Inhibition of Trichinella spiralis Membrane-Associated Progesterone Receptor (MAPR) Results in a Reduction in Worm Burden
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parasite and Animals Preservation
2.2. Molecular Cloning of Ts-MAPRC2 and rTs-MAPRC2 Protein Production
2.3. Obtaining Rat Polyclonal Antibodies against rTs-MAPRC2
2.4. Detection of the Native Protein Ts-MAPRC2 by Indirect Immunofluorescence Assay (IIFA)
2.5. In Vitro Phenotyping of rTs-MAPRC2-Ab Effects on ML and NBL
2.6. In Vivo Assessment of the Infectivity of ML Treated with rTs-MAPRC2-Ab
2.7. Assessment of the Infectivity of NBL Treated with rTs-MAPRC2-Ab
2.8. Preparation of siRNA
2.9. Transfection of siRNA to T. spiralis Worms
2.10. Protein Expression of Ts-MAPR Determined by Western Blotting
2.11. Expression of Ts-MAPRC2 mRNA by RNA Extraction and qPCR
2.12. In Vitro Phenotyping of siRNA Effects on ML
2.13. Evaluation of siRNA-Treated NBL for Infectivity
2.14. Statistical Analysis
3. Results
3.1. Indirect Immunofluorescence Assay (IIFA) in Muscle Larvae (ML) and Newborn Larvae (NBL)
3.2. Effect of rTs-MAPRC2-Ab on ML and NBL In Vitro
3.3. Assessing the Infectivity of ML Treated with rTs-MAPRC2-Ab In Vivo
3.4. Infectivity of NBL Treated with rTs-MAPRC2-Ab
3.5. Specific siRNA-Mediated Suppression of Ts-MAPRC2 Protein Expression
3.6. Specific siRNA-Mediated Suppression of Ts-MAPRC2 mRNA Expression
3.7. In Vitro Phenotyping of siRNA Effects on ML
3.8. Evaluation of siRNA-Treated NBL for Infectivity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gottstein, B.; Pozio, E.; Nöckler, K. Epidemiology, Diagnosis, Treatment, and Control of Trichinellosis. Clin. Microbiol. Rev. 2009, 22, 127–145. [Google Scholar] [CrossRef]
- Cui, J.; Wang, Z.Q. An Epidemiological Overview of Swine Trichinellosis in China. Vet. J. 2011, 190, 323–328. [Google Scholar] [CrossRef]
- Darwin Murrell, K.; Pozio, E. Worldwide Occurrence and Impact of Human Trichinellosis, 1986–2009. Emerg. Infect. Dis. 2011, 17, 2194–2202. [Google Scholar] [CrossRef] [PubMed]
- U.N. Food & Agriculture Organization. World Health Organization Multicriteria-Based Ranking for Risk Management of Foodborne Parasites [Preliminary Report]; FAO: Rome, Italy, 2012; p. 47. [Google Scholar]
- Cui, J.; Jiang, P.; Liu, L.N.; Wang, Z.Q. Survey of Trichinella Infections in Domestic Pigs from Northern and Eastern Henan, China. Vet. Parasitol. 2013, 194, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Zhang, X.; Wang, L.A.; Han, L.H.; Yang, M.; Duan, J.Y.; Sun, G.G.; Qi, X.; Liu, R.D.; Wang, Z.Q.; et al. Survey of Trichinella Infection from Domestic Pigs in the Historical Endemic Areas of Henan Province, Central China. Parasitol. Res. 2016, 115, 4707–4709. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Hu, X.; Liu, X.; Tang, B.; Liu, M. Current Research of Trichinellosis in China. Front. Microbiol. 2017, 8, 1472. [Google Scholar] [CrossRef]
- Zhang, N.; Li, W.; Fu, B. Vaccines against Trichinella spiralis: Progress, Challenges and Future Prospects. Transbound. Emerg. Dis. 2018, 65, 1447–1458. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Wu, X.; Wang, X.; Bai, X.; Shi, H.; Tang, B.; Liu, X.; Song, Y.; Boireau, P.; Wang, F.; et al. Vaccination of Mice with an Antigenic Serine Protease-like Protein Elicits a Protective Immune Response against Trichinella spiralis Infection. J. Parasitol. 2013, 99, 426–432. [Google Scholar] [CrossRef]
- Pozio, E.; Sacchini, D.; Sacchi, L.; Tamburrini, A.; Alberici, F. Failure of Mebendazole in the Treatment of Humans with Trichinella spiralis Infection at the Stage of Encapsulating Larvae. Clin. Infect. Dis. 2001, 32, 638–642. [Google Scholar] [CrossRef]
- Gu, Y.; Sun, X.; Li, B.; Huang, J.; Zhan, B.; Zhu, X. Vaccination with a Paramyosin-Based Multi-Epitope Vaccine Elicits Significant Protective Immunity against Trichinella spiralis Infection in Mice. Front. Microbiol. 2017, 8, 1475. [Google Scholar] [CrossRef]
- ur Rehman, T.; Elsaid, F.G.; Toledo, M.M.G.; Gentile, A.; Gul, R.A.; Rashid, M.; Aleem, M.T.; Zaman, M.A. Fasciolosis: Recent Update in Vaccines Development and Their Efficacy. Pak. Vet. J. 2023, 43, 224–231. [Google Scholar] [CrossRef]
- Kandeel, M.; Rehman, T.U.; Akhtar, T.; Zaheer, T.; Ahmad, S.; Ashraf, U.; Omar, M. Anti-Parasitic Applications of Nanoparticles: A Review. Pak. Vet. J. 2022, 42, 135–140. [Google Scholar] [CrossRef]
- Song, Y.Y.; Zhang, Y.; Yang, D.; Ren, H.N.; Sun, G.G.; Jiang, P.; Liu, R.D.; Zhang, X.; Cui, J.; Wang, Z.Q. The Immune Protection Induced by a Serine Protease Inhibitor from the Foodborne Parasite Trichinella spiralis. Front. Microbiol. 2018, 9, 1544. [Google Scholar] [CrossRef]
- Yang, Y.; Bai, X.; Li, C.; Tong, M.; Zhang, P.; Cai, W.; Liu, X.; Liu, M. Molecular Characterization of Fructose-1,6-Bisphosphate Aldolase from Trichinella spiralis and Its Potential in Inducing Immune Protection. Front. Cell. Infect. Microbiol. 2019, 9, 122. [Google Scholar] [CrossRef]
- Yang, Z.; Li, W.; Yang, Z.; Pan, A.; Liao, W.; Zhou, X. A Novel Antigenic Cathepsin B Protease Induces Protective Immunity in Trichinella-Infected Mice. Vaccine 2018, 36, 248–255. [Google Scholar] [CrossRef]
- Giangrande, P.H.; McDonnell, D.P. The A and B isoforms of the human progesterone receptor: Two functionally different transcription factors encoded by a single gene. Recent Prog. Horm. Res. 1999, 54, 291–313. [Google Scholar]
- Science, P. Functions of MAPR (Membrane-Associated Progesterone Receptor) Family Members As Heme/Steroid-Binding Proteins. Curr. Protein Pept. Sci. 2014, 13, 687–696. [Google Scholar]
- Ryu, C.S.; Klein, K.; Zanger, U.M. Membrane Associated Progesterone Receptors: Promiscuous Proteins with Pleiotropic Functions—Focus on Interactions with Cytochromes P450. Front. Pharmacol. 2017, 8, 159. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Sargent, C.; Quilter, C.; Yang, Z.; Ren, J.; Affara, N.; Brenig, B.; Huang, L. Cloning, Mapping and Molecular Characterization of Porcine Progesterone Receptor Membrane Component 2 (PGRMC2) Gene. Genet. Mol. Biol. 2010, 33, 471–474. [Google Scholar] [CrossRef]
- Piel, R.B.; Shiferaw, M.T.; Vashisht, A.A.; Marcero, J.R.; Praissman, J.L.; Phillips, J.D.; Wohlschlegel, J.A.; Medlock, A.E. A Novel Role for Progesterone Receptor Membrane Component 1 (PGRMC1): A Partner and Regulator of Ferrochelatase. Biochemistry 2016, 55, 5204–5217. [Google Scholar] [CrossRef]
- Hu, W.; Yan, Q.; Shen, D.K.; Liu, F.; Zhu, Z.D.; Song, H.D.; Xu, X.R.; Wang, Z.J.; Rong, Y.P.; Zeng, L.C.; et al. Evolutionary and Biomedical Implications of a Schistosoma japonicum Complementary DNA Resource. Nat. Genet. 2003, 35, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.; Johnston, D.A. Mining the Schistosome DNA Sequence Database. Trends Parasitol. 2001, 17, 501–503. [Google Scholar] [CrossRef] [PubMed]
- Aleem, M.T.; Shi, J.; Yu, Z.; Wen, Z.; Zhang, Y.; Liang, M.; Lakho, S.A.; Haseeb, M.; Ali, H.; Hassan, M.W.; et al. Characterization of Membrane-Associated Progesterone Receptor Component-2 (MAPRC2) from Trichinella spiralis and Its Interaction with Progesterone and Mifepristone. Vaccines 2021, 9, 934. [Google Scholar] [CrossRef]
- Aleem, M.T.; Khan, A.; Wen, Z.; Yu, Z.; Li, K.; Shaukat, A.; Chen, C.; Rehman, T.U.; Lu, M.; Xu, L.; et al. Molecular Docking and in Silico Simulation of Trichinella spiralis Membrane-Associated Progesterone Receptor Component 2 (Ts-MAPRC2) and Its Interaction with Human PGRMC1. Biomed Res. Int. 2022, 2022, 7414198. [Google Scholar] [CrossRef] [PubMed]
- Aleem, M.T.; Yan, R.; Khan, A.; Asrar, R.; Shakoor, A.; Asif, A.; Wen, Z.; Yu, Z.; Malik, M.A.; Tauseef-ur-Rehman; et al. Advances in the Development of Anti-Trichinella spiralis Vaccine, Challenges, and Future Prospective. In Parasitic Helminths Zoonoses—From Basic to Applied Research [Working Title]; IntechOpen Limited: London, UK, 2022. [Google Scholar] [CrossRef]
- Britton, C.; Laing, R.; Devaney, E. Small RNAs in Parasitic Nematodes—Forms and Functions. Parasitology 2020, 147, 855–864. [Google Scholar] [CrossRef]
- Yi, N.; Yu, P.; Wu, L.; Liu, Z.; Guan, J.; Liu, C.; Liu, M.; Lu, Y. RNAi-Mediated Silencing of Trichinella spiralis Serpin-Type Serine Protease Inhibitors Results in a Reduction in Larval Infectivity. Vet. Res. 2020, 51, 139. [Google Scholar] [CrossRef]
- Yang, D.Q.; Zeng, J.; Sun, X.Y.; Yue, X.; Hu, C.X.; Jiang, P.; Liu, R.D.; Cui, J.; Wang, Z.Q. Trichinella spiralis: RNAi-Mediated Silencing of Serine Protease Results in Reduction of Intrusion, Development and Fecundity. Trop. Biomed. 2020, 37, 932–946. [Google Scholar] [CrossRef]
- Britton, C.; Winter, A.D.; Marks, N.D.; Gu, H.; McNeilly, T.N.; Gillan, V.; Devaney, E. Application of Small RNA Technology for Improved Control of Parasitic Helminths. Vet. Parasitol. 2015, 212, 47–53. [Google Scholar] [CrossRef]
- Zhuo, T.X.; Wang, Z.; Song, Y.Y.; Yan, S.W.; Liu, R.D.; Zhang, X.; Wang, Z.Q.; Cui, J. Characterization of a Novel Glutamine Synthetase from Trichinella spiralis and Its Participation in Larval Acid Resistance, Molting, and Development. Front. Cell Dev. Biol. 2021, 9, 729402. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, Z.; Aimulajiang, K.; Aleem, M.T.; Feng, J.; Liang, M.; Lu, M.; Xu, L.; Song, X.; Li, X.; et al. Histidine Acid Phosphatase Domain-Containing Protein from Haemonchus contortus Is a Stimulatory Antigen for the Th1 Immune Response of Goat PBMCs. Parasit. Vectors 2022, 15, 282. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, Y.; Liu, Z.; Aleem, M.T.; Liu, J.; Luo, J.; Yan, R.; Xu, L.; Song, X.; Li, X. Recombinant Toxoplasma gondii Ribosomal Protein P2 Modulates the Functions of Murine Macrophages In Vitro and Provides Immunity against Acute Toxoplasmosis In Vivo. Vaccines 2021, 9, 357. [Google Scholar] [CrossRef]
- Liu, C.Y.; Ren, H.N.; Song, Y.Y.; Sun, G.G.; Liu, R.D.; Jiang, P.; Long, S.R.; Zhang, X.; Wang, Z.Q.; Cui, J. Experimental Parasitology Characterization of a Putative Glutathione S-Transferase of the Parasitic Nematode Trichinella spiralis. Exp. Parasitol. 2018, 187, 59–66. [Google Scholar] [CrossRef]
- Gagliardo, L.F.; McVay, C.S.; Appleton, J.A. Molting, Ecdysis, and Reproduction of Trichinella spiralis Are Supported in Vitro by Intestinal Epithelial Cells. Infect. Immun. 2002, 70, 1853–1859. [Google Scholar] [CrossRef]
- Fei, H.; Naqvi, M.A.U.H.; Naqvi, S.Z.; Xu, L.; Song, X.; Li, X.; Yan, R. Trichinella spiralis: Knockdown of Gamma Interferon Inducible Lysosomal Thiol Reductase (Gilt) Results in the Reduction of Worm Burden. PLoS Negl. Trop. Dis. 2021, 15, e0009958. [Google Scholar] [CrossRef]
- Naito, Y.; Yoshimura, J.; Morishita, S.; Ui-Tei, K. SiDirect 2.0: Updated Software for Designing Functional siRNA with Reduced Seed-Dependent off-Target Effect. BMC Bioinform. 2009, 10, 392. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.X.; Zeng, J.; Hao, H.N.; Xu, Y.X.Y.; Liu, F.; Liu, R.D.; Long, S.R.; Wang, Z.Q.; Cui, J. Biological Properties and Roles of a Trichinella spiralis Inorganic Pyrophosphatase in Molting and Developmental Process of Intestinal Larval Stages. Vet. Res. 2021, 52, 6. [Google Scholar] [CrossRef]
- Liu, H.; Tao, Z.; Wang, Y.; Liu, X.; Wang, C.; Liu, L.; Hu, M. A Member of the CAP Protein Superfamily, Hc-CAP-15, Is Important for the Parasitic—Stage Development of Haemonchus contortus. Parasit. Vectors 2023, 16, 290. [Google Scholar] [CrossRef]
- Aimulajiang, K.; Cao, M.; Liao, S.; Naqvi, M.A.-H.; Tian, X.; Li, Z.; Lu, M.; Lakho, S.A.; Li, X.; Xu, L.; et al. Development and Potential Application of Ras Domain Containing Protein from Haemonchus contortus for Diagnosis of Goat Infection. Animals 2020, 10, 138. [Google Scholar] [CrossRef]
- Liu, R.D.; Wang, Z.Q.; Wang, L.; Long, S.R.; Ren, H.J.; Cui, J. Analysis of Differentially Expressed Genes of Trichinella spiralis Larvae Activated by Bile and Cultured with Intestinal Epithelial Cells Using Real-Time PCR. Parasitol. Res. 2013, 112, 4113–4120. [Google Scholar] [CrossRef]
- Zou, X.; Jin, Y.M.; Liu, P.P.; Wu, Q.J.; Liu, J.M.; Lin, J.J. RNAi Silencing of Calcium-Regulated Heat-Stable Protein of 24 kDa in Schistosoma japonicum Affects Parasite Growth. Parasitol. Res. 2011, 108, 567–572. [Google Scholar] [CrossRef]
- Cahill, M.A. Progesterone Receptor Membrane Component 1: An Integrative Review. J. Steroid Biochem. Mol. Biol. 2007, 105, 16–36. [Google Scholar] [CrossRef]
- Lösel, R.M.; Besong, D.; Peluso, J.J.; Wehling, M. Progesterone Receptor Membrane Component 1—Many Tasks for a Versatile Protein. Steroids 2008, 73, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Falkenstein, E.; Meyer, C.; Eisen, C.; Scriba, P.C.; Wehling, M. Full-Length cDNA Sequence of a Progesterone Membrane-Binding Protein from Porcine Vascular Smooth Muscle Cells. Biochem. Biophys. Res. Commun. 1996, 229, 86–89. [Google Scholar] [CrossRef]
- Peluso, J.J. Multiplicity of Progesterone’s Actions and Receptors in the Mammalian Ovary. Biol. Reprod. 2006, 75, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.X.; Jiang, P.; Yue, X.; Zeng, J.; Zhang, X.Z.; Song, Y.Y.; Liu, R.D.; Zhang, X.; Wang, Z.Q.; Cui, J. Molecular Characterization of a Trichinella spiralis Elastase-1 and Its Potential as a Diagnostic Antigen for Trichinellosis. Parasit. Vectors 2020, 13, 97. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.N.; Liu, R.D.; Song, Y.Y.; Zhuo, T.X.; Guo, K.X.; Zhang, Y.; Jiang, P.; Wang, Z.Q.; Cui, J. Label-Free Quantitative Proteomic Analysis of Molting-Related Proteins of Trichinella spiralis Intestinal Infective Larvae. Vet. Res. 2019, 50, 70. [Google Scholar] [CrossRef]
- Cui, J.; Han, Y.; Yue, X.; Liu, F.; Song, Y.Y.; Yan, S.W.; Lei, J.J.; Zhang, X.; Jiang, P.; Wang, Z.Q. Vaccination of Mice with a Recombinant Novel Cathepsin B Inhibits Trichinella spiralis Development, Reduces the Fecundity and Worm Burden. Parasit. Vectors 2019, 12, 581. [Google Scholar] [CrossRef]
siRNA Name | Sense (5′–3′) | Antisense (5′–3′) |
---|---|---|
siRNA-180 | 5′-CUGGGAUUCUUGCGGUAAUTT-3 | 5′-AUUACCGCAAGAAUCCCAGTT-3 |
siRNA-419 | 5′-GGUGGACCAUAUGGCUUAUTT-3′ | 5′-AUAAGCCAUAUGGUCCACCTT-3′ |
siRNA-559 | 5′-GGCUAUGCAUGAGCUGAAATT-3′ | 5′-UUUCAGCUCAUGCAUAGCCTT-3′ |
siRNA-Control | 5′-UUCUCCGAACGUGUCACGUTT-3′ | 5′-ACGUGACACGUUCGGAGAATT-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleem, M.T.; Wen, Z.; Yu, Z.; Chen, C.; Lu, M.; Xu, L.; Song, X.; Li, X.; Yan, R. Inhibition of Trichinella spiralis Membrane-Associated Progesterone Receptor (MAPR) Results in a Reduction in Worm Burden. Vaccines 2023, 11, 1437. https://doi.org/10.3390/vaccines11091437
Aleem MT, Wen Z, Yu Z, Chen C, Lu M, Xu L, Song X, Li X, Yan R. Inhibition of Trichinella spiralis Membrane-Associated Progesterone Receptor (MAPR) Results in a Reduction in Worm Burden. Vaccines. 2023; 11(9):1437. https://doi.org/10.3390/vaccines11091437
Chicago/Turabian StyleAleem, Muhammad Tahir, Zhaohai Wen, Zhengqing Yu, Cheng Chen, Mingmin Lu, Lixin Xu, Xiaokai Song, Xiangrui Li, and Ruofeng Yan. 2023. "Inhibition of Trichinella spiralis Membrane-Associated Progesterone Receptor (MAPR) Results in a Reduction in Worm Burden" Vaccines 11, no. 9: 1437. https://doi.org/10.3390/vaccines11091437
APA StyleAleem, M. T., Wen, Z., Yu, Z., Chen, C., Lu, M., Xu, L., Song, X., Li, X., & Yan, R. (2023). Inhibition of Trichinella spiralis Membrane-Associated Progesterone Receptor (MAPR) Results in a Reduction in Worm Burden. Vaccines, 11(9), 1437. https://doi.org/10.3390/vaccines11091437