.org/10.3390/vaccines11081391
Shichinohe S, Watanabe T. Advances in Adjuvanted Influenza Vaccines. Vaccines. 2023; 11(8):1391. https://doi.org/10.3390/vaccines11081391
Chicago/Turabian StyleShichinohe, Shintaro, and Tokiko Watanabe. 2023. "Advances in Adjuvanted Influenza Vaccines" Vaccines 11, no. 8: 1391. https://doi.org/10.3390/vaccines11081391
APA StyleShichinohe, S., & Watanabe, T. (2023). Advances in Adjuvanted Influenza Vaccines. Vaccines, 11(8), 1391. https://doi.org/10.3390/vaccines11081391